Next Article in Journal
Nonlinear Control System Design of an Underactuated Robot Based on Operator Theory and Isomorphism Scheme
Previous Article in Journal
Identification of the Critical Factors for Global Supply Chain Management under the COVID-19 Outbreak via a Fusion Intelligent Decision Support System
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Radu–Miheţ Method for the Existence, Uniqueness, and Approximation of the ψ-Hilfer Fractional Equations by Matrix-Valued Fuzzy Controllers

1
School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran
2
Campus of Leioa, Institute of Research and Development of Processes IIDP, University of the Basque Country, 48940 Leioa, Spain
*
Author to whom correspondence should be addressed.
Axioms 2021, 10(2), 63; https://doi.org/10.3390/axioms10020063
Submission received: 5 March 2021 / Revised: 6 April 2021 / Accepted: 14 April 2021 / Published: 16 April 2021

Abstract

:
We apply the Radu–Miheţ method derived from an alternative fixed-point theorem with a class of matrix-valued fuzzy controllers to approximate a fractional Volterra integro-differential equation with the ψ -Hilfer fractional derivative in matrix-valued fuzzy k-normed spaces to obtain an approximation for this type of fractional equation.

1. Introduction

Fractional calculus is considered as a branch of mathematical analysis that deals with the investigation and applications of integrals and derivatives of arbitrary order. Therefore, fractional calculus is an extension of the integer-order calculus that considers integrals and derivatives of any real or complex order [1], i.e., unifying and generalizing the notions of integer-order differentiation and n-fold integration. Various forms of fractional operators have been introduced over time, such as the Riemann–Liouville, Grünwald–Letnikov, Weyl, Caputo, Marchaud, or Hadamard fractional derivatives. The first approach is the Riemann–Liouville one, which is based on the iteration of the classical integral operator for n times and then considering Cauchy’s formula where n ! is replaced by the Gamma function; hence, the fractional integral of non-integer order is defined. Results on the existence and stability of solutions of implicit fractional differential equations can be found in [2,3,4]. In this article, we study the fuzzy sets’ matrix valued with the generalized t-norms, to define a matrix-valued fuzzy k-Banach space (in short MV-k-FB-space) and introduce a new class of matrix-valued fuzzy controllers. We apply the Radu–Miheţ method to get an approximation for a class of ψ -Hilfer fractional Volterra integro-differential equations [5] in the matrix-valued fuzzy k-normed spaces (MVF-k-N-spaces).
The paper is organized as follows. In the next section, we present the definition of the generalized t-norm and define the matrix-valued fuzzy k-normed space. Next, we introduce the matrix-valued fuzzy controllers and the concept of Hyers–Ulam–Rassias stability. In Section 3, we apply the Radu–Miheţ method derived from the alternative fixed point theorem to study the Hyers–Ulam–Rassias stability of fractional Volterra integro-differential equations in MVF-k-B-spaces. In Section 4, we investigate the Hyers–Ulam–Rassias stability of fractional Volterra integral equations in MVF-k-B-spaces. In Section 5, we present some examples to illustrate our main results.

2. Preliminaries

Here, we let E 1 = [ 0 , p ] , E 2 = ( 0 , ) , E 3 = ( 0 , 1 ] , E 4 = [ 0 , ] , E 5 = [ 0 , 1 ] (note that E 5 = ( 0 , 1 ) denotes the interior of E 5 ), and E 6 = [ 0 , ) .
Let:
diag M n ( E 5 ) = q 1 q n = diag [ q 1 , , q n ] , q 1 , , q n E 5 ,
where diag M n ( E 5 ) is equipped with the partial order relation:
q = diag [ q 1 , , q n ] , b = diag [ b 1 , , b n ] diag M n ( E 5 ) , q b q i b i for every i = 1 , , n .
Furthermore, q b denotes that q b and q b ; q b and a i < b i for every i = 1 , , n . We define e = diag [ e , , e ] in diag M n ( E 5 ) where e E 5 . For instance, 1 = diag [ 1 , , 1 ] and 0 = diag [ 0 , , 0 ] .
Now, we define a class of t-norms [6,7] on diag M n ( E 5 ) .
Definition 1.
([6,7,8]) Consider the generalized t-norm (GTN) : diag M n ( E 5 ) × diag M n ( E 5 ) diag M n ( E 5 ) , which satisfies the following conditions:
(a) 
( q diag M n ( E 5 ) ) ( q 1 ) = q ) (boundary condition);
(b) 
( ( q , b ) ( diag M n ( E 5 ) ) 2 ) ( q b = b q ) (commutativity);
(c) 
( ( q , b , c ) ( diag M n ( E 5 ) ) 3 ) ( q ( b c ) = ( q b ) c ) (associativity);
(d) 
( ( q 1 , q 2 , b 1 , b 2 ) ( diag M n ( E 5 ) ) 4 ) ( q 1 q 2 and b 1 b 2 q 1 b 1 q 2 b 2 )
(monotonicity).
For every q , b diag M n ( E 5 ) and every sequences { q k } and { b k } converging to q and b , suppose we have:
lim k ( q k b k ) = q b ,
thenon diag M n ( E 5 ) is the continuous GTN (CGTN). Now, we present some examples of the CGTN.
(1) Define M : diag M n ( E 5 ) × diag M n ( E 5 ) diag M n ( E 5 ) , such that,
q M b = diag [ q 1 , , q n ] M diag [ b 1 , , b n ] = diag [ min { q 1 , b 1 } , , min { q n , b n } ] ,
then M is the CGTN (minimum CGTN);
(2) Define P : diag M n ( E 5 ) × diag M n ( E 5 ) diag M n ( E 5 ) , such that,
q P b = diag [ q 1 , , q n ] P diag [ b 1 , , b n ] = diag [ q 1 . b 1 , , q n . b n ] ,
then P is the CGTN (product CGTN);
(3) Define L : diag M n ( E 5 ) × diag M n ( E 5 ) diag M n ( E 5 ) , such that,
q L b = diag [ q 1 , , q n ] L diag [ b 1 , , b n ] = diag [ max { q 1 + b 1 1 , 0 } , , max { q n + b n 1 , 0 } ] ,
