Applications of Optimal Spline Approximations for the Solution of Nonlinear Time-Fractional Initial Value Problems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Value Fractional Differential Problems
2.2. Optimal Spline Bases
2.3. Discrete Spline Quasi-Interpolant Operators
3. The Numerical Method
4. Numerical Results
4.1. Example 1
4.2. Example 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science (North-Holland): Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2016. [Google Scholar]
- Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; CRC Press: Boca Raton, FL, USA, 2015; Volume 24. [Google Scholar]
- Zayernouri, M.; Karniadakis, G.E. Fractional spectral collocation method. SIAM J. Sci. Comput. 2014, 36, A40–A62. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, F.; Karniadakis, G.E. Optimal error estimates of spectral Petrov–Galerkin and collocation methods for initial value problems of fractional differential equations. SIAM J. Numer. Anal. 2015, 53, 2074–2096. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 2011, 62, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Khader, M.; El Danaf, T.; Hendy, A. Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials. Fract. Calc. Appl. 2012, 3, 1–14. [Google Scholar]
- Russell, R.; Shampine, L.F. A collocation method for boundary value problems. Numer. Math. 1972, 19, 1–28. [Google Scholar] [CrossRef]
- de Boor, C.; Swartz, B. Collocation at Gaussian points. SIAM J. Numer. Anal. 1973, 10, 582–606. [Google Scholar] [CrossRef]
- Ascher, U. Discrete least squares approximations for ordinary differential equations. SIAM J. Numer. Anal. 1978, 15, 478–496. [Google Scholar] [CrossRef]
- Blank, L. Numerical Treatment of Differential Equations of Fractional Order; Numerical Analysis Report; Department of Mathematics, University of Manchester: Manchester, UK, 1996. [Google Scholar]
- Pedas, A.; Tamme, E. On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 2011, 235, 3502–3514. [Google Scholar] [CrossRef] [Green Version]
- Pedas, A.; Tamme, E. Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 2014, 255, 216–230. [Google Scholar] [CrossRef]
- Kolk, M.; Pedas, A.; Tamme, E. Smoothing transformation and spline collocation for linear fractional boundary value problems. Appl. Math. Comput. 2016, 283, 234–250. [Google Scholar] [CrossRef]
- Pezza, L.; Pitolli, F. A fractional spline collocation-Galerkin method for the time-fractional diffusion equation. Commun. Appl. Ind. Math. 2018, 9, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Pitolli, F. A collocation method for the numerical solution of nonlinear fractional dynamical systems. Algorithms 2019, 12, 156. [Google Scholar] [CrossRef] [Green Version]
- Pitolli, F.; Pezza, L. A fractional spline collocation method for the fractional-order logistic equation. In Approximation Theory XV: San Antonio 2016; Fasshauer, G.E., Schumaker, L.L., Eds.; Springer Proceedings in Mathematics & Statistics 201; Springer: Berlin/Heidelberg, Germany, 2017; pp. 307–318. [Google Scholar]
- Mazza, M.; Donatelli, M.; Manni, C.; Speleers, H. On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties. arXiv 2021, arXiv:2106.14834. [Google Scholar]
- Rabinowitz, P. Application of approximating splines for the solution of Cauchy singular integral equations. Appl. Numer. Math. 1994, 15, 285–297. [Google Scholar] [CrossRef]
- de Boor, C.; Fix, G. Spline approximations by quasi-interpolants. J. Approx. Theory 1973, 8, 19–45. [Google Scholar] [CrossRef] [Green Version]
