Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme
Abstract
1. Introduction
2. Model Description and Notations
3. The MLE, MPS, and Bayesian Estimation Methods under PTIICS
3.1. MLE Method
3.2. MPS Method
3.3. Bayesian Estimation
4. Simulation Study
- ▪
- We define set .
- ▪
- We set .
- ▪
- We generate WE distributed based on PTIICS as follows:
- (1)
- Start with a near value of the true value as initial values satisfying .
- (2)
- Jacobian matrix defined over the function vector can be defined as:
- (3)
- The root can be found improved iteratively as the following:
- (4)
- Repeat these steps times as 10,000 to get an estimator of .
- (1)
- Start with any initial values satisfying .
- (2)
- Choose a candidate point based on the initial value from the proposal as normal with mean and variance is ).
- (3)
- Calculate the acceptance rate , for = 0 to N (a big number such as 10,000, for example), given the candidate point , .
- (4)
- Draw a value of u from the uniform (0, 1) distribution .
- (5)
- Steps 2–4 should be repeated times more until we have draws.
- (6)
- For the squared error loss function, the Bayes approximation of is used .
- (7)
- To get a Bayesian approximation of repeat these steps times.
Concluding Remarks on the Simulation
- Table 1, Table 2 and Table 3 show the simulation effects. Based on these Tables, the following concluding remarks have been made: Case-I: (β = 0.5, λ = 0.5, δ = 0.5).
- ▪
- At fixed values of p and r, the bias decreases for three estimations as increases.
- ▪
- The most accurate method is MLE, as it has a minimum square error (MSE).
- Case II: (β = 0.5, λ = 3, δ = 0.5).
- ▪
- As increase, the bias decreases for MLE, MPS, and Bayesian measures.
- ▪
- The Bayesian estimation method represents the most accurate method because it has a MSE less than the others.
- Case III: (β = 1.5, λ = 3, δ = 2).
- ▪
- The bias decreases as the sample size increases and the most accurate method is the Bayesian measure.
- ▪
- We find that Bayesian estimators are more reliable than MLE and MPS estimators in the vast majority of cases.
5. Transformer Insulation Application
Modified Kolmogorov–Smirnov Algorithm for Censored Data Fitting
- (1)
- Estimate the parameters of WE distribution based on PTIICS.
- (2)
- Calculate the statistic of the MKS test as the following:
- (3)
- By using the statistic of MKS test and sample size, we calculate the p-Value of this test.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science Business Media: Berlin/Heidelberg, Germany; Birkhauser Boston: Cambridge, MA, USA, 2000. [Google Scholar]
- Balakrishnan, N. Progressive censoring methodology: An appraisal. Test 2007, 16, 211. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Almongy, H.M. Maximum product spacing and Bayesian method for parameter estimation for generalized power Weibull distribution under censoring scheme. J. Data Sci. 2019, 17, 407–444. [Google Scholar] [CrossRef]
- Hashem, A.F.; Alyami, S.A. Inference on a New Lifetime Distribution under Progressive Type-II Censoring for a Parallel-Series Structure. Complexity 2021, 2021, 88–89. [Google Scholar] [CrossRef]
- Abu-Moussa, M.H.; Abd-Elfattah, A.M.; Hafez, E.H. Estimation of Stress-Strength Parameter for Rayleigh Distribution Based on Progressive Type-II Censoring. Inf. Sci. Lett. 2021, 10, 101–110. [Google Scholar]
- Chen, S.; Gui, W. Estimation of Unknown Parameters of Truncated Normal Distribution under Adaptive Progressive Type-II Censoring Scheme. Mathematics 2021, 9, 49. [Google Scholar]
