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Abstract: In this article we propose and study a method to solve ordinary differential equations
with left-sided fractional Bessel derivatives on semi-axes of Gerasimov–Caputo type. We derive
explicit solutions to equations with fractional powers of the Bessel operator using the Meijer integral
transform.
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1. Introduction

In this article we study differential equations with the fractional powers of the differential Bessel
operator of the form

Bγ =
d2

dx2 +
γ

x
d

dx
, γ ≥ 0. (1)

The first explicit formulas for fractional powers of the Bessel operator on a segment in terms of
the Gauss hypergeometric functions appeared in [1]. For more detailed discussion of the fractional
powers of (1) on a segment and semi-axes we refer to [2–4]. Fractional powers of the hyper-Bessel
differential operator

Bα0,α1,...,αm = xα0
d

dx
xα1

d
dx

...xαm−1
d

dx
xαm

with real parameters α0, . . . , αm was studied in the paper [5] and continued in [6–9]. The Bessel
operator (1) corresponds to Bα0,α1,...,αm when

m = 2, α0 = −1, α1 = 2− γ, α2 = γ− 1,

or, equivalently,
m = 2, α0 = −γ, α1 = γ, α2 = 0.

For other integral operators connected with the Bessel operator see [10–12].
Equations with fractional Bessel derivatives have not been studied before due to the lack of

suitable tools for their study. The first aim of this article is to present one such tool, namely, the Meijer
integral transform. This transform plays the same role for the left-sided Bessel fractional derivative on
semi-axes as the Laplace transform plays for the left-sided Gerasimov–Caputo fractional derivative on
semi-axes. Another aim is to show that power functions multiplied by the Fox–Wright functions are
the fundamental system of solutions to the left-sided Bessel fractional derivative of Gerasimov–Caputo
type on semi-axes. Equations with fractional Bessel derivatives are extremely interesting from a
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theoretical point of view, but also arise in applications such as problems of the random walk of a
particle [13,14].

In ([15], p. 312), the Laplace transform method was applied to derive an explicit solution to a
homogeneous equation of the form

( CDα
0+ f )(x) = λ f (x), x > 0, l − 1 < α ≤ l, l ∈ N, λ ∈ R, (2)

where for non-integer α > 0

( CDα
0+ f )(x) =

1
Γ(n− α)

x∫
0

f (n)(t)dt
(x− t)α+1−n , x ∈ [0, ∞) (3)

is the left-sided Gerasimov–Caputo fractional derivative on semi-axes ([15,16], p. 97, Formula 2.4.47)
and for α = n = 0, 1, 2, . . .

( CDn
0+ f )(x) = f (n)(x).

Gerasimov [16] derived and solved fractional-order partial differential equations with the
derivative (3) for applied mechanical problems in 1948.

The conditions
f k(0+) = dk, k = 0, 1, . . . , l − 1, dk ∈ R (4)

were added to Equation (2). The solution to the problem (2)–(4) is (see [15], p. 312)

f (x) =
l−1

∑
k=0

dk xk Eα,k+1(λxα), (5)

where Eα,β is the Mittag–Leffler function (15).
In this article we apply the Meijer transform to derive explicit solutions f to homogeneous

equations of the form
(Bα

γ,0+ f )(x) = λ f (x),

where the positive real power of (1) is defined by (26).

2. Basic Definitions

2.1. Special Functions

First, we give definitions of some special functions which we will use.
The modified Bessel functions (or occasionally the hyperbolic Bessel functions) of the first and

second kind Iα(x) and Kα(x) are defined as (see [17–20]; for the generalization, see [21])

Iα(x) = i−α Jα(ix) =
∞

∑
m=0

1
m! Γ(m + α + 1)

( x
2

)2m+α
, (6)

Kα(x) =
π

2
I−α(x)− Iα(x)

sin(απ)
, (7)

where α is a non-integer. For integer α, the limit is used. It is obvious that Kα(x) = K−α(x). For small
arguments 0 < |r| �

√
ν + 1, we have

Kν(r) ∼

− ln
( r

2

)
− ϑ if ν = 0,

Γ(ν)
21−ν r−ν if ν > 0,

(8)
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where

ϑ = lim
n→∞

(
− ln n +

n

∑
k=1

1
k

)
=

∞∫
1

(
− 1

x
+

1
bxc

)
dx

is the Euler–Mascheroni constant [22].
The kernel of the Meijer transform is the normalized modified Bessel function of the second

kind kν defined by the formula

kν(x) =
2νΓ(ν + 1)

xν
Kν(x), (9)

where Kν is modified Bessel function of the second kind (7).
The normalized modified Bessel function of the second kind has the following properties:

lim
x→0

kν(x) =
Γ(−ν)

22ν+1Γ(1 + ν)
, ν < 0, −ν /∈ N, (10)

lim
x→0

xαk0(x) = 0, α > 0, lim
x→0

1
ln x

k0(x) = −1, (11)

lim
x→0

x2νkν(x) =
1

2ν
, ν > 0, (12)

lim
x→0

x2ν+1 dkν(x)
dx

= −1, ν > −1. (13)

The kernel of the left-sided Bessel fractional derivative on semi-axes is the hypergeometric Gauss
function which is inside the circle |z|<1 determined as the sum of the hypergeometric series (see [22],
p. 373, formula 15.3.1)

2F1(a, b; c; z) = F(a, b, c; z) =
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
, (14)

and for |z| ≥ 1 it is obtained by analytic continuation of this series. In (14) parameters a, b, c and
variable z can be complex, and c 6=0,−1,−2, . . .. Multiplier (a)k is the Pohgammer symbol (z)n =

z(z + 1) . . . (z + n− 1), n = 1, 2, . . . , (z)0 ≡ 1.
The Mittag–Leffler function Eα,β(z) is an entire function of order 1/α defined by the following

series when the real part of α is strictly positive:

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, z ∈ C, α, β ∈ C, Re α > 0, Re β > 0. (15)