then P is the CGTN (Lukasiewicz CGTN).
Now, we present some numerical examples:
diag 1 2 , 3 4 , 1 , 2 3 , 1 4 M diag 0 , 1 3 , 2 5 , 6 7 , 1 = 1 2 3 4 1 2 3 1 4 M 0 1 3 2 5 6 7 1 = 0 1 3 2 5 2 3 1 4 = diag 0 , 1 3 , 2 5 , 2 3 , 1 4
diag 1 2 , 3 4 , 1 , 2 3 , 1 4 P diag 0 , 1 3 , 2 5 , 6 7 , 1 = 1 2 3 4 1 2 3 1 4 P 0 1 3 2 5 6 7 1 = 0 1 4 2 5 4 7 1 4 = diag 0 , 1 4 , 2 5 , 4 7 , 1 4
diag 1 2 , 3 4 , 1 , 2 3 , 1 4 L diag 0 , 1 3 , 2 5 , 6 7 , 1 = 1 2 3 4 1 2 3 1 4 L 0 1 3 2 5 6 7 1 = 0 1 12 2 5 11 21 1 4 = diag 0 , 1 12 , 2 5 , 11 21 , 1 4 .
We get:
diag 1 2 , 3 4 , 1 , 2 3 , 1 4 M diag 0 , 1 3 , 2 5 , 6 7 , 1 diag 1 2 , 3 4 , 1 , 2 3 , 1 4 P diag 0 , 1 3 , 2 5 , 6 7 , 1 diag 1 2 , 3 4 , 1 , 2 3 , 1 4 L diag 0 , 1 3 , 2 5 , 6 7 , 1 .
We consider the set of matrix-valued fuzzy functions (MVFFs) Φ , which are left continuous and increasing functions φ : ( E 1 ) k × ( E 2 ) n diag M n ( E 3 ) , where t = ( t 1 , , t n ) ( E 2 ) n . Furthermore, lim t + φ ( p 1 , , p k , t ) = 1 for any p 1 , , p k in E 1 .
As an example, the matrix-valued fuzzy function φ : ( E 1 ) k × ( E 2 ) 3 diag M n ( E 3 ) :
φ ( p 1 , , p k , t ) = diag exp p 1 , p k t 1 , t 2 t 2 + p 1 , , p k , exp p 1 , , p k t 3 ,
for t ( E 2 ) 3 .
In Φ , we define as follows:
φ ϕ φ ( p 1 , , p k , t ) ϕ ( p 1 , , p k , t ) , t ( E 2 ) n and p 1 , , p k E 1 .
Definition 2.
Consider the CGTN, a vector space V, and the matrix-valued fuzzy set (MVFS) Θ : V k × ( E 2 ) n diag M n ( E 3 ) . In this case, we define a matrix-valued fuzzy k-normed space (MVF-K-N-space) ( V , Θ , ) as:
(MVF-K-N1) Θ ( v 1 , , v k , t ) = 1 if and only if v 1 , , v k are linearly dependent and t ( E 2 ) n ;
(MVF-K-N2) Θ ( α v 1 , , v k , t ) = Θ ( v 1 , , v k , t | α | ) for all v 1 , , v k V and α C with α 0 ;
(MVF-K-N3) Θ ( v 0 + v 1 , v 2 , , v k , t + s ) Θ ( v 0 , v 2 , , v k , t ) Θ ( v 1 , v 2 , , v k , s ) for all v 1 , , v k V and any t ( E 2 ) n and s ( E 2 ) n ;
(MVF-K-N4) lim t + Θ ( p 1 , , p k , t ) = 1 for any t ( E 2 ) n .
A complete MVF-k-N-space is called a matrix-valued fuzzy Banach space (MVF-k-B-space).
As an example, the matrix-valued fuzzy k-norm (MVF-k-N) Θ ,
Θ ( v 1 , v 2 , , v k , t ) = diag exp ( v 1 , v 2 , , v k t 1 ) , t 2 t 2 + v 1 , v 2 , , v k , exp ( v 1 , v 2 , , v k t 3 ) ,
for t ( E 2 ) 3 .
Define a matrix-valued fuzzy k-norm, and ( V , Θ , M ) is an MVF-k-N-space; here, ( V , · ) is a k-normed vector space. In this paper, we assume that = M .
Theorem 1
([9,10]). Let ( W , d ) be a complete E 4 -valued metric space, and let Λ : W W be a strictly contractive function with Lipschitz constant Ł < 1 . Thus, for a given element ρ W , either:
d Λ n ρ , Λ n + 1 ρ = ,
for each n N or there is n 0 N such that:
(i) 
d Λ n ρ , Λ n + 1 ρ < for every n n 0 ;
(ii) 
the fixed point ϱ * of Λ is the convergent point of sequence Λ n ρ ;
(iii) 
in the set U = ϱ W d ( Λ n 0 ρ , ϱ ) < , ϱ * is the unique fixed point of Λ;
(iv) 
( 1 Ł ) d ϱ , ϱ * d ( ϱ , Λ ϱ ) for every ϱ U .
Definition 3
([5]). Let Ω : ( a , b ) R ( 0 < a < b < ) be a finite interval and κ > 0 . Furthermore, let ψ ( p ) be an increasing and positive monotone function on ( a , b ] , having a continuous derivative ψ ( p ) (we denote the first derivative as d d t ψ ( p ) = ψ ( p ) on ( a , b ) ). The left-sided fractional integral of a function f with respect to a function ψ ( p ) on ( a , b ) is defined by:
I a + κ , ψ Ω ( p ) = 1 Γ ( κ ) a p A ψ κ ( p , s ) Ω ( s ) d s , a < p ,
where A ψ κ ( p , s ) : = ψ ( p ) ( ψ ( p ) ψ ( s ) ) κ 1 . The right-sided fractional integral is defined in an analogous form.
As the aim of this paper is to present some types of stabilities involving a class of fractional integro-differential equations by means of a ψ -Hilfer fractional operator, we introduce such a fractional operator.
Definition 4.
[5] Let κ E 5 ˚ , Ω be an integrable function on E 1 and ψ C 1 ( E 1 ) be an increasing function with ψ ( p ) 0 , for each p E 1 . Define the ψ-Hilfer fractional derivative as:
H D 0 + κ , τ ; ψ Ω ( p ) = I 0 + τ ( 1 κ ) ; ψ 1 ψ ( p ) d d p I 0 + ( 1 τ ) ( 1 κ ) ; ψ Ω ( p ) .
Consider the ψ -Hilfer fractional Volterra integro-differential equation, defined by:
H D 0 + κ , τ , ψ Ω ( p ) = S ( p , ω ( p ) ) + 0 p M ( p , σ , Ω ( σ ) ) d σ ,
where S ( p , ω ( p ) ) is a continuous function (CF) with respect to the variables p , ω , and also, M ( p , σ , Ω ( σ ) ) is a CF with respect to p , σ and Ω on E 1 , κ E 5 , τ E 5 , S : E 1 × V V , and M : E 1 × E 1 × V V .
Let function ϕ : ( E 1 ) k × ( E 2 ) n diag M n ( E 3 ) be a matrix-valued fuzzy function. Equation (3) is said to be Hyers–Ulam–Rassias stable if Ω ( p 1 ) , , Ω ( p k ) is a given differentiable function, satisfying:
Θ ( 0 D p 1 κ , τ , ψ Ω ( p 1 ) S ( p 1 , Ω ( p 1 ) ) 0 p 1 M ( p 1 , σ 1 , Ω ( σ 1 ) ) d σ 1 , , 0 D p k κ , τ , ψ Ω ( p k ) S ( p k , Ω ( p k ) ) 0 p k M ( p k , σ k , Ω ( σ k ) ) d σ k , μ ) ϕ ( p 1 , , p k , μ ) ,
for p 1 , , p k E 1 , and we can find a solution Υ ( p 1 ) , Υ ( p k ) of Equation (3) such that for some r > 0 ,
Θ ( Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ ) ϕ p 1 , , p k , μ r .
Using the Radu–Miheţ method, we study the Hyers–Ulam–Rassias stability of the ψ -Hilfer fractional Volterra integro-differential Equation (3) in MVF-k-B-space ( V , Θ , ) . Our results can be applied to improve recent results [5], and by the methods used in this paper, we can extend some fractional Volterra integro-differential equations in MVF-k-B-spaces [11,12,13,14].

