Fractional Newton–Raphson Method Accelerated with Aitken’s Method
Abstract
:1. Fixed Point Method
Order of Convergence
2. Newton–Raphson Method
3. Fractional Calculus
3.1. Construction of the Riemann–Liouville Fractional Derivative
Examples of the Riemann–Liouville Fractional Derivative
3.2. Introduction to the Caputo Fractional Derivative
4. Fractional Newton–Raphson Method
Convergence of the Fractional Newton–Raphson Method
5. Aitken’s Method
Results of the Fractional Newton–Raphson Method with Aitken’s Method
- F N–R method without Aitken’s method
- F N–R method with Aitken’s method
- F N–R method without Aitken’s method
- F N–R method with Aitken’s method
- F N–R method without Aitken’s method
- F N–R method with Aitken’s method
- F N–R method without Aitken’s method
- F N–R method with Aitken’s method
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Proof of the Theorem 1
- (i)
- Case
- (ii)
- CaseAs a consequence, if the sequence generated by (3) converges to , there exists a value such that
Appendix A.2. Proof of the Proposition 1
Appendix A.3. Proof of the Proposition 2
- (i)
- Assuming the function may be written as with and , thenAs a consequence, the iteration function of N–R method takes the following form:
- (ii)
- Assuming that with and , the first derivative of the iteration function of Newton–Raphson method takes the following form:
Appendix A.4. Proof of the Proposition 3
- (i)
- If , then:
- (ii)
- If , then:
Appendix A.5. Proof of the Proposition 4
Appendix A.6. Proof of the Proposition 6
References
- Plato, R. Concise Numerical Mathematics; Number 57; American Mathematical Soc.: Providence, RI, USA, 2003. [Google Scholar]
- Burden, R.L.; Faires, J.D. Numerical Analysis; Thomson Learning: Belmont, CA, USA, 2002. [Google Scholar]
- Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis; Springer Science & Business Media: Berlin, Germany, 2013; Volume 12. [Google Scholar]
- Torres-Hernandez, A.; Brambila-Paz, F.; Rodrigo, P.M.; De-la-Vega, E. Reduction of a nonlinear system and its numerical solution using a fractional iterative method. J. Math. Stat. Sci. 2020, 6, 285–299. [Google Scholar]
- Torres-Hernandez, A.; Brambila-Paz, F.; De-la-Vega, E. Fractional Newton–Raphson Method and Some Variants for the Solution of Nonlinear Systems. Appl. Math. Sci. Int. J. (MathSJ) 2020, 7, 13–27. [Google Scholar] [CrossRef]
- Ortega, J.M. Numerical Analysis: A Second Course; SIAM: Philadelphia, PA, USA, 1990. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; SIAM: Philadelphia, PA, USA, 1970; Volume 30. [Google Scholar]
- Brambila, F. Fractal Analysis: Applications in Physics, Engineering and Technology; IntechOpen: London, UK, 2017. [Google Scholar]
- Martínez, C.A.T.; Fuentes, C. Applications of Radial Basis Function Schemes to Fractional Partial Differential Equations. Fractal Anal. Appl. Phys. Eng. Technol. 2017, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Salgado, B.F.; Rosas-Sampayo, R.; Torres-Hernández, A.; Fuentes, C. Application of Fractional Calculus to Oil Industry. Fractal Anal. Appl. Phys. Eng. Technol. 2017, 21–42. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974; Volume 111. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Shishkina, E.; Sitnik, S. A fractional equation with left-sided fractional Bessel derivatives of Gerasimov–Caputo type. Mathematics 2019, 7, 1216. [Google Scholar] [CrossRef] [Green Version]
- Torres-Hernandez, A.; Brambila-Paz, F.; Rodrigo, P.M.; De-la-Vega, E. Fractional pseudo-Newton method and its use in the solution of a nonlinear system that allows the construction of a hybrid solar receiver. Appl. Math. Sci. Int. J. (MathSJ) 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Brambila-Paz, F.; Brambila, J.J. A nonlinear system related to investment under uncertainty solved using the fractional pseudo-Newton method. J. Math. Sci. Adv. Appl. 2020, 63, 41–53. [Google Scholar]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler–confluent hypergeometric functions with fractional integral operator. Math. Methods Appl. Sci. 2021, 44, 3605–3614. [Google Scholar] [CrossRef]
- Arfken, G.; Weber, H. Mathematical Methods for Physicists; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Gao, F.; Yang, X.; Kang, Z. Local fractional Newton’s method derived from modified local fractional calculus. In Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April 2009; Volume 1, pp. 228–232. [Google Scholar]
- Torres-Hernandez, A.; Brambila-Paz, F. Fractional Newton–Raphson Method. Appl. Math. Sci. Int. J. (MathSJ) 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Gdawiec, K.; Kotarski, W.; Lisowska, A. Visual Analysis of the Newton’s Method with Fractional Order Derivatives. Symmetry 2019, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Gdawiec, K.; Kotarski, W.; Lisowska, A. Newton’s method with fractional derivatives and various iteration processes via visual analysis. Numer. Algorithms 2020, 86, 953–1010. [Google Scholar] [CrossRef]
- Akgül, A.; Cordero, A.; Torregrosa, J.R. A fractional Newton method with 2αth-order of convergence and its stability. Appl. Math. Lett. 2019, 98, 344–351. [Google Scholar] [CrossRef]
- Cordero, A.; Girona, I.; Torregrosa, J.R. A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Tatham, S.G. Fractals Derived from Newton–Raphson Iteration. 2017. Available online: https://www.chiark.greenend.org.uk/%7Esgtatham/newton/ (accessed on 1 October 2017).