The function (15) was introduced by Gösta Mittag–Leffler in 1903 for α = 1 and A. Wiman in
1905 in the general case. The first applications of these functions by Mittag–Leffler and Wiman were
applications in complex analysis (non-trivial examples of entire functions with non-integer orders
of growth and generalized summation methods). In the USSR, these functions became popularly
known after the publication of the famous monograph by M. M. Dzhrbashyan [23] (see also his
later monograph [24]). The most famous application of the Mittag–Leffler functions in the theory
of integro-differential equations and fractional calculus is the fact that through them the resolvent
of the Riemann–Liouville fractional integral is explicitly expressed in accordance with the famous
Hille–Tamarkin–Dzhrbashyan formula [25]. In view of the numerous applications to the solution of
fractional differential equations, this function was deservedly named in [26] the “Royal function of
fractional calculus”.
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The Fox–Wright function pΨq(z) is defined for z ∈ C, al , bj ∈ C, αl , β j ∈ R, l = 1, . . . , p;
j = 1, . . . , q by the series (see [27,28])

pΨq(z) = pΨq

[
(al , αl)1,p
(bj, β j)1,q

∣∣∣∣∣ z

]
=

∞

∑
k=0

p
∏
l=1

Γ(al + αlk)

q
∏
j=1

Γ(bj + β jk)

zk

k!
. (16)

If the condition
q

∑
j=1

β j −
p

∑
l=1

αl > −1

is satisfied, the series in (16) is convergent for any z ∈ C. Let

δ =
p

∏
l=1
|αl |−αl

q

∏
j=1
|β j|β j ,

µ =
q

∑
j=1

bj −
p

∑
l=1

al +
p− q

2
.

If
q

∑
j=1

β j −
p

∑
l=1

αl = −1,

then the series in (16) is absolutely convergent for |z| < δ and for |z| = δ and Re µ > 1
2 . The same role

the Mittag–Leffler function plays for ordinary fractional calculus is played by the Fox–Wright function
for fractional powers of the Bessel operator.

Using the Fox–Wright function (16), we can write

Eα,β(z) = 1Ψ1

[
(1, 1)
(β, α)

∣∣∣∣∣ z

]
. (17)

2.2. Integral Transforms and Transmutation Poisson Operator

In this subsection we present Laplace and Meijer integral transforms and their connection by
applying the transmutation Poisson operator.

The Laplace transform of a function f (t), defined for all real numbers t > 0, is the function F(s),
which is a unilateral transform defined by

L[ f ](s) = F(s) =
∞∫

0

f (t)e−st dt, (18)

where s is a complex number frequency parameter s = σ + iω , with real numbers σ and ω.

Let Ea, a ∈ R be the space of functions f : R→ C, f ∈ Lloc
1 (R) such that

∞∫
0
| f (t)|e−atdt < ∞ and

f (t) vanishes if t < 0.
Let f ∈ Ea. Then, the Laplace integral (18) is absolutely and uniformly convergent on H̄a = {p :

p ∈ C, Re p ≥ a}. The Laplace transform of function f ∈ Ea is bounded on H̄a and it is an analytic
function on Ha = {p : p ∈ C, Re p > a} (see [29], p. 28).

Let f ∈ Ea be smooth on every interval (a, b) ∈ R+. Then in points t of continuity the complex
inversion formula

L−1[F](t) = f (t) =
1

2πi

c+i∞∫
c−i∞

F(s)etsds, c > a.
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holds (see [29], p. 37).
The Laplace transform of the Mittag–Leffler function multiplied by a power function is (see [15],

p. 47, Formula 1.9.13, where ρ = 1):

L[xβ−1Eα,β(λxα)](s) =
sα−β

sα − λ
. (19)

For functions f , the integral transforms involving the Bessel function k γ−1
2

, γ ≥ 1 as kernel is the

Meijer transform defined by

Kγ[ f ](ξ) = F(ξ) =
∞∫

0

k γ−1
2
(xξ) f (x)xγ dx. (20)

The transform (20) is the modification of K-transform from ([29] p. 93, formula 1.8.48), and has
the same properties but with the other asymptotic behavior of the functions (see also [30]). In [31],
an integral transform enfolding kernels of a Meijer G type function is considered.

Let f ∈ Lloc
1 (R+) and f (t) = o

(
tβ− γ

2

)
as t→ +0, where β > γ

2 − 2 if γ > 1, and β > −1 if γ = 1.

Furthermore, let f (t) = 0(eat) as t→ +∞. Then, its Meijer transform exists a.e. for Re ξ > a (see [29],
p. 94).

If 0 < γ < 2 and F(ξ) is analytic on the half-plane Ha = {p ∈ C : Re p ≥ a}, a ≤ 0 and
s

γ
2−1F(ξ) → 0, |ξ| → +∞, uniformly with respect to arg s then for any number c, c > a the inverse

transform K−1
γ is (see [29], p. 94)

K−1
γ [ f̂ ](x) = f (x) =

1
πi

c+i∞∫
c−i∞

f̂ (ξ)i γ−1
2
(xξ)ξγdξ. (21)

The inversion formula (21) is not convenient for calculations and has the condition 0 < γ < 2.
Here we present another inversion formula using a transmutation Poisson operator.

Let γ > 0. The one-dimensional Poisson operator is defined for the integrable function f by the
equality

Pγ
x f (x) =

2C(γ)
xγ−1

x∫
0

(
x2 − t2

) γ
2−1

f (t) dt, C(γ) =
Γ
(

γ+1
2

)
√

π Γ
( γ

2
) . (22)

The constant C(γ) is chosen so that Pγ
x [1] = 1 (see [2]).

The left inverse operator for (22) for γ > 0 for any summable function H(x) is defined by

(Pγ
x )
−1H(x) =

2
√

πx

Γ
(

γ+1
2

)
Γ
(
n− γ

2
) ( d

2xdx

)n x∫
0

H(z)(x2 − z2)n− γ
2−1zγdz, (23)

where n =
[ γ

2
]
+ 1.

In order to find f (x) from the equality

Kγ[ f ](ξ) = (LF(z))(ξ) = g(ξ),

apply to the kernel of (20) the formula

Kα(xξ) =
Γ
(

1
2

)
Γ
(

α + 1
2

) ( xξ

2

)α ∞∫
1

e−xξt(t2 − 1)α− 1
2 dt = {xt = z}



Mathematics 2019, 7, 1216 6 of 21

=

√
π

Γ
(

α + 1
2

) ( ξ

2x

)α ∞∫
x

e−ξz(z2 − x2)α− 1
2 dz

from ([17], p. 190, formula (4)). Then,

k γ−1
2
(xξ) =

2
1−γ

2

Γ
(

γ+1
2

)
(xξ)

γ−1
2

K γ−1
2
(xξ)

=
2

1−γ
2

Γ
(

γ+1
2

)
(xξ)

γ−1
2

√
π

Γ
( γ

2
) ( ξ

2x

) γ−1
2

∞∫
x

e−ξz(z2 − x2)
γ
2−1dz

=
21−γ
√

π

xγ−1Γ
(

γ+1
2

)
Γ
( γ

2
) ∞∫

x

e−ξz(z2 − x2)
γ
2−1dz.