3. Best Approximation ψ -Hilfer Fractional Volterra Integro-Differential Equation

In this section, we apply the Radu–Miheţ method derived from Theorem 1 to study the Hyers–Ulam–Rassias stability of functional Equation (3); for more details, we refer to [15,16]. Consider the MVF-k-B-space ( V , Θ , ) and matrix-valued fuzzy function (MVFF) ϕ : ( E 1 ) k × ( E 2 ) n diag M n ( E 3 ) . We set:
B : = { Ω : E 1 V , Ω is   differentiable }
and define a mapping d from B × B to E 4 by:
d ( Ω , Υ ) = inf { C E 6 : Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , μ Θ Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ , ϕ p 1 , , p k , μ C , Ω , Υ B , p 1 , , p k E 1 , μ ( E 2 ) n } .
Theorem 2.
( B , d ) is a complete E 4 -valued metric fuzzy space.
Proof. 
First, we show that ( B , d ) is an E 4 -valued metric fuzzy space.
We show that d ( Ω , Υ ) = 0 if and only if Ω = Υ . Let d ( Ω , Υ ) = 0 ; we have:
inf { C E 6 : Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , μ Θ ( Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ ) ϕ p 1 , , p k , μ C , Ω , Υ B , p 1 , , p k E 1 , μ ( E 2 ) n } = 0
and so:
Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , μ Θ ( Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ ) ϕ p 1 , , p k , μ C ,
for all C E 6 . C tends to zero in the above inequality, and we get:
Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , μ = 1
and so:
Θ ( Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ ) = 1
Thus, Ω ( p 1 , , p k ) = Υ ( p 1 , , p k ) for every p 1 , , p k E 1 , and vice versa. It is straight forward to show d ( Ω , Υ ) = d ( Ω , Υ ) for every Ω , Υ B . Now, let d ( Ω , Υ ) = e 1 E 2 and d ( Ω , Υ ) = e 2 E 2 . Then, we have:
Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , μ Θ ( Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ ) ϕ p 1 , , p k , μ e 1 ,
and:
Θ 0 D p 1 κ , τ , ψ Υ ( p 1 ) 0 D p 1 κ , τ , ψ ω ( p 1 ) , , 0 D p k κ , τ , ψ Υ ( p k ) 0 D p k κ , τ , ψ ω ( p k ) , μ Θ ( Υ ( p 1 ) ω ( p 1 ) , , Υ ( p k ) ω ( p k ) , μ ) ϕ p 1 , , p k , μ e 2 ,
for every μ ( E 2 ) n . Then, we have:
Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ ω ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ ω ( p k ) , ( e 1 + e 2 ) μ Θ Ω ( p 1 ) ω ( p 1 ) , , Ω ( p k ) ω ( p k ) , ( e 1 + e 2 μ ) [ Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , e 1 μ Θ 0 D p 1 κ , τ , ψ Υ ( p 1 ) 0 D p 1 κ , τ , ψ ω ( p 1 ) , , 0 D p k κ , τ , ψ Υ ( p k ) 0 D p k κ , τ , ψ ω ( p k ) , e 2 μ ] Θ Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , e 1 μ Θ Υ ( p 1 ) ω ( p 1 ) , , Υ ( p k ) ω ( p k ) , e 2 μ ϕ ( p 1 , , p k , μ ) ϕ ( p 1 , , p k , μ ) = ϕ ( p 1 , , p k , μ )
and so, d ( Ω , ω ) e 1 + e 2 . Thus, d ( Ω , ω ) d ( Ω , Υ ) + d ( Υ , ω ) . Now, we are ready to prove ( B , d ) is complete. Suppose that { Ω k } k is a Cauchy sequence in ( B , d ) . Let p 1 , , p k E 1 . Assume that v ( E 2 ) n and λ E 5 are arbitrary, and consider μ ( E 2 ) n such that ϕ ( p 1 , , p k , μ ) 1 λ for each λ in ( 0 , 1 ) . For e μ < v , choose k 0 N such that:
d ( Ω k , Ω ) < e k , k 0 .
Then:
Θ 0 D p 1 κ , τ , ψ Ω k ( p 1 ) 0 D p 1 κ , τ , ψ Ω l ( p 1 ) , , 0 D p k κ , τ , ψ Ω k ( p k ) 0 D p k κ , τ , ψ Ω l ( p k ) , v Θ Ω k ( p 1 ) Ω l ( p 1 ) , , Ω k ( p k ) Ω l ( p k ) , v Θ 0 D p 1 κ , τ , ψ Ω k ( p 1 ) 0 D p 1 κ , τ , ψ Ω l ( p 1 ) , , 0 D p k κ , τ , ψ Ω k ( p k ) 0 D p k κ , τ , ψ Ω l ( p k ) , e μ Θ ( Ω k ( p 1 ) Ω l ( p 1 ) , , Ω k ( p k ) Ω l ( p k ) , e μ ) ϕ ( p 1 , , p k , μ ) 1 λ .
Then:
Θ 0 D p 1 κ , τ , ψ Ω k ( p 1 ) 0 D p 1 κ , τ , ψ Ω l ( p 1 ) , , 0 D p k κ , τ , ψ Ω k ( p k ) 0 D p k κ , τ , ψ Ω l ( p k ) , v 1 λ
and Θ ( Ω k ( p 1 ) Ω l ( p 1 ) , , Ω k ( p k ) Ω l ( p k ) , v ) 1 λ , i.e., the sequences { Ω k ( p 1 ) , Ω k ( p 2 ) , , Ω k ( p k ) } k and { 0 D p 1 κ , τ , ψ Ω k ( p 1 ) , 0 D p 2 κ , τ , ψ Ω k ( p 2 ) , , 0 D p k κ , τ , ψ Ω k ( p k ) } k are Cauchy in complete space ( V , Θ , ) on compact set E 1 , so they are uniformly convergent to the mapping Ω : E 1 V and 0 D p 1 κ , τ , ψ Ω , 0 D p 2 κ , τ , ψ Ω , , 0 D p k κ , τ , ψ Ω , respectively. The uniform convergence leads us to the fact that Ω is differentiable, i.e., an element of B; then, ( B , d ) is complete. □
Now, we are ready to study the Hyers–Ulam–Rassias stability of the ψ -Hilfer fractional Volterra integro-differential Equation (3) and get the best approximation with a better estimate for the ψ -Hilfer fractional Volterra integro-differential equation.
Theorem 3.
Let ( V , Θ , ) be an MVFB-space and L 1 , L 2 , L 3 , L 4 and P be positive constant such that N 1 > 2 where N 1 = min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] . Assume that the continuous mappings S : E 1 × V V , M : E 1 × E 1 × V V with matrix-valued fuzzy function ϕ : ( E 1 ) k × ( E 2 ) n diag M n ( E 3 ) satisfying:
Θ ( S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) , , S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) , μ ) Θ Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , L 1 μ ,
Θ ( M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) , , M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) , μ ) Θ Ω ( σ 1 ) Υ ( σ 1 ) , , Ω ( σ k ) Υ ( σ k ) , L 2 μ ,
σ i p i ( i = 1 , 2 , , k ) .
inf ξ 1 , , ξ k E 1 ϕ ( ξ 1 , , ξ k , μ ) ϕ p 1 , , p k , L 3 P μ ,
and:
Θ ( Ω ( p 1 ) , Ω ( p 2 ) , , Ω ( p k ) , μ ) ϕ ( p 1 , , p k , μ ) , implies that Θ 0 I p 1 κ , ψ Ω ( σ 1 ) d σ 1 , , 0 I p k κ , ψ Ω ( σ k ) d σ K , μ ϕ p 1 , , p k , L 4 μ ,
for every p 1 , , p k E 1 , Ω , Υ : E 1 V , and μ ( E 2 ) n .
Let ω : E 1 V be a differentiable function satisfying:
Θ ( 0 D p 1 κ , τ , ψ ω ( p 1 ) S ( p 1 , ω ( p 1 ) ) 0 p 1 M ( p 1 , σ 1 , ω ( σ 1 ) ) d σ 1 , , 0 D p k κ , τ , ψ ω ( p k ) S ( p k , ω ( p k ) ) 0 p k M ( p k , σ k , ω ( σ k ) ) d σ k , μ ) ϕ ( p 1 , , p k , μ ) ,
for every p 1 , , p k E 1 and μ ( E 2 ) n . Therefore, we are able find a unique differentiable function ω 0 : E 1 V such that:
0 D p κ , τ , ψ ω 0 ( p ) = S ( p , ω 0 ( p ) ) + 0 p M ( p , σ , ω 0 ( σ ) ) d σ ,
and:
Θ 0 D p 1 κ , τ , ψ ω ( p 1 ) 0 D p 1 κ , τ , ψ ω 0 ( p 1 ) , , 0 D p k κ , τ , ψ ω ( p k ) 0 D p k κ , τ , ψ ω 0 ( p k ) , μ Θ ( ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) , μ ) ϕ p 1 , , p k , N 2 N 3 μ ,