- Caliò, F.; Marchetti, E.; Rabinowitz, P. On the numerical solution of the generalized Prandtl equation using variation-diminishing splines. J. Comput. Appl. Math. 1995, 60, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Gori, L.; Santi, E.; Cimoroni, M. Projector-splines in the numerical solution of inetgro-differential equations. Comput. Math. Appl. 1998, 35, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Foucher, F.; Sablonnière, P. Quadratic spline quasi-interpolants and collocation methods. Math. Comput. Simul. 2009, 79, 3455–3465. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, E.; Pezza, L.; Pitolli, F. Quasi-interpolant operators and the solution of fractional differential problems. In Approximation Theory XVI. Nashville 2019; Fasshauer, G.E., Neamtu, M., Schumaker, L.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Pellegrino, E.; Pezza, L.; Pitolli, F. A collocation method based on discrete spline quasi-interpolatory operators for the solution of time fractional differential equations. Fractal Fract. 2021, 5, 5. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- de Boor, C. A Practical Guide to Splines; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Schumaker, L. Spline Functions: Basic Theory; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Pitolli, F. Optimal B-spline bases for the numerical solution of fractional differential problems. Axioms 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Carnicer, J.M.; Peña, J.M. Totally positive bases for shape preserving curve design and optimality of B-splines. Comput. Aided Geom. Design 1994, 11, 633–654. [Google Scholar] [CrossRef]
- Goodman, T. Shape preserving representations. In Mathematical Methods in Computer Aided Geometric Design; Lyche, T., Schumaker, L.L., Eds.; Academic Press: Cambridge, MA, USA, 1989; pp. 333–351. [Google Scholar]
- Lyche, T.; Schumaker, L.L. Local spline approximation methods. J. Approx. Theory 1975, 15, 294–325. [Google Scholar] [CrossRef] [Green Version]
- Sablonnière, P. Recent progress on univariate and multivariate polynomial and spline quasi-interpolants. In Trends and Applications in Constructive Approximation; De Bruin, M., Mache, D., Szabados, J., Eds.; ISNM; Birkhäuser Verlag: Basel, Switzerland, 2005; Volume 177, pp. 229–245. [Google Scholar]
- Pellegrino, E.; Pezza, L.; Pitolli, F. A collocation method in spline spaces for the solution of linear fractional dynamical systems. Math. Comput. Simul. 2020, 176, 266–278. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.; El-Mesiry, A.; El-Saka, H. On the fractional-order logistic equation. Appl. Math. Lett. 2007, 20, 817–823. [Google Scholar] [CrossRef] [Green Version]
- West, B.J. Exact solution to fractional logistic equation. Phys. A Stat. Mech. Its Appl. 2015, 429, 103–108. [Google Scholar] [CrossRef]
- Pitolli, F. On the numerical solution of fractional boundary value problems by a spline quasi-interpolant operator. Axioms 2020, 9, 61. [Google Scholar] [CrossRef]
h | ||||||||
---|---|---|---|---|---|---|---|---|
28.05 | 14.04 | 16.76 | 21.97 | |||||
32.93 | 24.01 | 35.13 | 52.18 | |||||
40.31 | 45.87 | 77.78 | 129.49 |
h | ||||||||
---|---|---|---|---|---|---|---|---|
230.54 | 86.61 | 35.31 | 26.18 | |||||
273.82 | 89.58 | 37.48 | 52.56 | |||||
324.17 | 93.06 | 75.67 | 125.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, E.; Pitolli, F. Applications of Optimal Spline Approximations for the Solution of Nonlinear Time-Fractional Initial Value Problems. Axioms 2021, 10, 249. https://doi.org/10.3390/axioms10040249
Pellegrino E, Pitolli F. Applications of Optimal Spline Approximations for the Solution of Nonlinear Time-Fractional Initial Value Problems. Axioms. 2021; 10(4):249. https://doi.org/10.3390/axioms10040249
Chicago/Turabian StylePellegrino, Enza, and Francesca Pitolli. 2021. "Applications of Optimal Spline Approximations for the Solution of Nonlinear Time-Fractional Initial Value Problems" Axioms 10, no. 4: 249. https://doi.org/10.3390/axioms10040249
APA StylePellegrino, E., & Pitolli, F. (2021). Applications of Optimal Spline Approximations for the Solution of Nonlinear Time-Fractional Initial Value Problems. Axioms, 10(4), 249. https://doi.org/10.3390/axioms10040249