Therefore

Kγ[ f ](ξ) = f̂ (ξ) =
∞∫

0

k γ−1
2
(xξ) f (x)xγ dx

=
21−γ
√

π

Γ
(

γ+1
2

)
Γ
( γ

2
) ∞∫

0

f (x)x dx
∞∫

x

e−ξz(z2 − x2)
γ
2−1dz

=
21−γ
√

π

Γ
(

γ+1
2

)
Γ
( γ

2
) ∞∫

0

e−ξzdz
z∫

0

f (x)(z2 − x2)
γ
2−1xdx.

Using the Poisson operator (22) and Laplace transform (18) we get

Kγ[ f ](ξ) =
∞∫

0

e−ξzF(z)dz = (LF(z))(ξ),

where
F(z) = Aγzγ−1Pγ

z z f (z), Aγ =
π

2γΓ2
(

γ+1
2

) .

So, in order to find f (x) from the equality

Kγ[ f ](ξ) = (LAγzγ−1Pγ
z z f (z))(ξ) = g(ξ),

we should first do an inverse Laplace transform and then we should apply the inverse Poisson operator.
So, the inverse formula for functions g such that (L−1g)(x) exists and x1−γ(L−1g)(x) is summable is

f (x) = K−1
γ [g](x) =

1
Aγx

(Pγ
x )
−1x1−γ(L−1g)(x), g = Kγ[ f ]. (24)

3. Left-Sided Fractional Bessel Integral and Derivative on Semi-Axes

3.1. Definitions of Left-Sided Fractional Bessel Integral and Derivative on Semi-Axes

In this subsection we introduce the so-called left-sided fractional Bessel integral and derivative on
semi-axes.
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Let α > 0, γ > 0. The left-sided fractional Bessel integral on semi-axes B−α
γ,0+ for f∈L[0, ∞) is

defined by the formula
(B−α

γ,0+ f )(x) = (IBα
γ,0+ f )(x)

=
1

Γ(2α)

x∫
0

( y
x

)γ
(

x2−y2

2x

)2α−1

2F1

(
α+

γ−1
2

, α; 2α; 1− y2

x2

)
f (y)dy. (25)

For α < 0, formula (25) can be continued analytically and (B0
γ,0+ f )(x) = f (x).

In [5], spaces adapted to work with operators of the form Bα
γ,0+, α ∈ R were introduced:

Fp =

{
ϕ ∈ C∞(0, ∞) : xk dk ϕ

dxk ∈ Lp(0, ∞) for k = 0, 1, 2, . . .

}
, 1 ≤ p < ∞,

F∞ =

{
ϕ ∈ C∞(0, ∞) : xk dk ϕ

dxk → 0 as x → 0 + and as x → ∞ for k = 0, 1, 2, . . .

}
and

Fp,µ =
{

ϕ : x−µ ϕ(x) ∈ Fp
}

, 1 ≤ p ≤ ∞, µ ∈ C.

We present here theorems that are special cases of theorems from [5].

Theorem 1. Let α ∈ R. For all p, µ and γ > 0 such that µ 6= 1
p−2m, γ 6= 1

p−µ−2m+1, m=1, 2. . .,

the operator Bα
γ,0+ is a continuous linear mapping from Fp, µ into Fp,µ−2α. If also 2α 6= µ − 1

p + 2m

and γ− 2α 6= 1
p − µ− 2m + 1, m = 1, 2..., then Bα

γ,0+ is a homeomorphism from Fp, µ onto Fp,µ−2α with
inverse B−α

γ,0+.

Let us compare the fractional Bessel integral B−α
γ,0+ with the well-known Riemann–Liouville

fractional integral I2α
0+. For this purpose, let us put γ = 0:

(B−α
0,0+ f )(x)=

1
Γ(2α)

x∫
a

(
x2 − y2

2x

)2α−1

2F1

(
α− 1

2
, α; 2α; 1− y2

x2

)
f (y)dy

=
1

Γ(2α)

x∫
0

(
x2 − y2

2x

)2α−1 [ 2x
x + y

]2α−1
f (y)dy

=
1

Γ(2α)

x∫
0

(x− y)2α−1 f (y)dy = (I2α
0+ f )(x).

Now, we would like to have the explicit formula for Bα
γ when α > 0. For applications, it is better

to use the generalization of the Gerasimov–Caputo fractional derivative (3).
Let n = [α] + 1, f∈L[0, ∞), IBn−α

γ,b− f , IBn−α
γ,b− f∈C2n

ev (0, ∞). The left-sided fractional Bessel
derivatives on semi-axes of Gerasimov–Caputo type are defined by the equality

(Bα
γ,0+ f )(x) = (IBn−α

γ,0+Bn
γ f )(x). (26)

It is easy to see that
(Bα

0,0+ f )(x)=( CD2α
0+ f )(x),

where ( CD2α
0+ f )(x) is defined by (3).
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Following [1,5] we present the following results. Let Re (2η + µ) + 2 > 1/p, and ϕ ∈ Fp,µ.
For Re α > 0, we define Iη,α

2 ϕ by the formula

Iη,α
2 ϕ(x) =

2
Γ(α)

x−2η−2α

x∫
0

(x2 − u2)α−1u2η+1 ϕ(u)du. (27)

The definition of Iη,α
2 is extended to Re α ≤ 0 by means of the formula

Iη,α
2 ϕ = (η + α + 1)Iη,α+1

2 ϕ +
1
2

Iη,α+1
2 x

dϕ

dx
. (28)

Theorem 2. The following factorization of (25) is valid:

(B−α
γ,0+ϕ)(x) =

( x
2

)2α
I

γ−1
2 ,α

2 I0,α
2 ϕ, (29)

where

I0,α
2 ϕ(x) =

2
Γ(α)

x−2α

x∫
0

(x2 − u2)α−1uϕ(u)du,

I
γ−1

2 ,α
2 ϕ(x) =

2
Γ(α)

x1−γ−2α

x∫
0

(x2 − u2)α−1uγ ϕ(u)du.