for every p 1 , , p k E 1 and μ ( E 2 ) n , and N 2 = min [ 1 , L 4 ] and N 3 = min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] 2 .
Proof. 
We set:
B : = { Ω : E 1 V , Ω is   differenriable }
and introduce the E 4 -valued metric on B as,
d ( Ω , Υ ) = inf { C E 6 : Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , μ Θ ( Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ ) ϕ p 1 , , p k , μ C , Ω , Υ B , p 1 , , p k E 1 , μ ( E 2 ) n } .
By Theorem 2, we have that ( B , d ) is a complete E 4 -valued metric space.
Now, we define the mapping Λ from B to B by:
Λ ( Ω ( p i ) ) = 0 I p i κ , ψ ( S ( σ , Ω ( σ ) ) ) + 0 I p i κ , ψ 0 σ M ( σ , ε , Ω ( ε ) ) d ε ,
where κ E 5 , S : E 1 × V V , M : E 1 × E 1 × V V , and p i E 1 ( i = 1 , 2 , , k ) . We prove Λ is a strictly contractive mapping. Let Ω , Υ B , C E 2 , and d ( Ω , Υ ) < ϑ , then we have:
Θ 0 D p 1 κ , τ , ψ Ω ( p 1 ) 0 D p 1 κ , τ , ψ Υ ( p 1 ) , , 0 D p k κ , τ , ψ Ω ( p k ) 0 D p k κ , τ , ψ Υ ( p k ) , ϑ μ Θ ( Ω ( p 1 ) Υ ( p 1 ) , ϑ μ ) ϕ ( p 1 , , p k , μ ) , Ω , Υ B , p 1 , , p k E 1 , μ ( E 2 ) n .
Using the properties (MVF-K-N2) and (MVF-K-N3) of Definition 2 and (11), we have:
Θ 0 D p 1 κ , τ , ψ Λ ( Ω ( p 1 ) ) 0 D p 1 κ , τ , ψ Λ ( Υ ( p 1 ) ) , , 0 D p k κ , τ , ψ Λ ( Ω ( p k ) ) 0 D p k κ , τ , ψ Λ ( Υ ( p k ) ) , 2 ϑ μ Θ Λ ( Ω ( p 1 ) ) Λ ( Υ ( p 1 ) ) , , Λ ( Ω ( p k ) ) Λ ( Υ ( p k ) ) , 2 ϑ μ = Θ ( [ S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) ] + 0 p 1 [ M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) ] d σ 1 , , [ S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) ] + 0 p k [ M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) ] d σ k , 2 ϑ μ ) Θ ( 0 I p 1 κ , ψ S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) + 0 I p 1 κ , ψ 0 p 1 [ M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) ] d σ 1 , , 0 I p k κ , ψ S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) + 0 I p k κ , ψ 0 p k [ M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) ] d σ k , 2 ϑ μ ) Θ S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) , , S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) , ϑ μ Θ ( 0 p 1 [ M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) ] d σ 1 , , 0 p k [ M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) ] d σ k , ϑ μ ) Θ 0 I p 1 κ , ψ [ S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) ] , , 0 I p k κ , ψ [ S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) ] , ϑ μ Θ ( 0 I p 1 κ , ψ 0 p 1 [ M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) ] d σ 1 , , 0 I p k κ , ψ 0 p k [ M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) ] d σ k , ϑ μ ) .
In the last part of (12), there are four formulas, in the next steps, we work on them to get new formulas derived from the control function ϕ . Let 0 = y ¯ 1 < y ¯ 2 < < y ¯ k = p i , Δ y ¯ i = y ¯ i y ¯ i 1 = p i k , i = 1 , 2 , , k , and Δ y ¯ = max 1 i k Δ y ¯ i .
Step 1. From (4), we have:
Θ S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) , , S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) , ϑ μ Θ Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , L 1 ϑ μ ϕ p 1 , , p k , L 1 μ .
Step 2. Using (MVF-K-N2) and (MVF-K-N3) of Definition 2, the continuity property of MVFF Θ , (5), and (6), we get:
Θ ( 0 p 1 M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) d σ 1 , , 0 p k M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) d σ k , ϑ μ ) = Θ ( lim Δ y ¯ 0 j = 1 k [ M ( p 1 , y ¯ j , Ω ( y ¯ j ) ) M ( p 1 , y ¯ j , Υ ( y ¯ j ) ) ] Δ y ¯ i , , lim Δ y ¯ 0 j = 1 k [ M ( p k , y ¯ j , Ω ( y ¯ j ) ) M ( p k , y ¯ j , Υ ( y ¯ j ) ) ] Δ y ¯ i , ϑ μ ) = lim Δ y ¯ 0 Θ ( j = 1 k [ M ( p 1 , y ¯ j , ω ( y ¯ j ) ) M ( p 1 , y ¯ j , Υ ( y ¯ j ) ) ] Δ y ¯ i , , j = 1 k [ M ( p k , y ¯ j , ω ( y ¯ j ) ) M ( p k , y ¯ j , Υ ( y ¯ j ) ) ] Δ y ¯ i , ϑ μ ) lim Δ y ¯ 0 M Θ ( [ M ( p 1 , y ¯ j , Ω ( y ¯ j ) ) M ( p 1 , y ¯ j , Υ ( y ¯ j ) ) ] Δ y ¯ i , , [ M ( p k , y ¯ j , Ω ( y ¯ j ) ) M ( p k , y ¯ j , Υ ( y ¯ j ) ) ] Δ y ¯ i , ϑ μ k ) inf ξ 1 , , ξ k E 1 Θ ( M ( p 1 , ξ 1 , Ω ( ξ 1 ) ) M ( p 1 , ξ 1 , Υ ( ξ 1 ) ) , , M ( p k , ξ k , Ω ( ξ k ) ) M ( p k , ξ k , Υ ( ξ k ) ) , k ϑ μ k P ) inf ξ 1 , , ξ k E 1 Θ Ω ( ξ 1 ) Υ ( ξ 1 ) , , Ω ( ξ k ) Υ ( ξ k ) , k L 2 ϑ μ k P inf ξ 1 , , ξ k E 1 ϕ ξ 1 , , ξ k , P μ L 2 ϕ p 1 , , p k , L 2 L 3 μ .
Step 3. Using (7) and (13), we get:
Θ ( 0 I p 1 κ , ψ S ( σ 1 , Ω ( σ 1 ) ) S ( σ 1 , Υ ( σ 1 ) ) , , 0 I p k κ , ψ S ( σ k , Ω ( σ k ) ) S ( σ k , Υ ( σ k ) ) , ϑ μ ) ϕ p 1 , , p k , L 1 L 4 μ .
Step 4. Using (7) and (14), we get:
Θ ( 0 I p 1 κ , ψ 0 σ 1 [ M ( σ 1 , ε 1 , Ω ( ε 1 ) ) M ( σ 1 , ε 1 , Υ ( ε 1 ) ) ] d ε 1 , , 0 I p k κ , ψ 0 σ k [ M ( σ k , ε k , Ω ( ε k ) ) M ( σ k , ε k , Υ ( ε k ) ) ] d ε k , ϑ μ ) ϕ p , L 2 L 3 L 4 μ .
From (12)–(16), we have:
Θ 0 D p 1 κ , τ , ψ Λ ( Ω ( p 1 ) ) 0 D p 1 κ , τ , ψ Λ ( Υ ( p 1 ) ) , , 0 D p k κ , τ , ψ Λ ( Ω ( p k ) ) 0 D p k κ , τ , ψ Λ ( Υ ( p k ) ) , 2 ϑ μ Θ Λ ( Ω ( p 1 ) ) Λ ( Υ ( p 1 ) ) , , Λ ( Ω ( p k ) ) Λ ( Υ ( p k ) ) , 2 ϑ μ ϕ p 1 , , p k , L 1 μ ϕ p 1 , , p k , L 2 L 3 μ ϕ p 1 , , p k , L 1 L 4 μ ϕ p 1 , , p k , L 2 L 3 L 4 μ ϕ p 1 , , p k , N 1 μ
where in N 1 = min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] .
Therefore,
Θ 0 D p 1 κ , τ , ψ Λ ( Ω ( p 1 ) ) 0 D p 1 κ , τ , ψ Λ ( Υ ( p 1 ) ) , , 0 D p k κ , τ , ψ Λ ( Ω ( p k ) ) 0 D p k κ , τ , ψ Λ ( Υ ( p k ) ) , 2 ϑ μ Θ Λ ( Ω ( p 1 ) ) Λ ( Υ ( p 1 ) ) , , Λ ( Ω ( p k ) ) Λ ( Υ ( p k ) ) , 2 ϑ μ ϕ p 1 , , p k , N 4 μ ,
where N 4 = 1 2 min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] and implying that:
d ( Λ ( Ω ) , Λ ( Υ ) ) ϑ N 4 .
Therefore,
d ( Λ ( Ω ) , Λ ( Υ ) ) 1 N 4 d ( Ω , Υ ) .
Thus, Λ with Lipschitz constant 1 N 4 is a strictly contractive mapping.
Let ω B . We show that d ( Λ ( ω ) , ω ) < . Using (7) and (8), we get:
