Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme
Abstract
:1. Introduction
2. Model Description and Notations
3. The MLE, MPS, and Bayesian Estimation Methods under PTIICS
3.1. MLE Method
3.2. MPS Method
3.3. Bayesian Estimation
4. Simulation Study
- ▪
- We define set .
- ▪
- We set .
- ▪
- We generate WE distributed based on PTIICS as follows:
- (1)
- Start with a near value of the true value as initial values satisfying .
- (2)
- Jacobian matrix defined over the function vector can be defined as:
- (3)
- The root can be found improved iteratively as the following:
- (4)
- Repeat these steps times as 10,000 to get an estimator of .
- (1)
- Start with any initial values satisfying .
- (2)
- Choose a candidate point based on the initial value from the proposal as normal with mean and variance is ).
- (3)
- Calculate the acceptance rate , for = 0 to N (a big number such as 10,000, for example), given the candidate point , .
- (4)
- Draw a value of u from the uniform (0, 1) distribution .
- (5)
- Steps 2–4 should be repeated times more until we have draws.
- (6)
- For the squared error loss function, the Bayes approximation of is used .
- (7)
- To get a Bayesian approximation of repeat these steps times.
Concluding Remarks on the Simulation
- Table 1, Table 2 and Table 3 show the simulation effects. Based on these Tables, the following concluding remarks have been made: Case-I: (β = 0.5, λ = 0.5, δ = 0.5).
- ▪
- At fixed values of p and r, the bias decreases for three estimations as increases.
- ▪
- The most accurate method is MLE, as it has a minimum square error (MSE).
- Case II: (β = 0.5, λ = 3, δ = 0.5).
- ▪
- As increase, the bias decreases for MLE, MPS, and Bayesian measures.
- ▪
- The Bayesian estimation method represents the most accurate method because it has a MSE less than the others.
- Case III: (β = 1.5, λ = 3, δ = 2).
- ▪
- The bias decreases as the sample size increases and the most accurate method is the Bayesian measure.
- ▪
- We find that Bayesian estimators are more reliable than MLE and MPS estimators in the vast majority of cases.
5. Transformer Insulation Application
Modified Kolmogorov–Smirnov Algorithm for Censored Data Fitting
- (1)
- Estimate the parameters of WE distribution based on PTIICS.
- (2)
- Calculate the statistic of the MKS test as the following:
- (3)
- By using the statistic of MKS test and sample size, we calculate the p-Value of this test.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science Business Media: Berlin/Heidelberg, Germany; Birkhauser Boston: Cambridge, MA, USA, 2000. [Google Scholar]
- Balakrishnan, N. Progressive censoring methodology: An appraisal. Test 2007, 16, 211. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Almongy, H.M. Maximum product spacing and Bayesian method for parameter estimation for generalized power Weibull distribution under censoring scheme. J. Data Sci. 2019, 17, 407–444. [Google Scholar] [CrossRef]