Proof. We have
(B−α

γ,0+ϕ)(x)

=
1

Γ(2α)

x∫
0

(u
x

)γ
(

x2 − u2

2x

)2α−1

2F1

(
α +

γ− 1
2

, α; 2α; 1− u2

x2

)
ϕ(u)du

= 2−2αx2α I
γ−1

2 ,α
2 I0,α

2 ϕ

=
21−2αx2α

Γ(α)
I

γ−1
2 ,α

2 y−2α

y∫
0

(y2 − u2)α−1uϕ(u)du

=
22−2αx2α

Γ2(α)
x−γ+1−2α

x∫
0

(x2 − y2)α−1yγ−2αdy

y∫
0

(y2 − u2)α−1uϕ(u)du

=
22−2α

Γ2(α)
x1−γ

x∫
0

uϕ(u)du
x∫

u

(y2 − u2)α−1(x2 − y2)α−1yγ−2αdy.

Find

x∫
u

(y2 − u2)α−1(x2 − y2)α−1yγ−2αdy = {y2 = t} = 1
2

x2∫
u2

(t− u2)α−1(x2 − t)α−1t
γ−1

2 −αdt

=

√
πΓ(α)

22αΓ
(

α + 1
2

) (x2 − u2
)2α−1

u−2α+γ−1
2F1

(
α +

1− γ

2
, α; 2α; 1− x2

u2

)
.

Using formula (see [22])

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z
z− 1

)
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we obtain

2F1

(
α +

1− γ

2
, α; 2α; 1− x2

u2

)
2F1

(
α, α +

1− γ

2
; 2α; 1− x2

u2

)

=

(
x2

u2

)−α

2F1

(
α, α +

γ− 1
2

; 2α; 1− u2

x2

)

=

(
x2

u2

)−α

2F1

(
α +

γ− 1
2

, α; 2α; 1− u2

x2

)
,

and
x∫

u

(y2 − u2)α−1(x2 − y2)α−1yγ−2αdy =

√
πΓ(α)

22αΓ
(

α + 1
2

)
×
(

x2 − u2
)2α−1

u−2α+γ−1
(

x2

u2

)−α

2F1

(
α, α +

γ− 1
2

; 2α; 1− u2

x2

)

=

√
πΓ(α)

22αΓ
(

α + 1
2

) (x2 − u2
)2α−1

uγ−1x−2α
2F1

(
α, α +

γ− 1
2

; 2α; 1− u2

x2

)
.

Finally

(B−α
γ,0+ϕ)(x) =

22(1−2α)
√

π

Γ(α)Γ
(

α + 1
2

) x1−γ−2α

×
x∫

0

(
x2 − u2

)2α−1
uγ

2F1

(
α +

γ− 1
2

, α; 2α; 1− u2

x2

)
ϕ(u)du.

Applying the duplication formula

Γ(α)Γ
(

α +
1
2

)
= 21−2α

√
πΓ(2α)

we obtain

(B−α
γ,0+ϕ)(x) =

21−2α

Γ(2α)
x1−γ−2α

×
x∫

0

(
x2 − u2

)2α−1
uγ

2F1

(
α +

γ− 1
2

, α; 2α; 1− u2

x2

)
ϕ(u)du

=
1

Γ(2α)

x∫
0

(
x2 − u2

2x

)2α−1 (u
x

)γ

2F1

(
α +

γ− 1
2

, α; 2α; 1− u2

x2

)
ϕ(u)du.

This gives (29). The proof is complete.

3.2. Meijer Transform of Left-Sided Fractional Bessel Integral and Derivative on Semi-Axes

In this subsection we apply the Meijer transform to the left-sided fractional Bessel integral and
derivative on semi-axes and then in Section 4 we use these results to construct explicit solutions
of linear differential equations involving the left-sided fractional Bessel derivatives on semi-axes of
Gerasimov–Caputo type with constant coefficients.

Theorem 3. Let α > 0. The Meijer transform of B−α
γ,0+ for proper functions is

Kγ[(B−α
γ,0+ϕ)(x)](ξ) = ξ−2αKγ ϕ(ξ). (30)
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Proof. We start with (30). Let g(x) = I0,α
2 ϕ(x). Then, using the factorization (29), we obtain

Kγ[(B−α
γ,0+ϕ)(x)](ξ) =

∞∫
0

k γ−1
2
(xξ) (B−α

γ,0+ϕ)(x)xγ dx

=
1

22α

∞∫
0

k γ−1
2
(xξ) I

γ−1
2 ,α

2 I0,α
2 ϕ(x)x2α+γ dx

=
1

22α

∞∫
0

k γ−1
2
(xξ) I

γ−1
2 ,α

2 g(x)x2α+γ dx

=
1

22α−1Γ(α)

∞∫
0

k γ−1
2
(xξ) x dx

x∫
0

(x2 − u2)α−1uγg(u)du

=
1

22α−1Γ(α)

∞∫
0

uγg(u)du
∞∫

u

(x2 − u2)α−1k γ−1
2
(xξ) x dx.

Consider the inner integral. Using formula 2.16.3.7 from [32] of the form

∞∫
a

x1±ρ(x2 − a2)β−1Kρ(cx)dx = 2β−1aβ±ρc−βΓ(β)Kρ±β(ac), a, c, β > 0, (31)

we get

∞∫
u

(x2 − u2)α−1k γ−1
2
(xξ) x dx =

2
γ−1

2 Γ
(

γ+1
2

)
ξ

γ−1
2

∞∫
u

(x2 − u2)α−1K γ−1
2
(xξ) x1− γ−1

2 dx

=
2

γ−1
2 Γ

(
γ+1

2

)
ξ

γ−1
2

· 2α−1uα− γ−1
2 ξ−αΓ(α)K γ−1

2 −α
(uξ)

and

Kγ[(B−α
γ,0+ϕ)(x)](ξ) =

2
γ−1

2 −αΓ
(

γ+1
2

)
ξ

γ−1
2 +α

∞∫
0

uα+ γ+1
2 K γ−1

2 −α
(uξ)g(u)du

=
2

γ+1
2 −αΓ

(
γ+1

2

)
Γ(α)ξ

γ−1
2 +α

∞∫
0

u
γ+1

2 −αK γ−1
2 −α

(uξ)du
u∫

0

(u2 − t2)α−1tϕ(t)dt

=
2

γ+1
2 −αΓ

(
γ+1

2

)
Γ(α)ξ

γ−1
2 +α

∞∫
0

tϕ(t)dt
∞∫

t

(u2 − t2)α−1u
γ+1

2 −αK γ−1
2 −α

(uξ)du.

Using again (31) we can write

∞∫
t

(u2 − t2)α−1u
γ+1

2 −αK γ−1
2 −α

(uξ)du = 2α−1t
γ−1

2 ξ−αΓ(α)K γ−1
2
(tξ)

and

Kγ[(B−α
γ,0+ϕ)(x)](ξ) =

2
γ+1

2 −αΓ
(

γ+1
2

)
Γ(α)ξ

γ−1
2 +α

· 2α−1ξ−αΓ(α)
∞∫

0

ϕ(t)K γ−1
2
(tξ)t

γ+1
2 dt
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= ξ−2α

∞∫
0

ϕ(t)k γ−1
2
(tξ)tγdt = ξ−2αKγ ϕ.