Θ 0 D p 1 κ , τ , ψ [ Λ ( ω ( p 1 ) ) ω ( p 1 ) ] , , 0 D p k κ , τ , ψ [ Λ ( ω ( p k ) ) ω ( p k ) ] , μ Θ Λ ( ω ( p 1 ) ) ω ( p 1 ) , , Λ ( ω ( p k ) ) ω ( p k ) , μ = Θ ( S ( p 1 , ω ( p 1 ) ) + 0 p 1 M ( p 1 , σ 1 , ω ( σ 1 ) ) d σ 1 0 D p 1 κ , τ , ψ ω ( p 1 ) , , S ( p k , ω ( p k ) ) + 0 p k M ( p k , σ k , ω ( σ k ) ) d σ k 0 D p k κ , τ , ψ ω ( p k ) , μ ) Θ ( 0 I p 1 κ , ψ ( S ( p 1 , ω ( p 1 ) ) ) + 0 I p 1 κ , ψ ( 0 p 1 M ( p 1 , σ 1 , ω ( σ 1 ) ) d σ 1 ) 0 I p 1 κ , ψ 0 D p 1 κ , τ , ψ ω ( p 1 ) , , 0 I p k κ , ψ ( S ( p k , ω ( p k ) ) ) + 0 I p k κ , ψ ( 0 p k M ( p k , σ k , ω ( σ k ) ) d σ k ) 0 I p k κ , ψ 0 D p k κ , τ , ψ ω ( p k ) , μ ) = Θ ( S ( p 1 , ω ( p 1 ) ) + 0 p 1 M ( p 1 , σ 1 , ω ( σ 1 ) ) d σ 1 0 D p 1 κ , τ , ψ ω ( p 1 ) , , S ( p k , ω ( p k ) ) + 0 p k M ( p k , σ k , ω ( σ k ) ) d σ k 0 D p k κ , τ , ψ ω ( p k ) , μ ) Θ ( 0 I p 1 κ , ψ S ( p 1 , ω ( p 1 ) ) + 0 p 1 M ( p 1 , σ 1 , ω ( σ 1 ) ) d σ 1 0 D p 1 κ , τ , ψ ω ( p 1 ) , , 0 I p k κ , ψ S ( p k , ω ( p k ) ) + 0 p k M ( p k , σ k , ω ( σ k ) ) d σ k ) 0 D p k κ , τ , ψ ω ( p k ) , μ ϕ p 1 , , p k , μ ϕ p 1 , , p k , L 4 μ ϕ p 1 , , p k , N 2 μ ,
for every μ ( E 2 ) n and N 2 = min [ 1 , L 4 ] . Then, we have d ( Λ ( ω ) , ω ) < 1 N 2 < .
Now, Theorem 1 enables us to find an element ω 0 in B satisfying the following:
(1) ω 0 is a fixed point of Λ , i.e.,
ω 0 ( p ) = Λ ( ω 0 ( p ) ) = 0 I p κ , ψ ( S ( σ , ω 0 ( σ ) ) ) + 0 I p κ , ψ 0 σ M ( σ , ε , ω 0 ( ε ) ) d ε ,
which is unique in the set:
B * = { Ω B : d ( Λ ( ω ) , Ω ) < } .
Take 0 D p κ , τ , ψ from (22). We get:
0 D p κ , τ , ψ ω 0 ( p ) = S ( p , ω 0 ( p ) ) + 0 p M ( p , σ , ω 0 ( σ ) ) d σ ,
where κ E 5 , S : E 1 × V V , M : E 1 × E 1 × V V .
(2) d ( Λ k ( ω ) , ω 0 ) 0 as n ;
(3) d ( ω , ω 0 ) N 3 d ( Λ ( ω ) , w ) N 3 N 2 ,
where N 2 = min [ 1 , L 4 ] and N 3 = min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] 2 and implying that:
Θ 0 D p 1 κ , τ , ψ ω ( p 1 ) 0 D p 1 κ , τ , ψ ω 0 ( p 1 ) , , 0 D p k κ , τ , ψ ω ( p k ) 0 D p k κ , τ , ψ ω 0 ( p k ) , μ Θ ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) , μ ϕ p 1 , , p k , N 2 N 3 μ ,
for every p 1 , , p k E 1 and μ ( E 2 ) n .
Now, we prove that the fixed point in B * is unique. Suppose that ς 0 is an element of B satisfying (9) and (10). We prove that ς 0 = ω 0 and ς 0 B * . From (9), we get:
0 D p κ , τ , ψ ς 0 ( p ) = S ( p , ς 0 ( p ) ) + 0 p M ( p , σ , ς 0 ( σ ) ) d σ ,
and so:
ς 0 ( p ) = 0 I p κ , ψ S ( σ , ς 0 ( σ ) ) + 0 I p κ , ψ 0 σ M ( σ , ε , ς 0 ( ε ) ) d ε = Λ ( ς 0 ( p ) ) ,
where κ E 5 , S : E 1 × V V , M : E 1 × E 1 × V V .
Now, we show that:
ς 0 { Ω B : d ( Λ ( ω ) , Ω ) < } ,
i.e., d ( Λ ( ω ) , ς 0 ) < . We set j = min [ 1 , L 4 ] ( min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] 2 ) min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] . From (10), we get:
Θ 0 D p 1 κ , τ , ψ ω ( p 1 ) 0 D p 1 κ , τ , ψ ς 0 ( p 1 ) , , 0 D p k κ , τ , ψ ω ( p k ) 0 D p k κ , τ , ψ ς 0 ( p k ) , μ Θ ω ( p 1 ) ς 0 ( p 1 ) , , ω ( p k ) ς 0 ( p k ) , μ ϕ p 1 , , p k , j μ ,
for every p 1 , , p k E 1 and μ ( E 2 ) n .
From (4) and (27), we get:
Θ S ( p 1 , ω ( p 1 ) ) S ( p 1 , ς 0 ( p 1 ) ) , , S ( p k , ω ( p k ) ) S ( p k , ς 0 ( p k ) ) , μ Θ ω ( p 1 ) ς 0 ( p 1 ) , , ω ( p k ) ς 0 ( p k ) , L 1 μ ϕ p 1 , , p k , L 1 j μ .
Furthermore, from (5) and (27), we get:
Θ ( M ( p 1 , σ 1 , ω ( σ 1 ) ) M ( p 1 , σ 1 , ς 0 ( σ 1 ) ) , , M ( p k , σ k , ω ( σ k ) ) M ( p k , σ k , ς 0 ( σ k ) ) , μ ) Θ ω ( σ 1 ) ς 0 ( σ 1 ) , , ω ( σ k ) ς 0 ( σ k ) , L 2 μ ϕ p 1 , , p k , L 2 j μ ,
for every p 1 , , p k E 1 , σ i p i ( i = 1 , 2 , , k ) , and μ ( E 2 ) n .
Now, using Step 2 and (29), we get:
Θ ( 0 p 1 [ M ( p 1 , σ 1 , ω ( σ 1 ) ) M ( p 1 , σ 1 , ς 0 ( σ 1 ) ) ] d σ 1 , , 0 p k [ M ( p k , σ k , ω ( σ k ) ) M ( p k , σ k , ς 0 ( σ k ) ) ] d σ k , μ ) ϕ p 1 , , p k , L 2 L 3 μ ϕ p 1 , , p k , L 2 L 3 j μ .
Using the triangular inequality (MVF-K-N3), (28), and (30), we get:
Θ ( S ( p 1 , ω ( p 1 ) ) S ( p 1 , ς 0 ( p 1 ) ) + 0 p 1 [ M ( p 1 , σ 1 , ω ( σ 1 ) ) M ( p 1 , σ 1 , ς 0 ( σ 1 ) ) ] d σ 1 , , S ( p k , ω ( p k ) ) S ( p k , ς 0 ( p k ) ) + 0 p k [ M ( p k , σ k , ω ( σ k ) ) M ( p k , σ k , ς 0 ( σ k ) ) ] d σ k , 2 μ ) Θ S ( p 1 , ω ( p 1 ) ) S ( p 1 , ς 0 ( p 1 ) ) , , S ( p k , ω ( p k ) ) S ( p k , ς 0 ( p k ) ) , μ Θ ( 0 p 1 [ M ( p 1 , σ 1 , ω ( σ 1 ) ) M ( p 1 , σ 1 , ς 0 ( σ 1 ) ) ] d σ 1 , , 0 p k [ M ( p k , σ k , ω ( σ k ) ) M ( p k , σ k , ς 0 ( σ k ) ) ] d σ k , μ ) ϕ p 1 , , p k , L 1 j μ ϕ p 1 , , p k , L 2 L 3 j μ ϕ p 1 , , p k , N 5 j μ ,
where in N 5 = min [ L 1 , L 2 L 3 ] , and so:
Θ ( S ( p 1 , ω ( p 1 ) ) S ( p 1 , ς 0 ( p 1 ) ) + 0 p 1 M ( p 1 , σ 1 , ω ( σ 1 ) ) M ( p 1 , σ 1 , ς 0 ( σ 1 ) ) d σ 1 , , S ( p k , ω ( p k ) ) S ( p k , ς 0 ( p k ) ) + 0 p k M ( p k , σ k , ω ( σ k ) ) M ( p k , σ k , ς 0 ( σ k ) ) d σ k , μ ) ϕ p 1 , , p k , N 6 j μ ,
where N 6 = 1 2 min [ L 1 , L 2 L 3 ] .
We apply (7) and get:
Θ ( 0 I p 1 κ , ψ S ( σ 1 , ω ( σ 1 ) ) S ( σ 1 , ς 0 ( σ 1 ) ) + 0 I p 1 κ , ψ 0 σ 1 [ M ( σ 1 , ε 1 , ω ( ε 1 ) ) M ( σ 1 , ε 1 , ς 0 ( ε 1 ) ) ] d ε 1 , , 0 I p k κ , ψ S ( σ , ω ( σ ) ) S ( σ , ς 0 ( σ ) ) + 0 I p k κ , ψ 0 σ [ M ( σ , ε , ω ( ε ) ) M ( σ , ε , ς 0 ( ε ) ) ] d ε , μ ) ϕ p 1 , , p k , L 4 N 6 j μ ,
for every p 1 , , p k E 1 and μ ( E 2 ) n , and N 6 = 1 2 min [ L 1 , L 2 L 3 ] .
Using (32) and (33), we get:
Θ 0 D p 1 κ , τ , ψ [ Λ ( ω ( p 1 ) ) ς 0 ( p 1 ) ] , , 0 D p k κ , τ , ψ [ Λ ( ω ( p k ) ) ς 0 ( p k ) ] , μ Θ Λ ( ω ( p 1 ) ) ς 0 ( p 1 ) , , Λ ( ω ( p k ) ) ς 0 ( p k ) , μ = Θ ( S ( p 1 , ω ( p 1 ) ) S ( p 1 , ς 0 ( p 1 ) ) + 0 p 1 [ M ( p 1 , σ 1 , ω ( σ 1 ) ) M ( p 1 , σ 1 , ς 0 ( σ 1 ) ) ] d σ 1 , , S ( p k , ω ( p k ) ) S ( p k , ς 0 ( p k ) ) + 0 p k [ M ( p k , σ k , ω ( σ k ) ) M ( p k , σ k , ς 0 ( σ k ) ) ] d σ k , μ ) Θ ( 0 I p 1 κ , ψ [ S ( σ 1 , ω ( σ 1 ) ) S ( σ 1 , ς 0 ( σ 1 ) ) ] + 0 I p 1 κ , ψ 0 σ 1 [ M ( σ 1 , ε 1 , ω ( ε 1 ) ) M ( σ 1 , ε 1 , ς 0 ( ε 1 ) ) ] d ε 1 , , 0 I p k κ , ψ [ S ( σ k , ω ( σ k ) ) S ( σ k , ς 0 ( σ k ) ) ] + 0 I p k κ , ψ 0 σ k [ M ( σ k , ε k , ω ( ε k ) ) M ( σ k , ε k , ς 0 ( ε k ) ) ] d ε k , μ ) ϕ p 1 , , p k , N 6 j μ ϕ p 1 , , p k , L 4 N 6 j μ ϕ p 1 , , p k , ( L 4 + 1 ) N 6 j μ L 4 ,
which N 6 = 1 2 min [ L 1 , L 2 L 3 ] , which implies that:
d ( Λ ( ω ) , ς 0 ) L 4 j ( L 4 + 1 ) N 6 <
then ς 0 B * . □