- Hashem, A.F.; Alyami, S.A. Inference on a New Lifetime Distribution under Progressive Type-II Censoring for a Parallel-Series Structure. Complexity 2021, 2021, 88–89. [Google Scholar] [CrossRef]
- Abu-Moussa, M.H.; Abd-Elfattah, A.M.; Hafez, E.H. Estimation of Stress-Strength Parameter for Rayleigh Distribution Based on Progressive Type-II Censoring. Inf. Sci. Lett. 2021, 10, 101–110. [Google Scholar]
- Chen, S.; Gui, W. Estimation of Unknown Parameters of Truncated Normal Distribution under Adaptive Progressive Type-II Censoring Scheme. Mathematics 2021, 9, 49. [Google Scholar]
- Mahto, A.K.; Tripathi, Y.M.; Wu, S.J. Statistical inference based on progressively type-II censored data from the Burr X distribution under progressive-stress accelerated life test. J. Stat. Comput. Simul. 2021, 91, 368–382. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Sabry, M.A.; Alharbi, R.; Alnagar, D.; Mubarak, S.A.; Hafez, E.H. Marshall-Olkin Alpha Power Weibull Distribution: Different Methods of Estimation Based on Type-I and Type-II Censoring. Complexity 2021, 2021, 440–445. [Google Scholar] [CrossRef]
- Abd El-Raheem, A.M.; Almetwally, E.M.; Mohamed, M.S.; Hafez, E.H. Accelerated life tests for modified Kies exponential lifetime distribution: Binomial removal, transformers turn insulation application and numerical results. AIMS Math. 2021, 6, 5222–5255. [Google Scholar] [CrossRef]
- Almongy, H.M.; Almetwally, E.M.; Alharbi, R.; Alnagar, D.; Hafez, E.H.; El-Din, M.M.M. The Weibull Generalized Exponential Distribution with Censored Sample: Estimation and Application on Real Data. Complexity 2021, 2021, 73–85. [Google Scholar] [CrossRef]
- Yuen, H.K.; Tse, S.K. Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals. J. Stat. Comput. Simul. 1996, 55, 57–71. [Google Scholar] [CrossRef]
- Tse, S.K.; Yang, C.; Yuen, H.K. Statistical analysis of Weibull distributed lifetime data under Type II progressive censoring with binomial removals. J. Appl. Stat. 2000, 27, 1033–1043. [Google Scholar] [CrossRef]
- Ashour, S.K.; El-Sheikh, A.A.; Elshahhat, A. Inferences for Weibull parameters under progressively first-failure censored data with binomial random removals. Stat. Optim. Inf. Comput. 2021, 9, 47–60. [Google Scholar] [CrossRef]
- Alshenawy, R.; Al-Alwan, A.; Almetwally, E.M.; Afify, A.Z.; Almongy, H.M. Progressive type-II censoring schemes of extended odd Weibull exponential distribution with applications in medicine and engineering. Mathematics 2020, 8, 1679. [Google Scholar] [CrossRef]
- Ghahramani, M.; Sharafi, M.; Hashemi, R. Analysis of the progressively Type-II right censored data with dependent random removals. J. Stat. Comput. Simul. 2020, 90, 1001–1021. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Z. Estimation and application for a new extended Weibull distribution. Reliab. Eng. Syst. Saf. 2014, 121, 34–42. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Xie, M.; Tang, Y.; Goh, T.N. A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 2002, 76, 279–285. [Google Scholar] [CrossRef]