Lemma 1. Let n ∈ N and the Meijer transform of Bn
γ f exist; then, for 0 ≤ γ < 1

Kγ[Bn
γ f ](ξ) = ξ2nKγ[ f ](ξ)

−
n

∑
k=1

ξ2k−1−γBn−k
γ f (0+)−

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) lim
x→0+

n

∑
k=1

ξ2k−2xγ d
dx

[Bn−k
γ f (x)]; (32)

for γ = 1

Kγ[Bn
γ f ](ξ) = ξ2nKγ[ f ](ξ)−

n

∑
k=1

ξ2k−1−γBn−k
γ f (0+) + lim

x→0+

n

∑
k=1

ξ2k−2 ln xξ
d

dx
[Bn−k

γ f (x)]; (33)

for 1 < γ

Kγ[Bn
γ f ](ξ)

= ξ2nKγ[ f ](ξ)−
n

∑
k=1

ξ2k−1−γBn−k
γ f (0+)− 1

γ− 1
lim

x→0+

n

∑
k=1

ξ2k−1−γx
d

dx
[Bn−k

γ f (x)], (34)

where
Bn−k

γ f (0+) = lim
x→+0

Bn−k
γ f (x).

Proof. Find Kγ[Bn
γ f ](ξ):

Kγ[Bn
γ f ](ξ) =

∞∫
0

k γ−1
2
(xξ) [Bn

γ f (x)] xγ dx =

∞∫
0

k γ−1
2
(xξ)

d
dx

xγ d
dx

[Bn−1
γ f (x)] dx

= k γ−1
2
(xξ) xγ d

dx
[Bn−1

γ f (x)]
∣∣∣∣∞
x=0
−

∞∫
0

xγ d
dx

k γ−1
2
(xξ)

d
dx

[Bn−1
γ f (x)] dx

= −k γ−1
2
(xξ) xγ d

dx
[Bn−1

γ f (x)]
∣∣∣∣
x=0

+

(
xγ d

dx
k γ−1

2
(xξ)

)
[Bn−1

γ f (x)]
∣∣∣∣
x=0

+

∞∫
0

[Bγk γ−1
2
(xξ)] [Bn−1

γ f (x)]xγ dx = −k γ−1
2
(xξ) xγ d

dx
[Bn−1

γ f (x)]
∣∣∣∣
x=0

+

(
xγ d

dx
k γ−1

2
(xξ)

)
[Bn−1

γ f (x)]
∣∣∣∣
x=0

+ ξ2
∞∫

0

k γ−1
2
(xξ) [Bn−1

γ f (x)]xγ dx =

· · · = ξ2n
∞∫

0

k γ−1
2
(xξ) f (x)xγ dx

+
n−1

∑
k=0

ξ2k
((

xγ d
dx

k γ−1
2
(xξ)

)
[Bn−1−k

γ f (x)]− k γ−1
2
(xξ) xγ d

dx
[Bn−1−k

γ f (x)]
)∣∣∣∣

x=0
.
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Let 0 ≤ γ < 1. Then, using (10), we get

lim
x→0+

k γ−1
2
(xξ) xγ d

dx
[Bn−1−k

γ f (x)] =
Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) lim
x→0+

xγ d
dx

[Bn−1−k
γ f (x)].

For γ = 1, using (11) we get

lim
x→0+

k0(xξ)
d

dx
[Bn−1−k

γ f (x)] = − lim
x→0+

ln xξ
d

dx
[Bn−1−k

γ f (x)].

When 1 < γ, using (12) we obtain

lim
x→0+

k γ−1
2
(xξ) xγ d

dx
[Bn−1−k

γ f (x)] =
1

γ− 1
lim

x→0+
xξ1−γ d

dx
[Bn−1−k

γ f (x)].

Next, we have
d

dx
k γ−1

2
(xξ) = −2

1−γ
2 ξ

3−γ
2 x

1−γ
2

Γ
(

γ+1
2

) K γ+1
2
(xξ)

and using (8) for small x

xγ d
dx

k γ−1
2
(xξ) = − 2

1−γ
2

Γ
(

γ+1
2

) x
γ+1

2 ξ
3−γ

2 K γ+1
2
(xξ)

∼ − 2
1−γ

2

Γ
(

γ+1
2

) x
γ+1

2 ξ
3−γ

2
Γ
(

γ+1
2

)
21− γ+1

2

(ξx)−
γ+1

2 = −ξ1−γ, x → 0+,

therefore

lim
x→0+

(
xγ d

dx
k γ−1

2
(xξ)

)
[Bn−1−k

γ f (x)] = −ξ1−γBn−1−k
γ f (0+);

for 0 ≤ γ < 1

Kγ[Bn
γ f ](ξ) = ξ2nKγ[ f ](ξ)−

n−1

∑
k=0

ξ2k+1−γBn−1−k
γ f (0+)

−
Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) n−1

∑
k=0

ξ2k lim
x→0+

xγ d
dx

[Bn−1−k
γ f (x)]

= ξ2nKγ[ f ](ξ)−
n

∑
k=1

ξ2k−1−γBn−k
γ f (0+)−

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) lim
x→0+

n

∑
k=1

ξ2k−2xγ d
dx

[Bn−k
γ f (x)];

for γ = 1

Kγ[Bn
γ f ](ξ) = ξ2nKγ[ f ](ξ)−

n

∑
k=1

ξ2k−1−γBn−k
γ f (0+) + lim

x→0+

n

∑
k=1

ξ2k−2 ln xξ
d

dx
[Bn−k

γ f (x)];

for 1 < γ

Kγ[Bn
γ f ](ξ) = ξ2nKγ[ f ](ξ)−

n

∑
k=1

ξ2k−1−γBn−k
γ f (0+)− 1

γ− 1
lim

x→0+

n

∑
k=1

ξ2k−1−γx
d

dx
[Bn−k

γ f (x)].
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Remark 1. Let n ∈ N, d
dx [B

n−k
γ f (x)] be bounded, the Meijer transform of Bn

γ f exist, and γ 6= 1; then,

Kγ[Bn
γ f ](ξ) = ξ2nKγ[ f ](ξ)−

n

∑
k=1

ξ2k−1−γBn−k
γ f (0+). (35)

If d
dx [B

n−k
γ f (x)] ∼ xβ, β > 0 when x → 0+, then (35) holds for γ = 1.