4. Best Approximation of ψ -Hilfer Fractional Volterra Integral Equation

Now, we are ready to study the Hyers–Ulam–Rassias stability of the ψ -Hilfer fractional Volterra integral equation:
Ω ( p ) = S ( p , Ω ( p ) ) + 0 I p κ , ψ M ( p , σ , Ω ( σ ) ) ,
where κ E 5 , S : E 1 × V V , M : E 1 × E 1 × V V and get the best approximation with a better estimate for the pseudo ψ -Hilfer fractional Volterra integral equation. Our method can be used for new problems; for more problems and details, we refer to [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34].
Theorem 4.
Let ( V , Θ , ) be an MVFB-space and L 1 , L 2 , L 3 , L 4 and T be positive constant such that N 1 > 2 where N 1 = min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] . Assume that the continuous mappings S : E 1 × V V , M : E 1 × E 1 × V V with MVFF ϕ : ( E 1 ) k × ( E 2 ) n diag ( M n ( E 3 ) ) satisfying (4)–(7).
Let ω : E 1 V be a differentiable function satisfying:
Θ ( ω ( p 1 ) S ( p 1 , ω ( p 1 ) ) 0 I p 1 κ , ψ M ( p 1 , σ 1 , ω ( σ 1 ) ) , , ω ( p k ) S ( p k , ω ( p k ) ) 0 I p k κ , ψ M ( p k , σ k , ω ( σ k ) ) , μ ) ϕ p 1 , , p k , μ ,
for every p 1 , , p k E 1 and μ ( E 2 ) n . Then, we are to be able find a unique differentiable function ω 0 : E 1 V such that:
ω 0 ( p ) = S ( p , ω 0 ( p ) ) + 0 I p κ , ψ M ( p , σ , ω 0 ( σ ) ) ,
and:
Θ ( ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) , μ ) ϕ p 1 , , p k , N 2 N 3 μ ,
for every p 1 , , p k E 1 and μ ( E 2 ) n , and N 2 = min [ 1 , L 4 ] and N 3 = min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] min [ L 1 , L 2 L 3 , L 1 L 4 , L 2 L 3 L 4 ] 2 .
Proof. 
We set
B : = { Ω : E 1 V , Ω is   differentiable }
and introduce the E 4 -valued metric on B as,
d ( Ω , Υ ) = inf { C E 6 : Θ Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , μ ϕ p 1 , , p k , μ C , Ω , Υ B , p 1 , , p k E 1 , μ ( E 2 ) n } .
By Theorem 2, we have that ( B , d ) is a complete E 4 -valued metric space.
Now, we define the mapping Λ from B to B by:
Λ ( Ω ( p i ) ) = S ( σ , Ω ( σ ) ) + 0 I p i κ , ψ 0 σ M ( σ , ε , Ω ( ε ) ) d ε ,
where κ ( E 5 ) , S : E 1 × V V , M : E 1 × E 1 × V V , and p i E 1 ( i = 1 , 2 , , k ) . We prove that Λ is a strictly contractive mapping. Let Ω , Υ B , C E 6 and d ( Ω , Υ ) < ϑ , then we have:
Θ ( Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , ϑ μ ) ϕ ( p 1 , , p k , μ ) , Ω , Υ B , p 1 , , p k E 1 , μ ( E 2 ) n .
Using the properties (MVF-K-N2) and (MVF-K-N3) of Definition 2, (4)–(7), and (39), we have:
Θ Λ ( Ω ( p 1 ) ) Λ ( Υ ( p 1 ) ) , , Λ ( Ω ( p k ) ) Λ ( Υ ( p k ) ) , 2 ϑ μ = Θ ( [ S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) ] + 0 I p 1 κ , ψ [ M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) ] d σ 1 , , [ S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) ] + 0 I p k κ , ψ [ M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) ] d σ k , 2 ϑ μ ) Θ S ( p 1 , Ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) , , S ( p k , Ω ( p k ) ) S ( p k , Υ ( p k ) ) , ϑ μ
Θ ( 0 p 1 [ M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) ] d σ 1 , , 0 p k [ M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) ] d σ k , ϑ μ ) ϕ p 1 , , p k , L 1 μ ϕ p 1 , , p k , L 2 L 4 μ ϕ p 1 , , p k , N 7 μ ,
where in N 7 = min [ L 1 , L 2 L 4 ] , and so:
Θ Λ ( Ω ( p 1 ) ) Λ ( Υ ( p 1 ) ) , , Λ ( Ω ( p k ) ) Λ ( Υ ( p k ) ) , ϑ μ ϕ p 1 , , p k , N 8 μ ,
for every p 1 , , p k E 1 and μ ( E 2 ) n , and N 8 = 1 2 min [ L 1 , L 2 L 4 ] .
Then:
d ( Λ ( Ω ) , Λ ( Υ ) ) ϑ N 8 ,
and so:
d ( Λ ( Ω ) , Λ ( Υ ) ) 1 N 8 d ( Ω , Υ ) .
Then, Λ is a strictly contractive mapping with Lipschitz constant 1 N 8 .
Let ω B . We show that d ( Λ ( ω ) , ω ) < . Using (36), we get:
Θ Λ ( ω ( p 1 ) ) ω ( p 1 ) , , Λ ( ω ( p k ) ) ω ( p k ) , μ = Θ ( S ( p 1 , ω ( p 1 ) ) + 0 I p 1 κ , ψ M ( p 1 , σ 1 , ω ( σ 1 ) ) d σ 1 ω ( p 1 ) , , S ( p k , ω ( p k ) ) + 0 I p k κ , ψ M ( p k , σ k , ω ( σ k ) ) d σ k ω ( p k ) , μ ) ϕ p 1 , , p k , μ
for every μ ( E 2 ) n . Then, we have d ( Λ ( ω ) , ω ) < 1 .
Now, Theorem 1 enables us to find an element ω 0 in B satisfying the following:
(1) ω 0 is a fixed point of Λ , i.e.,
ω 0 ( p ) = Λ ( ω 0 ( p ) ) = S ( σ , ω 0 ( σ ) ) + 0 I p κ , ψ M ( σ , ε , ω 0 ( ε ) ) d ε ,
which is unique in the set:
B * = { Ω B : d ( Λ ( ω ) , Ω ) < } .
(2) d ( Λ k ( ω ) , ω 0 ) 0 as n ;
(3) d ( ω , ω 0 ) N 9 d ( Λ ( ω ) , ω ) N 9 ,
where N 9 = min [ L 1 , L 2 L 4 ] min [ L 1 , L 2 L 4 ] 2 and implying that:
Θ ( ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) , μ ) ϕ ( p 1 , , p k , μ N 9 ) ,
for every p 1 , , p k E 1 and μ ( E 2 ) n . We use the same method of proving Theorem 3 and show that the fixed point in B * is unique. □