- Murthy, D.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 505. [Google Scholar]
- Pham, H.; Lai, C.D. On recent generalizations of the Weibull distribution. IEEE Trans. Reliab. 2007, 56, 454–458. [Google Scholar] [CrossRef]
- Bebbington, M.; Lai, C.D.; Zitikis, R. A flexible Weibull extension. Reliab. Eng. Syst. Saf. 2007, 92, 719–726. [Google Scholar] [CrossRef]
- Nadarajah, S.; Cordeiro, G.M.; Ortega, E.M. General results for the beta-modified Weibull distribution. J. Stat. Comput. Simul. 2011, 81, 1211–1232. [Google Scholar] [CrossRef]
- Singla, N.; Jain, K.; Sharma, S.K. The beta generalized Weibull distribution: Properties and applications. Reliab. Eng. Syst. Saf. 2012, 102, 5–15. [Google Scholar] [CrossRef]
- Yong, T. Extended Weibull Distributions in Reliability Engineering. Bachelor’s Thesis, University of Science & Technology of China, Shenzhen, China, 2004. [Google Scholar]
- Cheng, R.; Amin, N. Maximum Product of Spacings Estimation with Application to the Lognormal Distribution; Mathematical Report 79-1; University of Wales IST: Cardiff, UK, 1979. [Google Scholar]
- Ranneby, B. The maximum spacing method. An estimation method related to the maximum likelihood method. Scand. J. Stat. 1984, 4, 93–112. [Google Scholar]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Berndt, E.R.; Hall, B.H.; Hall, R.E.; Hausman, J.A. Estimation and inference in nonlinear structural models. Ann. Econ. Soc. Meas. 1974, 3, 653–665. [Google Scholar]
- El-Bassiouny, A.H.; Abdo, N.F.; Shahen, H.S. Exponential lomax distribution. Int. J. Comput. Appl. 2015, 121, 24–29. [Google Scholar]
- Tahir, M.H.; Cordeiro, G.M.; Mansoor, M.; Zubair, M. The Weibull-Lomax distribution: Properties and applications. Hacet. J. Math. Stat. 2015, 44, 455–474. [Google Scholar] [CrossRef]
- Baharith, L.A.; Al-Beladi, K.M.; Klakattawi, H.S. The Odds Exponential-Pareto IV Distribution: Regression Model and Application. Entropy 2020, 22, 497. [Google Scholar] [CrossRef]
- Nelson, W. Accelerated Testing: Statistical Models, Test Plans and Data Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Pakyari, R.; Balakrishnan, N. A general-purpose approximate goodness-of-fit test for progressively type-II censored data. IEEE Trans. Reliab. 2012, 61, 238–244. [Google Scholar] [CrossRef]
MLE | MPS | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|
Bias | MSE | Bias | MSE | Bias | MSE | ||||
40 | 0.35 | 0.7 | 0.0485 | 0.0179 | −0.0362 | 0.0111 | 0.0255 | 0.0081 | |
0.2746 | 0.6071 | 0.0384 | 0.3387 | 0.2636 | 0.2552 | ||||
0.0275 | 0.0248 | 0.0991 | 0.0441 | 0.0560 | 0.0833 | ||||
0.9 | 0.0454 | 0.0169 | −0.0276 | 0.0096 | 0.0180 | 0.0069 | |||