- Nievergelt, Y. Aitken’s and Steffensen’s accelerations in several variables. Numer. Math. 1991, 59, 295–310. [Google Scholar] [CrossRef]
- Torres-Hernandez, A. Code of Multidimensional Newton-Raphson Method Using Recursive Programming. 2021. Available online: https://www.researchgate.net/publication/349924444_Code_of_multidimensional_Newton-Raphson_method_using_recursive_programming (accessed on 1 March 2021).
n | |||||
---|---|---|---|---|---|
1 | 1.00161 | 0.00007156 | 6.94600E-05 | 4.31004E-07 | 46 |
n | |||||
---|---|---|---|---|---|
1 | 0.87703 | −0.00449671 + 1.2464767i | 5.57148E-05 | 7.01925E-05 | 8 |
2 | 0.87821 | −0.06554663 + 0.93609376i | 9.93578E-05 | 1.07146E-05 | 7 |
3 | 0.88376 | −0.06554664 − 0.93609378i | 4.06133E-05 | 1.74330E-06 | 8 |
4 | 0.91922 | −0.90057347 + 0.22444635i | 9.90788E-05 | 2.07375E-05 | 5 |
5 | 0.92610 | −0.56043513 + 0.57983003i | 8.24879E-06 | 1.68512E-06 | 7 |
6 | 0.92643 | 0.59293293 + 0.81897545i | 9.31195E-06 | 9.18616E-06 | 6 |
7 | 0.92659 | 1.05051127 + 0.38407315i | 6.46220E-07 | 3.79293E-05 | 7 |
8 | 0.92668 | 1.05051127 − 0.38407314i | 1.92354E-07 | 8.61954E-06 | 8 |
9 | 1.00161 | −0.00000009 | 9.47400E-05 | 6.81696E-13 | 2 |
10 | 1.08086 | 0.59293292 − 0.81897547i | 8.09817E-05 | 2.50406E-05 | 6 |
11 | 1.08184 | −0.56043512 − 0.57983002i | 2.39767E-05 | 2.50817E-06 | 7 |
12 | 1.11378 | −0.00449673 − 1.24647667i | 7.61577E-08 | 6.43359E-05 | 9 |
13 | 1.17623 | −0.90057347 − 0.2244463i | 9.28255E-05 | 2.29317E-05 | 7 |
n | |||||
---|---|---|---|---|---|
1 | 1.00393 | −1.11795723 | 1.30000E-07 | 2.23178E-06 | 40 |
2 | 1.04143 | −0.43822992 | 7.54300E-05 | 6.21616E-05 | 52 |
3 | 1.05194 | −0.16991479 | 6.50004E-05 | 1.26695E-05 | 53 |
4 | 1.15095 | −0.35589097 + 0.80514169i | 1.51327E-07 | 5.71986E-05 | 67 |
n | |||||
---|---|---|---|---|---|
1 | 0.87132 | −0.35589093 - 0.80514174i | 7.86160E-05 | 2.32788E-05 | 7 |
2 | 0.87264 | 0.48722967− 0.92230783i | 1.13741E-06 | 4.48612E-06 | 10 |
3 | 0.87366 | 0.28979196 −1.12272312i | 4.79113E-06 | 1.62050E-05 | 11 |
4 | 0.89238 | -0.35589092 + 0.80514178i | 6.16682E-06 | 6.68576E-07 | 8 |
5 | 0.89568 | 0.48722967 + 0.92230782i | 3.89880E-05 | 7.47107E-06 | 10 |
6 | 0.89766 | 1.0660797 + 0.56313314i | 3.00491E-05 | 5.93475E-05 | 9 |
7 | 1.00393 | 0.00000008 | 3.36500E-05 | 4.67840E-14 | 2 |
8 | 1.01491 | 0.87919885 | 4.09653E-05 | 1.68448E-05 | 5 |
9 | 1.02115 | −0.16993135 | 9.72851E-05 | 1.39749E-08 | 3 |
10 | 1.04143 | 1.0660797 −0.56313315i | 6.75680E-05 | 6.95220E-05 | 5 |
11 | 1.05194 | −0.43824114 | 1.88156E-05 | 2.58740E-06 | 3 |
12 | 1.12328 | −0.71363729 − 0.41959459i | 3.26455E-06 | 4.52706E-06 | 5 |
13 | 1.12610 | −0.71363727 + 0.41959459i | 8.75710E-06 | 1.99343E-07 | 8 |
14 | 1.13498 | −1.11795723 | 1.23100E-05 | 2.23178E-06 | 4 |
15 | 1.15095 | 0.28979195 + 1.12272311i | 2.35722E-06 | 3.11810E-05 | 10 |
n | |||||
---|---|---|---|---|---|
1 | 0.70163 | −14.94772136 + 6.14653734i | 1.30298E-05 | 9.32400E-05 | 25 |
2 | 0.85274 | −8.33609528 − 5.06388182i | 1.69580E-05 | 3.33020E-05 | 12 |
3 | 1.00181 | −0.00013924 + 0.00001328i | 6.81766E-05 | 1.52026E-13 | 25 |
4 | 1.15221 | 8.33610117 + 5.06387543i | 2.38905E-05 | 4.04742E-05 | 16 |
n | |||||
---|---|---|---|---|---|
1 | 0.70006 | 21.39353648 − 6.837026i | 4.12311E-08 | 1.31841E-08 | 9 |
2 | 0.70021 | 14.94772196 + 6.14653076i | 1.12581E-05 | 6.28944E-08 | 8 |
3 | 0.70130 | 21.39353648 + 6.83702599i | 3.60555E-08 | 2.00623E-07 | 9 |
4 | 0.70163 | −27.77675536 − 7.34778011i | 3.05941E-07 | 4.08123E-06 | 8 |
5 | 0.72911 | −21.39353648 + 6.837026i | 1.74642E-07 | 1.31841E-08 | 6 |
6 | 0.72933 | −14.94772196 + 6.14653076i | 1.98086E-05 | 6.28944E-08 | 5 |
7 | 0.72969 | −21.39353648 − 6.837026i | 2.65981E-05 | 1.31841E-08 | 8 |
8 | 0.73214 | −8.33609941 + 5.06388042i | 9.58390E-05 | 3.99288E-08 | 5 |
9 | 0.80714 | 8.33609941 + 5.06388043i | 8.67685E-05 | 3.93431E-08 | 8 |
10 | 0.81260 | −34.12862021 + 7.7539021i | 4.21598E-05 | 9.52275E-05 | 8 |
11 | 0.85274 | −8.33609941 − 5.06388042i | 9.72662E-05 | 3.99288E-08 | 5 |
12 | 0.89041 | −14.94772197− 6.14653076i | 8.26951E-05 | 1.22005E-07 | 7 |
13 | 1.00181 | −0.0000215 + 0.00002121i | 7.36947E-05 | 1.53039E-15 | 4 |
14 | 1.10820 | −27.77675547 + 7.34778007i | 5.05482E-05 | 2.74956E-06 | 7 |
15 | 1.15221 | 27.77675547 + 7.34778014i | 4.12311E-08 | 2.42256E-06 | 8 |
16 | 1.15395 | 14.94772196 − 6.14653077i | 3.48421E-06 | 9.26415E-08 | 7 |
17 | 1.15404 | 8.33609941− 5.06388043i | 2.37921E-05 | 3.93431E-08 | 8 |
n | |||||
---|---|---|---|---|---|
1 | 0.84175 | 1.77244862 | 2.77800E-05 | 1.85430E-05 | 9 |
2 | 0.88194 | 3.54491603 | 3.76700E-05 | 5.90454E-05 | 8 |
3 | 0.88428 | 3.06996642 | 6.84700E-05 | 8.41408E-05 | 10 |
4 | 0.98182 | 2.50663097 | 9.01300E-05 | 1.35126E-05 | 3 |
5 | 1.09634 | −2.50662031 | 2.44798E-05 | 3.99287E-05 | 4 |
6 | 1.10015 | −4.68946323 | 2.10983E-05 | 8.31896E-05 | 9 |
7 | 1.10056 | −5.01324797 | 2.00345E-05 | 8.60200E-05 | 9 |
8 | 1.10117 | −5.60498334 | 4.21000E-06 | 8.82942E-05 | 21 |
9 | 1.14221 | 5.60499912 | 3.67000E-06 | 8.85993E-05 | 7 |
10 | 1.14547 | 5.31735876 | 7.47000E-06 | 2.96998E-05 | 7 |
11 | 1.15097 | 5.01325276 | 1.00200E-05 | 3.79931E-05 | 7 |
12 | 1.15908 | 4.68946617 | 1.54700E-05 | 5.56156E-05 | 7 |
13 | 1.17640 | 4.34160246 | 1.23700E-05 | 4.40009E-05 | 4 |
n | |||||
---|---|---|---|---|---|
1 | 0.80229 | 3.54490771 | 8.13400E-05 | 5.80583E-08 | 2 |
2 | 0.84175 | 3.9633273 | 3.07800E-05 | 1.89763E-08 | 2 |
3 | 0.88143 | −5.31736155 | 2.80000E-06 | 2.88897E-08 | 3 |
4 | 0.88194 | −4.34160716 | 1.38420E-05 | 3.18978E-06 | 3 |
5 | 0.88247 | −3.54490738 | 2.57466E-05 | 2.28158E-06 | 3 |
6 | 0.88428 | −1.77245385 | 2.22000E-06 | 3.20997E-09 | 3 |
7 | 0.88821 | −0.00001155 | 6.94304E-05 | 1.33402E-10 | 4 |
8 | 0.90399 | 1.77245385 | 8.16500E-05 | 3.20997E-09 | 2 |
9 | 0.92421 | 3.06998012 | 8.79300E-05 | 2.35742E-08 | 3 |
10 | 0.98182 | 2.50662827 | 9.91500E-05 | 2.32164E-08 | 2 |
11 | 1.09634 | −2.50662975 | 8.33108E-05 | 7.39641E-06 | 2 |
12 | 1.10015 | −4.68948099 | 8.10371E-05 | 8.33804E-05 | 3 |
13 | 1.10056 | −5.01326496 | 7.11525E-05 | 8.43304E-05 | 3 |
14 | 1.10117 | −5.60499585 | 6.68979E-05 | 5.19426E-05 | 4 |
15 | 1.14221 | 5.60499119 | 5.32600E-05 | 2.95920E-07 | 2 |
16 | 1.14547 | 5.31736154 | 1.01200E-05 | 1.35237E-07 | 2 |
17 | 1.15097 | 5.01325654 | 5.61300E-05 | 9.28656E-08 | 2 |
18 | 1.15908 | 4.68947211 | 1.28200E-05 | 9.53393E-08 | 2 |
19 | 1.17640 | 4.34160754 | 5.99300E-05 | 1.09846E-07 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Hernandez, A.; Brambila-Paz, F.; Iturrarán-Viveros, U.; Caballero-Cruz, R. Fractional Newton–Raphson Method Accelerated with Aitken’s Method. Axioms 2021, 10, 47. https://doi.org/10.3390/axioms10020047
Torres-Hernandez A, Brambila-Paz F, Iturrarán-Viveros U, Caballero-Cruz R. Fractional Newton–Raphson Method Accelerated with Aitken’s Method. Axioms. 2021; 10(2):47. https://doi.org/10.3390/axioms10020047
Chicago/Turabian StyleTorres-Hernandez, A., F. Brambila-Paz, U. Iturrarán-Viveros, and R. Caballero-Cruz. 2021. "Fractional Newton–Raphson Method Accelerated with Aitken’s Method" Axioms 10, no. 2: 47. https://doi.org/10.3390/axioms10020047
APA StyleTorres-Hernandez, A., Brambila-Paz, F., Iturrarán-Viveros, U., & Caballero-Cruz, R. (2021). Fractional Newton–Raphson Method Accelerated with Aitken’s Method. Axioms, 10(2), 47. https://doi.org/10.3390/axioms10020047