5. Examples

In this section, we apply the main results to solve some examples.
Example 1.
Let ( R , Θ , ) be an MVF-k-B-space. Let Ω , Υ : E 1 R such that Ω ( p i ) = p i 4 and Υ ( p i ) = p i 2 , and define S ( p i , Ω ( p i ) ) = 1 L 1 Ω ( p i ) . Define M : E 1 × E 1 × R R as M ( p i , σ i , Ω ( σ i ) ) = exp ( p i 2 σ i 2 ) Ω ( σ i ) for every p i E 1 and σ i p i ( i = 1 , 2 , , k ) .
Then, we have:
Θ S ( p 1 , ω ( p 1 ) ) S ( p 1 , Υ ( p 1 ) ) , , S ( p 1 , ω ( p k ) ) S ( p k , Υ ( p k ) ) , μ = Θ ( 1 L 1 Ω ( p 1 ) 1 L 1 Υ ( p 1 ) , , 1 L 1 Ω ( p k ) 1 L 1 Υ ( p k ) , μ ) = Θ ( 1 L 1 p 1 4 1 L 1 p 1 2 , , 1 L 1 p k 4 1 L 1 p k 2 , μ ) = diag exp 1 L 1 | p 1 4 p 1 2 , , p k 4 p k 2 | μ 1 , μ 2 μ 2 + 1 L 1 | p 1 4 p 1 2 , , p k 4 p k 2 | , exp 1 L 1 | p 1 4 p 1 2 , , p k 4 p k 2 | μ 3 diag exp | p 1 4 p 1 2 , , p k 4 p k 2 | L 1 μ 1 , L 1 μ 2 L 1 μ 2 + | p 1 4 p 1 2 , , p k 4 p k 2 | , exp | p 1 4 p 1 2 , , p k 4 p k 2 | L 1 μ 3 = Θ p 1 4 p 1 2 , , p k 4 p k 2 , L 1 μ = Θ Ω ( p 1 ) Υ ( p 1 ) , , Ω ( p k ) Υ ( p k ) , L 1 μ ,
Θ M ( p 1 , σ 1 , Ω ( σ 1 ) ) M ( p 1 , σ 1 , Υ ( σ 1 ) ) , , M ( p k , σ k , Ω ( σ k ) ) M ( p k , σ k , Υ ( σ k ) ) , μ = Θ ( exp ( p 1 2 σ 1 2 ) σ 1 4 exp ( p 1 2 σ 1 2 ) σ 1 2 , , exp p k 2 σ k 2 ) σ k 4 exp ( p k 2 σ k 2 ) σ k 2 , μ = diag [ exp | exp ( p 1 2 σ 1 2 ) σ 1 4 exp ( p 1 2 σ 1 2 ) σ 1 2 , , exp ( p k 2 σ k 2 ) σ k 4 exp ( p k 2 σ k 2 ) σ k 2 | μ 1 , μ 2 μ 2 + | exp ( p 1 2 σ 1 2 ) σ 1 4 exp ( p 1 2 σ 1 2 ) σ 1 2 , , exp ( p k 2 σ k 2 ) σ k 4 exp ( p k 2 σ k 2 ) σ k 2 | , exp | exp ( p 1 2 σ 1 2 ) σ 1 4 exp ( p 1 2 σ 1 2 ) σ 1 2 , , exp ( p k 2 σ k 2 ) σ k 4 exp ( p k 2 σ k 2 ) σ k 2 | μ 3 ] diag [ exp | σ 1 4 σ 1 2 , , σ k 4 σ k 2 | μ 1 exp ( p 1 2 σ 1 2 ) , , exp ( p k 2 σ k 2 ) , μ 2 exp ( p 1 2 σ 1 2 ) , , exp ( p k 2 σ k 2 ) μ 2 exp ( p 1 2 σ 1 2 ) , , exp ( p k 2 σ k 2 ) + | σ 1 4 σ 1 2 , , σ k 4 σ k 2 | , exp | σ 1 4 σ 1 2 , , σ k 4 σ k 2 | μ 3 exp ( p 1 2 σ 1 2 ) , , exp ( p k 2 σ k 2 ) ] = Θ Ω ( σ 1 ) Υ ( σ 1 ) , , Ω ( σ k ) Υ ( σ k ) , μ | exp ( p 1 2 σ 1 2 ) , , exp ( p k 2 σ k 2 ) | Θ Ω ( σ 1 ) Υ ( σ 1 ) , , Ω ( σ k ) Υ ( σ k ) , μ K ,
for some K E 6 .
Let MVFF ϕ : ( E 1 ) k × ( E 2 ) 3 diag M n ( E 3 ) , satisfying (6) and (7).
Let ω : E 1 R be a differentiable function satisfying:
diag [ exp | 0 D p 1 κ , τ , ψ ω ( p 1 ) 1 L 1 ω ( p 1 ) 0 p 1 exp ( p 1 2 σ 1 2 ) ω ( σ 1 ) d σ 1 , , 0 D p k κ , τ , ψ ω ( p k ) 1 L 1 ω ( p k ) 0 p k exp ( p k 2 σ k 2 ) ω ( σ k ) d σ k | μ 1 , μ 2 μ 2 + | 0 D p 1 κ , τ , ψ ω ( p 1 ) 1 L 1 ω ( p 1 ) 0 p 1 exp ( p 1 2 σ 1 2 ) ω ( σ 1 ) d σ 1 , , 0 D p k κ , τ , ψ ω ( p k ) 1 L 1 ω ( p k ) 0 p k exp ( p k 2 σ k 2 ) ω ( σ k ) d σ k | , exp | 0 D p 1 κ , τ , ψ ω ( p 1 ) 1 L 1 ω ( p 1 ) 0 p 1 exp ( p 1 2 σ 1 2 ) ω ( σ 1 ) d σ 1 , , 0 D p k κ , τ , ψ ω ( p k ) 1 L 1 ω ( p k ) 0 p k exp ( p k 2 σ k 2 ) ω ( σ k ) d σ k | μ 3 ] diag exp | p 1 , , p k | μ 1 , μ 2 μ 2 + | p 1 , , p k | , exp | p 1 , , p k | μ 3 .
for every p 1 , , p k E 1 and μ ( E 2 ) 3 . Now, Theorem 3 implies that, if H 1 > 2 , H 1 = min [ L 1 , L 3 K , L 1 L 4 , L 3 L 4 K ] . We are to be able find a unique differentiable function ω 0 : E 1 R such that:
0 D p κ , τ , ψ ω 0 ( p ) = 1 L 1 ω 0 ( p ) + 0 p exp ( p 2 σ 2 ) ω ( σ ) d σ ,
and:
diag [ exp | 0 D p 1 κ , τ , ψ ω ( p 1 ) 0 D p 1 κ , τ , ψ ω 0 ( p 1 ) , , 0 D p k κ , τ , ψ ω ( p k ) 0 D p k κ , τ , ψ ω 0 ( p k ) | μ 1 , μ 2 μ 2 + | 0 D p 1 κ , τ , ψ ω ( p 1 ) 0 D p 1 κ , τ , ψ ω 0 ( p 1 ) , , 0 D p k κ , τ , ψ ω ( p k ) 0 D p k κ , τ , ψ ω 0 ( p k ) | , exp | 0 D p 1 κ , τ , ψ ω ( p 1 ) 0 D p 1 κ , τ , ψ ω 0 ( p 1 ) , , 0 D p k κ , τ , ψ ω ( p k ) 0 D p k κ , τ , ψ ω 0 ( p k ) | μ 3 ] diag [ exp | ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) | μ 1 , μ 2 μ 2 + | ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) | , exp | ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) | μ 3 ] diag [ exp ( | p 1 , , p k | ) N 1 H 2 μ 1 , N 1 H 2 μ 2 N 1 H 2 μ 2 + | p 1 , , p k | , exp ( | p 1 , , p k | ) N 1 H 2 μ 3 ] ,
for every p 1 , , p k E 1 and μ ( E 2 ) 3 , and N 1 = min [ 1 , L 4 ] and H 2 = min [ L 1 , L 3 K , L 1 L 4 , L 3 L 4 K ] min [ L 1 , L 3 K , L 1 L 4 , L 3 L 4 K ] 2 .
Example 2.
Let ( R , Θ , ) be an MVF-k-B-space. Consider Ω , Υ : E 1 R such that Ω ( p i ) = p i 4 and Υ ( p i ) = p i 2 , and define S ( p i , Ω ( p i ) ) = 1 L 1 Ω ( p i ) . Define M : E 1 × E 1 × R R as M ( p i , σ i , Ω ( σ i ) ) = exp ( p i 2 σ i 2 ) Ω ( σ i ) for every p 1 , , p k E 1 and σ i p i ( i = 1 , 2 , , k ) satisfying (49).
Let MVFF ϕ : ( E 1 ) k × ( E 2 ) 3 diag M n ( E 3 ) , satisfying (6) and (7).
Let ω : E 1 R be a differentiable function satisfying:
diag [ exp | ω ( p 1 ) 1 L 1 ω ( p 1 ) 0 I p 1 κ , ψ exp ( p 1 2 σ 1 2 ) ω ( σ 1 ) d σ 1 , , ω ( p k ) 1 L 1 ω ( p k ) 0 I p k κ , ψ exp ( p k 2 σ k 2 ) ω ( σ k ) d σ k | μ 1 , μ 2 μ 2 + | ω ( p 1 ) 1 L 1 ω ( p 1 ) 0 I p 1 κ , ψ exp ( p 1 2 σ 1 2 ) ω ( σ 1 ) d σ 1 , , ω ( p k ) 1 L 1 ω ( p k ) 0 I p k κ , ψ exp ( p k 2 σ k 2 ) ω ( σ k ) d σ k | , exp | ω ( p 1 ) 1 L 1 ω ( p 1 ) 0 I p 1 κ , ψ exp ( p 1 2 σ 1 2 ) ω ( σ 1 ) d σ 1 , , ω ( p k ) 1 L 1 ω ( p k ) 0 I p k κ , ψ exp ( p k 2 σ k 2 ) ω ( σ k ) d σ k | μ 3 ] diag exp | p 1 , , p k | μ 1 , μ 2 μ 2 + | p 1 , , p k | , exp | p 1 , , p k | μ 3
for every p 1 , , p k E 1 and μ ( E 2 ) 3 .
Now, Theorem 4 implies that, if H 3 > 2 , H 3 = min [ L 1 , L 4 K ] . We are to be able find a unique differentiable function ω 0 : E 1 R such that:
ω 0 ( p ) = 1 L 1 ω 0 ( p ) + 0 I p κ , ψ exp ( p 2 σ 2 ) ω ( σ ) d σ ,
and:
diag [ exp | ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) | μ 1 , μ 2 μ 2 + | ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) | , exp | ω ( p 1 ) ω 0 ( p 1 ) , , ω ( p k ) ω 0 ( p k ) | μ 3 ] diag exp | p 1 , , p k | N 1 H 4 μ 1 , N 1 H 4 μ 2 N 1 H 4 μ 2 + | p 1 , , p k | , exp | p 1 , , p k | N 1 H 4 μ 3
for every p 1 , , p k E 1 and μ ( E 2 ) 3 , and N 2 = min [ 1 , L 4 ] and H 4 = min [ L 1 , L 4 K ] min [ L 1 , L 4 K ] 2 .