0.2814 | 0.5521 | 0.0395 | 0.2556 | 0.2307 | 0.2171 | ||||
0.0220 | 0.0237 | 0.0844 | 0.0402 | 0.0616 | 0.0704 | ||||
0.85 | 0.7 | 0.0570 | 0.0227 | −0.0300 | 0.0118 | 0.0294 | 0.0090 | ||
0.3117 | 0.7236 | 0.0548 | 0.3498 | 0.2818 | 0.2742 | ||||
0.0330 | 0.0298 | 0.0961 | 0.0475 | 0.0539 | 0.0779 | ||||
0.9 | 0.0505 | 0.0171 | −0.0290 | 0.0092 | 0.0289 | 0.0088 | |||
0.2812 | 0.5694 | 0.0357 | 0.2620 | 0.2779 | 0.2662 | ||||
0.0185 | 0.0225 | 0.0811 | 0.0369 | 0.0504 | 0.0197 | ||||
80 | 0.35 | 0.7 | 0.0405 | 0.0107 | −0.0154 | 0.0075 | 0.0256 | 0.0065 | |
0.2324 | 0.3464 | 0.0824 | 0.3567 | 0.2566 | 0.2403 | ||||
0.0067 | 0.0122 | 0.0540 | 0.0216 | 0.0391 | 0.0993 | ||||
0.9 | 0.0258 | 0.0063 | −0.0159 | 0.0050 | 0.0247 | 0.0058 | |||
0.1418 | 0.1961 | 0.0420 | 0.1529 | 0.2561 | 0.2287 | ||||
0.0007 | 0.0087 | 0.0398 | 0.0135 | 0.0331 | 0.0139 | ||||
0.85 | 0.7 | 0.0362 | 0.0102 | −0.0190 | 0.0064 | 0.0275 | 0.0060 | ||
0.2230 | 0.3475 | 0.0520 | 0.1986 | 0.2635 | 0.2307 | ||||
0.0080 | 0.0125 | 0.0526 | 0.0207 | 0.0401 | 0.0409 | ||||
0.9 | 0.0265 | 0.0065 | −0.0166 | 0.0048 | 0.0209 | 0.0058 | |||
0.1518 | 0.2257 | 0.0371 | 0.1436 | 0.2349 | 0.2177 | ||||
0.0006 | 0.0087 | 0.0400 | 0.0147 | 0.0273 | 0.0122 | ||||
150 | 0.35 | 0.7 | 0.0001 | 0.0030 | −0.0313 | 0.0035 | 0.0022 | 0.0024 | |
0.0769 | 0.1166 | −0.0652 | 0.0486 | 0.0723 | 0.0419 | ||||
0.0155 | 0.0072 | 0.0506 | 0.0113 | 0.0215 | 0.0058 | ||||
0.9 | 0.0118 | 0.0025 | −0.0239 | 0.0040 | 0.0223 | 0.0020 | |||
0.0064 | 0.0555 | −0.0333 | 0.0646 | 0.0052 | 0.0419 | ||||
0.0157 | 0.0072 | 0.0528 | 0.0126 | 0.0237 | 0.0063 | ||||
0.85 | 0.7 | 0.0089 | 0.0039 | −0.0350 | 0.0038 | 0.0193 | 0.0045 | ||
0.0481 | 0.0748 | −0.0517 | 0.0528 | 0.0420 | 0.0616 | ||||
0.0224 | 0.0077 | 0.0597 | 0.0128 | 0.0350 | 0.0158 | ||||
0.9 | −0.0035 | 0.0031 | −0.0258 | 0.0036 | 0.0145 | 0.0038 | |||
−0.0027 | 0.0554 | −0.0750 | 0.0498 | 0.0019 | 0.0500 | ||||
0.0116 | 0.0074 | 0.0481 | 0.0117 | 0.0255 | 0.0077 |
MLE | MPS | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|
n | P | Bias | MSE | Bias | MSE | Bias | MSE | ||
40 | 0.35 | 0.7 | 0.0243 | 0.0111 | −0.0364 | 0.0102 | 0.0249 | 0.0102 | |
0.1793 | 0.3713 | 0.0892 | 0.2872 | 0.1758 | 0.1832 | ||||
0.3327 | 0.6297 | 0.0959 | 0.4470 | 0.3181 | 0.5902 | ||||
0.9 | 0.0127 | 0.0090 | −0.0413 | 0.0093 | 0.0125 | 0.0084 | |||
0.1291 | 0.2934 | 0.0566 | 0.2498 | 0.1591 | 0.1553 | ||||
0.2610 | 0.4664 | 0.0870 | 0.3440 | 0.2313 | 0.4577 | ||||
0.85 | 0.7 | 0.0214 | 0.0106 | −0.0419 | 0.0102 | 0.0206 | 0.0103 | ||
0.2049 | 0.4064 | 0.0872 | 0.2849 | 0.1776 | 0.2018 | ||||
0.2606 | 0.6208 | 0.0578 | 0.4352 | 0.2327 | 0.5862 | ||||
0.9 | 0.0148 | 0.0089 | −0.0394 | 0.0087 | 0.0126 | 0.0081 | |||
0.1476 | 0.3701 | 0.0609 | 0.2406 | 0.1694 | 0.1675 | ||||
0.3089 | 0.5408 | 0.1218 | 0.3979 | 0.2318 | 0.5169 | ||||
80 | 0.35 | 0.7 | 0.0104 | 0.0048 | −0.0286 | 0.0049 | 0.0125 | 0.0049 | |