Remark 2. Since k− 1
2
(x) = e−x, then

K0[ f ](ξ) = L[ f ](ξ),

where L[ f ] is a Laplace transform of f . It is well known that

L[ f ′′](ξ) = ξ2L[ f ](ξ)− ξ f (0)− f ′(0).

From the other side

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) ∣∣∣∣
γ=0

= 1,
n

∑
k=1

xγ d
dx

[Bn−k
γ f (x)]

∣∣∣∣
γ=0,n=1

= f ′(x)

and
K0[B0 f ](ξ) = L f ′′(ξ) = ξ2K0[ f ](ξ)− ξ f (0)− f ′(0) = L[ f ′′](ξ).

The same situation is true for K0[Bn
0 f ](ξ).

Theorem 4. Let n = [α] + 1 for fractional α and n = α for α ∈ N and the Meijer transform of Bα
γ,0+ f exists,

then for 0 ≤ γ < 1
Kγ[Bα

γ,0+ f ](ξ)

= ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+)−

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) lim
x→0+

n−1

∑
k=0

ξ2α−2k−2xγ d
dx

[Bk
γ f (x)]; (36)

for γ = 1
Kγ[Bα

γ,0+ f ](ξ)

= ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+) + lim

x→0+

n−1

∑
k=0

ξ2α−2k−2 ln xξ
d

dx
[Bk

γ f (x)]; (37)

for 1 < γ

Kγ[Bα
γ,0+ f ](ξ)

= ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+)− 1

γ− 1
lim

x→0+

n−1

∑
k=0

ξ2α−2k−1−γx
d

dx
[Bk

γ f (x)], (38)

where
Bα−k

γ,0+ f (0+) = lim
x→+0

Bα−k
γ,0+ f (x).
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Proof. Using (30) and (35) for 0 ≤ γ < 1 we obtain

Kγ[Bα
γ,0+ f ](ξ) = Kγ[(IBn−α

γ,0+Bn
γ f )(x)](ξ) = ξ2α−2nKγ[Bn

γ f ](ξ) = ξ2αKγ[ f ](ξ)

−
n

∑
k=1

ξ2α−2n+2k−1−γBn−k
γ f (0+)−

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) lim
x→0+

n

∑
k=1

ξ2α−2n+2k−2xγ d
dx

[Bn−k
γ f (x)]

= ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+)−

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) lim
x→0+

n−1

∑
k=0

ξ2α−2k−2xγ d
dx

[Bk
γ f (x)],

where we put
lim

x→+0
Bk

γ,0+ f (x) = Bk
γ,0+ f (0+).

Similarly, for γ = 1 we have

Kγ[Bα
γ,0+ f ](ξ) = Kγ[(IBn−α

γ,0+Bn
γ f )(x)](ξ) = ξ2α−2nKγ[Bn

γ f ](ξ) = ξ2αKγ[ f ](ξ)

−
n

∑
k=1

ξ2α−2n+2k−1−γBn−k
γ f (0+) + lim

x→0+

n

∑
k=1

ξ2α−2n+2k−2 ln xξ
d

dx
[Bn−k

γ f (x)]

= ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+) + lim

x→0+

n−1

∑
k=0

ξ2α−2k−2 ln xξ
d

dx
[Bk

γ f (x)]

and for γ > 1
Kγ[Bα

γ,0+ f ](ξ) = Kγ[(IBn−α
γ,0+Bn

γ f )(x)](ξ) = ξ2α−2nKγ[Bn
γ f ](ξ)

= ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+)− 1

γ− 1
lim

x→0+

n−1

∑
k=0

ξ2α−2k−1−γx
d

dx
[Bk

γ f (x)].

Remark 3. Let k ∈ N, d
dx [B

k
γ f (x)] be bounded, the Meijer transform of Bα

γ,0+ f exist, and γ 6= 1, then

Kγ[Bα
γ,0+ f ](ξ) = ξ2αKγ[ f ](ξ)−

n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+). (39)

If d
dx [B

k
γ f (x)] ∼ xβ, β > 0 when x → 0+, then (39) holds for γ = 1.

4. Meijer Transform Method for Solution to Homogeneous Fractional Equation with the
Left-Sided Fractional Bessel Derivatives on Semi-Axes of Gerasimov–Caputo Type

4.1. General Case

Using the Meijer transform method (for general scheme see [33,34]) we will solve the equation

(Bα
γ,0+ f )(x) = λ f (x), α > 0, λ ∈ R (40)

with the left-sided fractional Bessel derivatives on semi-axes of Gerasimov–Caputo type with constant
coefficient when γ 6= 1.

Let m−1
2 < α ≤ m

2 , m ∈ N. To Equation (40) we should add m conditions which are for 0 ≤ γ < 1
of the form

(Bk
γ,0+ f )(0+) = a2k, lim

x→0+
xγ d

dx
Bk

γ,0+ f (x) = a2k+1, a2k, a2k+1 ∈ R. (41)
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For the case when γ > 1 we should consider the conditions

(Bk
γ,0+ f )(0+) = b2k, lim

x→0+
x

d
dx

Bk
γ,0+ f (x) = b2k+1, b2k, b2k+1 ∈ R, (42)

where k ∈ N∪ {0}, such that the following inequalities are true:

0 ≤ 2k ≤ m− 1, 1 ≤ 2k + 1 ≤ m− 2 if m is odd,

and
1 ≤ 2k + 1 ≤ m− 1, 0 ≤ 2k ≤ m− 2 if m is even.

This means that for odd m the last condition is the (Bk
γ,0+ f )(0+) = am−1 or (Bk

γ,0+ f )(0+) = bm−1

and for even m the last condition is the lim
x→0+

xγ d
dx Bk

γ,0+ f (x) = am−1 or lim
x→0+

x d
dx Bk

γ,0+ f (x) = bm−1.

Theorem 5. When 0 ≤ γ < 1 the solution to (40) and (41) is for the case when m is odd

f (x) =
2γΓ

(
γ+1

2

)
√

π

m−1
2

∑
k=0

a2k x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]

+
Γ
(

1−γ
2

)
√

π

m−3
2

∑
k=0

a2k+1 x2k+1−γ
2Ψ2

[ (
k + 3

2 , α
)

, (1, 1)(
k + 3−γ

2 , α
)

, (2k + 2, 2α)

∣∣∣∣∣ λx2α

]
, (43)

here the second sum vanishes if m−3
2 < 0, that is, when m = 1, for the case when m is even

f (x) =
2γΓ

(
γ+1

2

)
√

π

m−2
2

∑
k=0

a2k x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]

+
Γ
(

1−γ
2

)
√

π

m−2
2

∑
k=0

a2k+1 x2k+1−γ
2Ψ2

[ (
k + 3

2 , α
)

, (1, 1)(
k + 3−γ

2 , α
)

, (2k + 2, 2α)

∣∣∣∣∣ λx2α

]
. (44)

When γ > 1 the solution to (40)–(42) is for the case when m is odd

f (x) =
2γΓ

(
γ+1

2

)
√

π

m−1
2

∑
k=0

b2k x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]

+
2γΓ

(
γ+1

2

)
√

π(γ− 1)

m−3
2

∑
k=0

b2k+1 x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]
, (45)

here the second sum vanishes if m−3
2 < 0, that is, when m = 1, for the case when m is even

f (x) =
2γΓ

(
γ+1

2

)
√

π

m−2
2

∑
k=0

b2k x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]

+
2γΓ

(
γ+1

2

)
√

π(γ− 1)

m−2
2

∑
k=0

b2k+1 x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]
. (46)

Here pΨq(z) is the Fox–Wright function (16).
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Proof. First we consider the case when 0 ≤ γ < 1. Applying the Meijer transform (20) to both parts of
(40) and using (36), we obtain

ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+)−

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) lim
x→0+

n−1

∑
k=0

ξ2α−2k−2xγ d
dx

[Bk
γ f (x)] = λKγ[ f ](ξ),

where n ∈ N, n− 1 < α ≤ n. Taking into account conditions (41) we obtain for the case when m is odd

ξ2αKγ[ f ](ξ)−
m−1

2

∑
k=0

a2kξ2α−2k−1−γ −
Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) m−3
2

∑
k=0

a2k+1ξ2α−2k−2 = λKγ[ f ](ξ),

where the second sum vanishes if m−3
2 < 0, that is, when m = 1, for the case when m is even

ξ2αKγ[ f ](ξ)−
m−2

2

∑
k=0

a2kξ2α−2k−1−γ −
Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) m−2
2

∑
k=0

a2k−1ξ2α−2k−2 = λKγ[ f ](ξ).

Therefore, when m is odd

f (x) =

m−1
2

∑
k=0

a2k K−1
γ

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x) +

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) m−3
2

∑
k=0

a2k+1K−1
γ

[
ξ2α−2k−2

ξ2α − λ

]
(x),

and when m is even

f (x) =

m−2
2

∑
k=0

a2k K−1
γ

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x) +

Γ
(

1−γ
2

)
2γΓ

(
γ+1

2

) m−2
2

∑
k=0

a2k+1K−1
γ

[
ξ2α−2k−2

ξ2α − λ

]
(x).

In order to find the explicit expression for f , we use formula (24). First, find the inverse Laplace
transforms taking into account formula (19):

L−1

[
ξ2α−2k−2

ξ2α − λ

]
(x) = x2k+1E2α,2k+2(λx2α),

L−1

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x) = x2k+γE2α,2k+γ+1(λx2α).

Now, find (Pγ
x )
−1xβ−γE2α,β(λx2α). Using (23) we can write

(Pγ
x )
−1xβ−γE2α,β(λx2α) =

2
√

πx

Γ
(

γ+1
2

)
Γ
(

p− γ
2
) ( d

2xdx

)p x∫
0

zβE2α,β(λz2α)(x2 − z2)p− γ
2−1dz,

where p =
[ γ

2
]
+ 1. We have

E2α,β(λz2α) =
∞

∑
m=0

λmz2mα

Γ(2αm + β)

and
x∫

0

zβE2α,β(λz2α)(x2 − z2)p− γ
2−1dz =

∞

∑
m=0

λm

Γ(2αm + β)

x∫
0

z2mα+β(x2 − z2)p− γ
2−1dz
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=
∞

∑
m=0

λm

Γ(2αm + β)

Γ
(

mα + β+1
2

)
Γ
(

p− γ
2
)

2Γ
(

mα + p + β−γ+1
2

) x2mα+2p+β−γ−1.

Therefore,

(Pγ
x )
−1xβ−γE2α,β(λx2α) =

√
πx

Γ
(

γ+1
2

) ( d
2xdx

)p ∞

∑
m=0

λm

Γ(2αm + β)

Γ
(

mα + β+1
2

)
Γ
(

mα + p + β−γ+1
2

) x2mα+2p+β−γ−1.

Using the formula (
d

2xdx

)n
x2µ+2n =

Γ(µ + n + 1)
Γ(µ + 1)

x2µ,

we get

(Pγ
x )
−1xβ−γE2α,β(λx2α) =

√
πxβ−γ

Γ
(

γ+1
2

) ∞

∑
m=0

Γ
(

mα + β+1
2

)
Γ(2αm + β)Γ

(
mα + β−γ+1

2

) (λx2α)m.

Using the Fox–Wright function (16), we can write

(Pγ
x )
−1xβ−γE2α,β(λx2α) =

√
πxβ−γ

Γ
(

γ+1
2

) 2Ψ2

 (
β+1

2 , α
)

, (1, 1)(
β−γ+1

2 , α
)

, (β, 2α)

∣∣∣∣∣∣ λx2α

 .

So,

K−1
γ

[
ξ2α−2k−2

ξ2α − λ

]
(x) =

1
Aγx

(Pγ
x )
−1x1−γ

(
L−1

[
ξ2α−2k−2

ξ2α − λ

])
(x)

=
1

Aγx
(Pγ

x )
−1x2k+2−γE2α,2k+2(λx2α)

=
2γΓ

(
γ+1

2

)
√

π
x2k+1−γ

2Ψ2

[ (
k + 3

2 , α
)

, (1, 1)(
k + 3−γ

2 , α
)

, (2k + 2, 2α)

∣∣∣∣∣ λx2α

]
,

K−1
γ

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x) =

2γΓ
(

γ+1
2

)
√

π
x2k

2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]
. (47)

Then, for the case when m is odd, we get (43) and for the case when m is even (44).
For γ > 1 applying the Meijer transform (20) to both parts of (40) and using (38), we obtain

ξ2αKγ[ f ](ξ)−
n−1

∑
k=0

ξ2α−2k−1−γBk
γ f (0+)− 1

γ− 1
lim

x→0+

n−1

∑
k=0

ξ2α−2k−1−γx
d

dx
[Bk

γ f (x)] = λKγ[ f ](ξ),

where n ∈ N, n− 1 < α ≤ n. Taking into account conditions (42) we get, for the case when m is odd:

f (x) =

m−1
2

∑
k=0

b2k K−1
γ

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x) +

1
γ− 1

m−3
2

∑
k=0

b2k+1K−1
γ

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x).

For the case when m is even:

f (x) =

m−2
2

∑
k=0

b2k K−1
γ

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x) +

1
γ− 1

m−2
2

∑
k=0

b2k+1K−1
γ

[
ξ2α−2k−1−γ

ξ2α − λ

]
(x).
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Therefore, applying (47) we obtain (45) and (46) respectively.

4.2. Particular Cases and Examples

In this subsection first we consider Equation (40) when conditions of Remark 3 are valid. Then, we
give some examples.

Theorem 6. Let k, m ∈ N, m−1
2 < α ≤ m

2 , d
dx [B

k
γ f (x)] be bounded for 0 < γ, γ 6= 1 and d

dx [B
k
γ f (x)] ∼ xβ,

β > 0 when x → 0+. Then, the solution to equation

(Bα
γ,0+ f )(x) = λ f (x), α > 0, λ ∈ R (48)

with m conditions for 0 ≤ γ < 1 of the form

(Bk
γ,0+ f )(0+) = a2k, lim

x→0+
xγ d

dx
Bk

γ,0+ f (x) = 0, (49)

with m conditions for γ = 1 of the form

(Bk
γ,0+ f )(0+) = a2k, lim

x→0+
ln xξ

d
dx

[Bk
γ f (x)] = 0, (50)

with m conditions for γ > 1 of the form

(Bk
γ,0+ f )(0+) = a2k, lim

x→0+
x

d
dx

Bk
γ,0+ f (x) = 0, (51)

where a2k ∈ R, k ∈ N∪ {0}, such that the following inequalities are true:

0 ≤ 2k ≤ m− 1, 1 ≤ 2k + 1 ≤ m− 2 if m is odd,

and
1 ≤ 2k + 1 ≤ m− 1, 0 ≤ 2k ≤ m− 2 if m is even.

When m = 1 it is f (x) = 0, for the case of odd m ≥ 3 it is

f (x) =
2γΓ

(
γ+1

2

)
√

π

m−1
2

∑
k=0

a2k x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]
, (52)

and for the case of even m it is

f (x) =
2γΓ

(
γ+1

2

)
√

π

m−2
2

∑
k=0

a2k x2k
2Ψ2

[ (
k + 1 + γ

2 , α
)

, (1, 1)
(k + 1, α) , (2k + γ + 1, 2α)

∣∣∣∣∣ λx2α

]
. (53)

Here pΨq(z) is the Fox–Wright function (16).

Example 1. Consider the general case of the problem (40) and (41) when 0 < α ≤ 1
2 , 0 ≤ γ < 1. In this case

m = 1, 2k = 0, and using (43) we obtain that the solution to the problem

(Bα
γ,0+ f )(x) = λ f (x), α > 0, λ ∈ R,

f (0+) = a0, a1 ∈ R
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is

f (x) =
2γΓ

(
γ+1

2

)
√

π
a0 2Ψ2

[ (
1 + γ

2 , α
)

, (1, 1)
(1, α) , (γ + 1, 2α)

∣∣∣∣∣ λx2α

]
. (54)

It is easy to see that for γ > 1 the solution has the same form when 0 < α ≤ 1
2 . In Figure 1 we present

plots of f for γ = 1
3 and for γ = 5 when α = 1

2 , λ = 1.

Figure 1. Solutions (54) for γ = 1/3 and γ = 5.

When γ = 0 we obtain

( CD2α
0+ f )(x) = λ f (x), 0 < 2α ≤ 1, λ ∈ R,

f (0+) = a1, a1 ∈ R

and using (17) we obtain

f (x) = a0 2Ψ2

[
(1, α) , (1, 1)
(1, α) , (1, 2α)

∣∣∣∣∣ λx2α

]
= a0 1Ψ1

[
(1, 1)
(1, 2α)

∣∣∣∣∣ λx2α

]
= a0 E2α,1(λx2α),

which coincides with (5) if l = 1 and 2α is taken instead of α.

Example 2. Consider the case presented in Theorem 6 when α = 1, b0 = 1, λ = −1. In this case m = 2,
2k = 0, and 2k + 1 = 1, which means k = 0 and using (53) we obtain that the solution to the problem

Bγ f (x) = − f (x), λ ∈ R,

f (0+) = 1, f ′(0+) = 0

is

f (x) =
2γΓ

(
γ+1

2

)
√

π
2Ψ2

[ (
1 + γ

2 , 1
)

, (1, 1)
(1, 1) , (γ + 1, 2)

∣∣∣∣∣− x2

]
=

2γΓ
(

γ+1
2

)
√

π
2Ψ2

[ (
1 + γ

2 , 1
)

(γ + 1, 2)

∣∣∣∣∣− x2

]

=
2γΓ

(
γ+1

2

)
√

π

∞

∑
m=0

(−1)mΓ
(
1 + γ

2 + m
)

Γ (γ + 1 + 2m)

x2m

m!
.
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Using the Legendre duplication formula

Γ(2z) =
22z−1
√

π
Γ(z)Γ

(
z +

1
2

)
we obtain

f (x) = 2γΓ
(

γ + 1
2

) ∞

∑
m=0

(−1)mΓ
(
1 + γ

2 + m
)

2γ+2mΓ
(
1 + γ

2 + m
)

Γ
(

γ+1
2 + m

) x2m

m!

=
2

γ−1
2 Γ

(
γ+1

2

)
x

γ−1
2

∞

∑
m=0

(−1)m

Γ
(

γ+1
2 + m

) 1
m!

( x
2

)2m+ γ−1
2

= j γ−1
2
(x), (55)

where

jν(x) =
2νΓ(ν + 1)

xν
Jν(x).

For j γ−1
2
(x) we have

Bγ j γ−1
2
(τx) = −τ2 j γ−1

2
(τx).

Therefore the function

2Ψ2

[ (
1 + γ

2 , α
)

, (1, 1)
(1, α) , (γ + 1, 2α)

∣∣∣∣∣ λx2α

]
can be considered as a generalization of j γ−1

2
.

5. Conclusions

In this paper, a new approach is proposed in order to solve ordinary differential equations with
left-sided fractional Bessel derivatives on semi-axes of Gerasimov–Caputo type based on the Meijer
integral transform method. We also presented some illustrative examples.
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