6. Conclusions

In this paper, we studied the concept of matrix-valued fuzzy k-normed spaces (MVF-k-N-spaces), and we applied the alternative fixed-point theorem to investigate the Hyers–Ulam–Rassias stability of some fractional equations in these spaces. We defined a class of matrix-valued fuzzy control functions for stabilizing fractional Volterra integro-differential equations with ψ -Hilfer fractional derivative in the complete MVF-k-N-spaces, and we obtained the best approximation for this kind of fractional equations.

Author Contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, and participated in the sequence alignment. All authors read and agreed to the published version of the manuscript.

Funding

The authors are grateful to the Basque Government by the support of this work through Grant IT1207-19.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are thankful to the Area Editor and the referees for giving valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer Briefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2019. [Google Scholar]
  2. Muniyappan, P.; Rajan, S. Stability of a class of fractional integro-differential equation with nonlocal initial conditions. Acta Math. Univ. Comenian. 2018, 87, 85–95. [Google Scholar]
  3. Selvam, A.G.M.; Baleanu, D.; Alzabut, J.; Vignesh, D.; Abbas, S. On Hyers-Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on in- verted pendulum. Adv. Differ. Equ. 2020, 456, 1–15. [Google Scholar]
  4. Agarwal, R.P.; Hristova, S.; O’Regan, D. Lyapunov functions to Caputo reaction-diffusion fractional neural networks with time-varying delays. J. Math. Comput. Sci. 2018, 18, 328–345. [Google Scholar] [CrossRef]
  5. Da Sousa, J.V.C.; Fabio, G.R.; de Oliveira, E.C. Stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator. Math. Meth. Appl. Sci. 2019, 42, 3033–3043. [Google Scholar] [CrossRef] [Green Version]
  6. Hadzic, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces. In Mathematics and its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
  7. Schweizer, B.; Sklar, A. North-Holland Series in Probability and Applied Mathematics; North-Holland Publishing Co.: New York, NY, USA, 1983. [Google Scholar]
  8. Klement, E.P.; Mesiar, R.; Pap, E. Triangular norms. In Trends in Logic–Studia Logica Library; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
  9. Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. JIPAM J. Inequal. Pure Appl. Math. 2003, 4, 7. [Google Scholar]
  10. Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
  11. Chaharpashlou, R.; Saadati, R.; Atangana, A. Ulam-Hyers-Rassias stability for nonlinear Ψ-Hilfer stochastic fractional differential equation with uncertainty. Adv. Differ. Equ. 2020, 339, 10. [Google Scholar] [CrossRef]
  12. El-Sayed, A.M.A.; Al-Issa, S.M. Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach. J. Nonlinear Sci. Appl. 2020, 13, 180–186. [Google Scholar] [CrossRef] [Green Version]
  13. Khan, O.; Araci, S.; Saif, M. Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function. J. Math. Comput. SCI-JM 2020, 20, 122–130. [Google Scholar] [CrossRef]
  14. Sene, N. Global asymptotic stability of the fractional differential equations. J. Nonlinear Sci. Appl. 2020, 13, 171–175. [Google Scholar] [CrossRef] [Green Version]
  15. Cădariu, L.; Radu, V. On the stability of the Cauchy functional equation: A fixed point approach. Grazer Math. Ber. 2004, 346, 43–52. [Google Scholar]
  16. Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef] [Green Version]
  17. Alzabut, J.; Ahmad, B.; Etemad, S.; Rezapour, S.; Zada, A. Novel existence techniques on the generalized ϕ-Caputo fractional inclusion boundary problem. Adv. Differ. Equ. 2021, 135, 1–18. [Google Scholar]
  18. Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68, 18. [Google Scholar]
  19. Zhou, H.; Alzabut, J.; Rezapour, S.; Samei, M.E. Uniform persistence and almost periodic solutions of a nonautonomous patch occupancy model. Adv. Differ. Equ. 2020, 143, 12. [Google Scholar] [CrossRef] [Green Version]
  20. Rezapour, S.; Imran, A.; Hussain, A.; Martinez, F.; Etemad, S.; Kaabar, M.K.A. Condensing Functions and Approximate Endpoint Criterion for the Existence Analysis of Quantum Integro-Difference FBVPs. Symmetry 2021, 13, 469. [Google Scholar] [CrossRef]
  21. Korovina, M.V.; Matevossian, H.; Smirnov, I.N. On the Asymptotics of Solutions of the Wave Operator with Meromorphic Coefficients. Mat. Zametki 2021, 109, 312–317. [Google Scholar]
  22. Matevossian, H.A. On the biharmonic problem with the Steklov-type and farwig boundary conditions. Lobachevskii J. Math. 2020, 41, 2053–2059. [Google Scholar] [CrossRef]
  23. Al-Issa, S.M.; Mawed, N.M. Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra. J. Nonlinear Sci. Appl. 2021, 14, 181–195. [Google Scholar] [CrossRef]
  24. Satsanit, W. On the solution linear and nonlinear fractional beam equation. J. Nonlinear Sci. Appl. 2021, 14, 139–147. [Google Scholar] [CrossRef]
  25. Rezaei Aderyani, S.; Saadati, R. Best approximations of the φ-Hadamard fractional Volterra integro-differential equation by matrix-valued fuzzy control functions. Adv. Differ. Equ. 2021, 154, 1–21. [Google Scholar]
  26. Chaharpashlou, R.; Saadati, R. Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space. Adv. Differ. Equ. 2021, 118, 1–12. [Google Scholar]
  27. Asaduzzamana, M.; Kilicmanb, A.; Alic, M.Z. Presence and diversity of positive solutions for a Caputo-type fractional order nonlinear differential equation with an advanced argument. J. Math. Comput. Sci. 2021, 23, 230–244. [Google Scholar] [CrossRef]
  28. Ababneh, O. Adaptive synchronization and anti-synchronization of fractional order chaotic optical systems with uncertain parameters. J. Math. Comput. Sci. 2021, 23, 302–314. [Google Scholar] [CrossRef]
  29. El-Moneam, M.A.; Ibrahim, T.F.; Elamody, S. Stability of a fractional difference equation of high order. J. Nonlinear Sci. Appl. 2019, 12, 65–74. [Google Scholar] [CrossRef]
  30. Golet, I. Some remarks on functions with values in probabilistic normed spaces. Math. Slovaca 2007, 57, 259–270. [Google Scholar] [CrossRef] [Green Version]
  31. Saadati, R. Nonlinear contraction and fuzzy compact operator in fuzzy Banach algebras. Fixed Point Theory 2019, 20, 289–297. [Google Scholar] [CrossRef]
  32. Šerstnev, A.N. On the notion of a random normed space. Dokl. Akad. Nauk SSSR 1963, 149, 280–283. (In Russian) [Google Scholar]
  33. Sousa, J.; da Vanterler, C.; de Oliveira, E. Capelas. On a new operator in fractional calculus and applications. J. Fixed Point Theory Appl. 2018, 20, 21. [Google Scholar]
  34. Wang, J.R.; Zhou, Y. Mittag-Leffler-Ulam stabilities of fractional evolution equations. Appl. Math. Lett. 2012, 25, 723–728. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Eidinejad, Z.; Saadati, R.; de la Sen, M. Radu–Miheţ Method for the Existence, Uniqueness, and Approximation of the ψ-Hilfer Fractional Equations by Matrix-Valued Fuzzy Controllers. Axioms 2021, 10, 63. https://doi.org/10.3390/axioms10020063

AMA Style

Eidinejad Z, Saadati R, de la Sen M. Radu–Miheţ Method for the Existence, Uniqueness, and Approximation of the ψ-Hilfer Fractional Equations by Matrix-Valued Fuzzy Controllers. Axioms. 2021; 10(2):63. https://doi.org/10.3390/axioms10020063

Chicago/Turabian Style

Eidinejad, Zahra, Reza Saadati, and Manuel de la Sen. 2021. "Radu–Miheţ Method for the Existence, Uniqueness, and Approximation of the ψ-Hilfer Fractional Equations by Matrix-Valued Fuzzy Controllers" Axioms 10, no. 2: 63. https://doi.org/10.3390/axioms10020063

APA Style

Eidinejad, Z., Saadati, R., & de la Sen, M. (2021). Radu–Miheţ Method for the Existence, Uniqueness, and Approximation of the ψ-Hilfer Fractional Equations by Matrix-Valued Fuzzy Controllers. Axioms, 10(2), 63. https://doi.org/10.3390/axioms10020063

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop