Characterization of Wave Fronts of Ultradistributions Using Directional Short-Time Fourier Transform
Abstract
:1. Introduction
1.1. Notation
1.2. Ultradistribution Spaces
- , ;
- There exist constants A, such that
- There exists a constant A such that
- There exist constants A, such that
1.2.1. Ultradifferential Operators
1.3. The k-DSTFT and the k-Directional Synthesis Operator
2. The Main Results
2.1. Independence with Respect to a Window Function
2.2. Equivalent Definition
- (resp. ).
- There exist a compact neighborhood of and a cone such that for every (resp. for some ) the mapping , (resp. ), is well-defined and continuous.
- There exist a compact neighborhood of , a cone and such that for all and (resp. for all and some ) there holdsHere, the set .
- There exist a compact neighborhood of , a cone , such that for all and corresponding (resp. for some and corresponding ) with there holds .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giv, H.H. Directional short-time Fourier transform. J. Math. Anal. Appl. 2013, 399, 100–107. [Google Scholar] [CrossRef]
- Grafakos, L.; Sansing, C. Gabor frames and directional time-frequency analysis. Appl. Comput. Harmon. Anal. 2008, 25, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Saneva, K.; Atanasova, S. Directional short-time Fourier transform of distributions. J. Inequal. Appl. 2016, 124, 1–10. [Google Scholar]
- Atanasova, S.; Maksimović, S.; Pilipović, S. Directional Short-Time Fourier Transform of Ultradistributions. Bull. Malays. Math. Sci. Soc. 2021, 44, 3069–3087. [Google Scholar] [CrossRef]
- Atanasova, S.; Pilipović, S.; Saneva, K. Directional Time–Frequency Analysis and Directional Regularity. Bull. Malays. Math. Sci. Soc. 2019, 42, 2075–2090. [Google Scholar] [CrossRef]
- Hörmander, L. The Analysis of Linear Partial Differential Operators I, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1990. [Google Scholar]
- Coriasco, S.; Johansson, K.; Toft, J. Local wave-front sets of Banach and Fréchet types, and pseudo-differential operators. Monatsh. Math. 2013, 169, 285–316. [Google Scholar] [CrossRef]
- Coriasco, S.; Johansson, K.; Toft, J. Global Wave-front Sets of Banach, Fréchet and Modulation Space Types, and Pseudo-differential Operators. J. Differ. Equ. 2013, 254, 3228–3258. [Google Scholar] [CrossRef]
- Dimovski, P.; Prangoski, B. Wave front sets with respect to Banach spaces of ultradistributions. Characterisation via the short-time fourier transform. Filomat 2019, 33, 5829–5836. [Google Scholar] [CrossRef] [Green Version]
- Pilipović, S.; Prangoski, B. On the characterization of wave front sets via the short-time Fourier transform. Math. Notes 2019, 105, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, R.; Kamiński, A.; Pilipović, S. Boundary Values and Convolution in Ultradistribution Spaces; World Scientific: Singapore, 2007. [Google Scholar]
- Teofanov, N. Gelfand-Shilov spaces and localization operators. Funct. Anal. Approx. Comput. 2015, 7, 135–158. [Google Scholar]
- Hörmander, L. Lectures on Nonlinear Hyperbolic Differential Equations; Mathématiques et Applications 26; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1997. [Google Scholar]
- Komatsu, H. Ultradistributions, I: Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1973, 20, 25–105. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanasova, S.; Maksimović, S.; Pilipović, S. Characterization of Wave Fronts of Ultradistributions Using Directional Short-Time Fourier Transform. Axioms 2021, 10, 240. https://doi.org/10.3390/axioms10040240
Atanasova S, Maksimović S, Pilipović S. Characterization of Wave Fronts of Ultradistributions Using Directional Short-Time Fourier Transform. Axioms. 2021; 10(4):240. https://doi.org/10.3390/axioms10040240
Chicago/Turabian StyleAtanasova, Sanja, Snježana Maksimović, and Stevan Pilipović. 2021. "Characterization of Wave Fronts of Ultradistributions Using Directional Short-Time Fourier Transform" Axioms 10, no. 4: 240. https://doi.org/10.3390/axioms10040240
APA StyleAtanasova, S., Maksimović, S., & Pilipović, S. (2021). Characterization of Wave Fronts of Ultradistributions Using Directional Short-Time Fourier Transform. Axioms, 10(4), 240. https://doi.org/10.3390/axioms10040240