0.0786 | 0.1149 | 0.0335 | 0.1282 | 0.1540 | 0.1142 | ||||
0.1184 | 0.1690 | −0.0084 | 0.1619 | 0.1125 | 0.1493 | ||||
0.9 | 0.0101 | 0.0042 | −0.0230 | 0.0042 | 0.0165 | 0.0014 | |||
0.0812 | 0.1359 | 0.0551 | 0.1402 | 0.1456 | 0.1023 | ||||
0.1211 | 0.2066 | 0.0055 | 0.2113 | 0.0874 | 0.1516 | ||||
0.85 | 0.7 | 0.0073 | 0.0045 | −0.0309 | 0.0048 | 0.0064 | 0.0042 | ||
0.0550 | 0.1152 | 0.0011 | 0.0887 | 0.0553 | 0.1136 | ||||
0.1376 | 0.1928 | 0.0148 | 0.1641 | 0.1259 | 0.1419 | ||||
0.9 | 0.0095 | 0.0043 | −0.0235 | 0.0044 | 0.0124 | 0.0036 | |||
0.0785 | 0.1432 | 0.0601 | 0.1574 | 0.1553 | 0.1309 | ||||
0.1474 | 0.2233 | 0.0369 | 0.2471 | 0.1378 | 0.2139 | ||||
150 | 0.35 | 0.7 | 0.0047 | 0.0036 | −0.0181 | 0.0036 | 0.0118 | 0.0022 | |
0.0871 | 0.1645 | 0.0707 | 0.1559 | 0.1526 | 0.1088 | ||||
0.1514 | 0.2731 | 0.0338 | 0.2339 | 0.1231 | 0.2235 | ||||
0.9 | 0.0059 | 0.0029 | −0.0138 | 0.0029 | 0.0052 | 0.0027 | |||
0.0549 | 0.0967 | 0.0469 | 0.0994 | 0.0530 | 0.0911 | ||||
0.1018 | 0.1592 | 0.0110 | 0.1514 | 0.0651 | 0.1495 | ||||
0.85 | 0.7 | 0.0051 | 0.0036 | −0.0187 | 0.0036 | 0.0110 | 0.0016 | ||
0.0877 | 0.1775 | 0.0598 | 0.1429 | 0.1394 | 0.0960 | ||||
0.1636 | 0.3036 | 0.0571 | 0.2555 | 0.0944 | 0.1697 | ||||
0.9 | 0.0048 | 0.0026 | −0.0152 | 0.0026 | 0.0097 | 0.0014 | |||
0.0615 | 0.1021 | 0.0475 | 0.0972 | 0.0615 | 0.1005 | ||||
0.1015 | 0.1590 | 0.0126 | 0.1412 | 0.0645 | 0.1399 |
MLE | MPS | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|
Bias | MSE | Bias | MSE | Bias | MSE | ||||
40 | 0.35 | 0.7 | −0.5497 | 0.3836 | −0.6783 | 0.5332 | −0.2996 | 0.2667 | |
0.0599 | 0.6490 | 0.4187 | 1.1561 | 0.0714 | 0.5328 | ||||
−0.4922 | 2.0313 | −0.6567 | 1.6827 | 0.3910 | 1.6708 | ||||
0.9 | −0.5427 | 0.3638 | −0.6537 | 0.4860 | −0.3801 | 0.2601 | |||
0.1304 | 0.5611 | 0.4817 | 1.1228 | 0.1788 | 0.5314 | ||||
−0.4362 | 1.4600 | −0.5660 | 1.2457 | 0.3983 | 1.2528 | ||||
0.85 | 0.7 | −0.5542 | 0.3870 | −0.6916 | 0.5509 | −0.3093 | 0.3584 | ||
0.0814 | 0.6626 | 0.3886 | 1.0518 | 0.0693 | 0.6099 | ||||
−0.4406 | 2.0692 | −0.6768 | 1.6793 | 0.3972 | 1.8453 | ||||
0.9 | −0.5416 | 0.3548 | −0.6503 | 0.4741 | −0.3544 | 0.2918 | |||
0.0988 | 0.5114 | 0.4223 | 0.8654 | 0.7015 | 0.4304 | ||||
−0.4652 | 1.3601 | −0.5832 | 1.1464 | 0.3960 | 1.3386 | ||||
80 | 0.35 | 0.7 | −0.5099 | 0.2962 | −0.5944 | 0.3958 | −0.3887 | 0.2053 | |
0.3345 | 1.0292 | 0.5848 | 1.3470 | 0.5289 | 0.9436 | ||||
−0.1545 | 1.5175 | −0.2212 | 1.4993 | 0.1451 | 1.4036 | ||||
0.9 | −0.5378 | 0.3297 | −0.6098 | 0.4146 | −0.3443 | 0.1335 | |||
0.2605 | 0.6336 | 0.4644 | 0.9831 | 0.4972 | 0.4894 | ||||
−0.2495 | 1.7326 | −0.3210 | 1.7723 | 0.4138 | 0.6623 | ||||
0.85 | 0.7 | −0.5192 | 0.3103 | −0.6020 | 0.4093 | −0.3956 | 0.2171 | ||
0.3266 | 1.0126 | 0.5811 | 1.2406 | 0.5269 | 0.9766 | ||||
−0.1750 | 1.3149 | −0.2319 | 1.2915 | 0.1481 | 1.0331 | ||||