- Mahto, A.K.; Tripathi, Y.M.; Wu, S.J. Statistical inference based on progressively type-II censored data from the Burr X distribution under progressive-stress accelerated life test. J. Stat. Comput. Simul. 2021, 91, 368–382. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Sabry, M.A.; Alharbi, R.; Alnagar, D.; Mubarak, S.A.; Hafez, E.H. Marshall-Olkin Alpha Power Weibull Distribution: Different Methods of Estimation Based on Type-I and Type-II Censoring. Complexity 2021, 2021, 440–445. [Google Scholar] [CrossRef]
- Abd El-Raheem, A.M.; Almetwally, E.M.; Mohamed, M.S.; Hafez, E.H. Accelerated life tests for modified Kies exponential lifetime distribution: Binomial removal, transformers turn insulation application and numerical results. AIMS Math. 2021, 6, 5222–5255. [Google Scholar] [CrossRef]
- Almongy, H.M.; Almetwally, E.M.; Alharbi, R.; Alnagar, D.; Hafez, E.H.; El-Din, M.M.M. The Weibull Generalized Exponential Distribution with Censored Sample: Estimation and Application on Real Data. Complexity 2021, 2021, 73–85. [Google Scholar] [CrossRef]
- Yuen, H.K.; Tse, S.K. Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals. J. Stat. Comput. Simul. 1996, 55, 57–71. [Google Scholar] [CrossRef]
- Tse, S.K.; Yang, C.; Yuen, H.K. Statistical analysis of Weibull distributed lifetime data under Type II progressive censoring with binomial removals. J. Appl. Stat. 2000, 27, 1033–1043. [Google Scholar] [CrossRef]
- Ashour, S.K.; El-Sheikh, A.A.; Elshahhat, A. Inferences for Weibull parameters under progressively first-failure censored data with binomial random removals. Stat. Optim. Inf. Comput. 2021, 9, 47–60. [Google Scholar] [CrossRef]
- Alshenawy, R.; Al-Alwan, A.; Almetwally, E.M.; Afify, A.Z.; Almongy, H.M. Progressive type-II censoring schemes of extended odd Weibull exponential distribution with applications in medicine and engineering. Mathematics 2020, 8, 1679. [Google Scholar] [CrossRef]
- Ghahramani, M.; Sharafi, M.; Hashemi, R. Analysis of the progressively Type-II right censored data with dependent random removals. J. Stat. Comput. Simul. 2020, 90, 1001–1021. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Z. Estimation and application for a new extended Weibull distribution. Reliab. Eng. Syst. Saf. 2014, 121, 34–42. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Xie, M.; Tang, Y.; Goh, T.N. A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 2002, 76, 279–285. [Google Scholar] [CrossRef]
- Murthy, D.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 505. [Google Scholar]
- Pham, H.; Lai, C.D. On recent generalizations of the Weibull distribution. IEEE Trans. Reliab. 2007, 56, 454–458. [Google Scholar] [CrossRef]
- Bebbington, M.; Lai, C.D.; Zitikis, R. A flexible Weibull extension. Reliab. Eng. Syst. Saf. 2007, 92, 719–726. [Google Scholar] [CrossRef]
- Nadarajah, S.; Cordeiro, G.M.; Ortega, E.M. General results for the beta-modified Weibull distribution. J. Stat. Comput. Simul. 2011, 81, 1211–1232. [Google Scholar] [CrossRef]
- Singla, N.; Jain, K.; Sharma, S.K. The beta generalized Weibull distribution: Properties and applications. Reliab. Eng. Syst. Saf. 2012, 102, 5–15. [Google Scholar] [CrossRef]
- Yong, T. Extended Weibull Distributions in Reliability Engineering. Bachelor’s Thesis, University of Science & Technology of China, Shenzhen, China, 2004. [Google Scholar]