0.9 | −0.5396 | 0.3328 | −0.6143 | 0.4206 | −0.3500 | 0.1380 | |||
0.2550 | 0.6232 | 0.4450 | 0.9522 | 0.4777 | 0.4639 | ||||
−0.2393 | 1.5072 | −0.3334 | 1.5011 | 0.3980 | 0.5812 | ||||
150 | 0.35 | 0.7 | −0.5348 | 0.3067 | −0.5768 | 0.3547 | −0.3472 | 0.1266 | |
0.3727 | 0.6694 | 0.6010 | 1.0084 | 0.4804 | 0.3729 | ||||
−0.1878 | 1.0275 | −0.1535 | 0.9948 | 0.3887 | 0.3622 | ||||
0.9 | −0.5330 | 0.3047 | −0.5758 | 0.3522 | −0.3491 | 0.1266 | |||
0.3370 | 0.4859 | 0.4757 | 0.6912 | 0.4440 | 0.2941 | ||||
−0.2145 | 1.0034 | −0.2608 | 0.8461 | 0.3328 | 0.2870 | ||||
0.85 | 0.7 | −0.5369 | 0.3141 | −0.5788 | 0.3616 | −0.3492 | 0.1316 | ||
0.3512 | 0.6997 | 0.5762 | 1.0099 | 0.4793 | 0.4096 | ||||
−0.2149 | 1.1353 | −0.1830 | 1.0236 | 0.3684 | 0.3695 | ||||
0.9 | −0.5296 | 0.3047 | −0.5712 | 0.3503 | −0.3468 | 0.1257 | |||
0.3317 | 0.4795 | 0.4687 | 0.6350 | 0.4521 | 0.3033 | ||||
−0.1923 | 0.9853 | −0.2298 | 0.8792 | 0.3693 | 0.3599 |
Estimate | SE | MKS | p-Value | AIC | CAIC | BIC | HQIC | ||
---|---|---|---|---|---|---|---|---|---|
WE | 0.6036 | 0.5544 | 0.1959 | 0.8781 | 82.8207 | 86.8207 | 83.7285 | 81.8249 | |
6.2752 | 2.5001 | ||||||||
0.0101 | 0.0067 | ||||||||
EOW | 6.5449 | 1.4012 | 0.2222 | 0.6875 | 84.8511 | 88.8511 | 85.7589 | 83.8554 | |
177.485 | 81.911 | ||||||||
0.8495 | 0.5044 | ||||||||
EL | 0.8052 | 0.3521 | 0.2100 | 0.7489 | 87.6515 | 91.6514 | 88.5592 | 86.6556 | |
4586.43 | 2353.71 | ||||||||
244528.8 | 478.18 | ||||||||
WL | 0.0825 | 0.1722 | 0.2077 | 0.7603 | 84.5729 | 92.5729 | 85.7832 | 83.2451 | |
0.4638 | 0.5413 | ||||||||
9.5017 | 21.3157 | ||||||||
46.3998 | 15.2160 | ||||||||
OEPIV | 0.0501 | 0.1581 | 0.2083 | 0.7576 | 85.0030 | 93.0030 | 86.2133 | 83.6752 | |
1.4749 | 1.0947 | ||||||||
7.2827 | 12.6281 | ||||||||
90.9410 | 318.669 |
MLE | MPS | Bayesian | ||||
---|---|---|---|---|---|---|
Estimate | SE | Estimate | SE | Estimate | SE | |
0.6036 | 0.5544 | 0.3756 | 0.3317 | 0.5386 | 0.1052 | |
6.2752 | 2.5001 | 1.2778 | 6.8847 | 7.0800 | 0.5654 | |
0.0101 | 0.0067 | 0.0243 | 0.0532 | 0.0153 | 0.0066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almongy, H.M.; Alshenawy, F.Y.; Almetwally, E.M.; Abdo, D.A. Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme. Axioms 2021, 10, 100. https://doi.org/10.3390/axioms10020100
Almongy HM, Alshenawy FY, Almetwally EM, Abdo DA. Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme. Axioms. 2021; 10(2):100. https://doi.org/10.3390/axioms10020100
Chicago/Turabian StyleAlmongy, Hisham M., Fatma Y. Alshenawy, Ehab M. Almetwally, and Doaa A. Abdo. 2021. "Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme" Axioms 10, no. 2: 100. https://doi.org/10.3390/axioms10020100
APA StyleAlmongy, H. M., Alshenawy, F. Y., Almetwally, E. M., & Abdo, D. A. (2021). Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme. Axioms, 10(2), 100. https://doi.org/10.3390/axioms10020100