- Cheng, R.; Amin, N. Maximum Product of Spacings Estimation with Application to the Lognormal Distribution; Mathematical Report 79-1; University of Wales IST: Cardiff, UK, 1979. [Google Scholar]
- Ranneby, B. The maximum spacing method. An estimation method related to the maximum likelihood method. Scand. J. Stat. 1984, 4, 93–112. [Google Scholar]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Berndt, E.R.; Hall, B.H.; Hall, R.E.; Hausman, J.A. Estimation and inference in nonlinear structural models. Ann. Econ. Soc. Meas. 1974, 3, 653–665. [Google Scholar]
- El-Bassiouny, A.H.; Abdo, N.F.; Shahen, H.S. Exponential lomax distribution. Int. J. Comput. Appl. 2015, 121, 24–29. [Google Scholar]
- Tahir, M.H.; Cordeiro, G.M.; Mansoor, M.; Zubair, M. The Weibull-Lomax distribution: Properties and applications. Hacet. J. Math. Stat. 2015, 44, 455–474. [Google Scholar] [CrossRef]
- Baharith, L.A.; Al-Beladi, K.M.; Klakattawi, H.S. The Odds Exponential-Pareto IV Distribution: Regression Model and Application. Entropy 2020, 22, 497. [Google Scholar] [CrossRef]
- Nelson, W. Accelerated Testing: Statistical Models, Test Plans and Data Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Pakyari, R.; Balakrishnan, N. A general-purpose approximate goodness-of-fit test for progressively type-II censored data. IEEE Trans. Reliab. 2012, 61, 238–244. [Google Scholar] [CrossRef]
MLE | MPS | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|
Bias | MSE | Bias | MSE | Bias | MSE | ||||
40 | 0.35 | 0.7 | 0.0485 | 0.0179 | −0.0362 | 0.0111 | 0.0255 | 0.0081 | |
0.2746 | 0.6071 | 0.0384 | 0.3387 | 0.2636 | 0.2552 | ||||
0.0275 | 0.0248 | 0.0991 | 0.0441 | 0.0560 | 0.0833 | ||||
0.9 | 0.0454 | 0.0169 | −0.0276 | 0.0096 | 0.0180 | 0.0069 | |||
0.2814 | 0.5521 | 0.0395 | 0.2556 | 0.2307 | 0.2171 | ||||
0.0220 | 0.0237 | 0.0844 | 0.0402 | 0.0616 | 0.0704 | ||||
0.85 | 0.7 | 0.0570 | 0.0227 | −0.0300 | 0.0118 | 0.0294 | 0.0090 | ||
0.3117 | 0.7236 | 0.0548 | 0.3498 | 0.2818 | 0.2742 | ||||
0.0330 | 0.0298 | 0.0961 | 0.0475 | 0.0539 | 0.0779 | ||||
0.9 | 0.0505 | 0.0171 | −0.0290 | 0.0092 | 0.0289 | 0.0088 | |||
0.2812 | 0.5694 | 0.0357 | 0.2620 | 0.2779 | 0.2662 | ||||
0.0185 | 0.0225 | 0.0811 | 0.0369 | 0.0504 | 0.0197 | ||||
80 | 0.35 | 0.7 | 0.0405 | 0.0107 | −0.0154 | 0.0075 | 0.0256 | 0.0065 | |
0.2324 | 0.3464 | 0.0824 | 0.3567 | 0.2566 | 0.2403 | ||||
0.0067 | 0.0122 | 0.0540 | 0.0216 | 0.0391 | 0.0993 | ||||
0.9 | 0.0258 | 0.0063 | −0.0159 | 0.0050 | 0.0247 | 0.0058 | |||
0.1418 | 0.1961 | 0.0420 | 0.1529 | 0.2561 | 0.2287 | ||||
0.0007 | 0.0087 | 0.0398 | 0.0135 | 0.0331 | 0.0139 | ||||
0.85 | 0.7 | 0.0362 | 0.0102 | −0.0190 | 0.0064 | 0.0275 | 0.0060 | ||
0.2230 | 0.3475 | 0.0520 | 0.1986 | 0.2635 | 0.2307 | ||||
0.0080 | 0.0125 | 0.0526 | 0.0207 | 0.0401 | 0.0409 | ||||
0.9 | 0.0265 | 0.0065 | −0.0166 | 0.0048 | 0.0209 | 0.0058 | |||
0.1518 | 0.2257 | 0.0371 | 0.1436 | 0.2349 | 0.2177 | ||||
0.0006 | 0.0087 | 0.0400 | 0.0147 | 0.0273 | 0.0122 | ||||
150 | 0.35 | 0.7 | 0.0001 | 0.0030 | −0.0313 | 0.0035 | 0.0022 | 0.0024 | |
0.0769 | 0.1166 | −0.0652 | 0.0486 | 0.0723 | 0.0419 | ||||
0.0155 | 0.0072 | 0.0506 | 0.0113 | 0.0215 | 0.0058 | ||||
0.9 | 0.0118 | 0.0025 | −0.0239 | 0.0040 | 0.0223 | 0.0020 | |||
0.0064 | 0.0555 | −0.0333 | 0.0646 | 0.0052 | 0.0419 | ||||
0.0157 | 0.0072 | 0.0528 | 0.0126 | 0.0237 | 0.0063 | ||||
0.85 | 0.7 | 0.0089 | 0.0039 | −0.0350 | 0.0038 | 0.0193 | 0.0045 | ||
0.0481 | 0.0748 | −0.0517 | 0.0528 | 0.0420 | 0.0616 | ||||
0.0224 | 0.0077 | 0.0597 | 0.0128 | 0.0350 | 0.0158 | ||||
0.9 | −0.0035 | 0.0031 | −0.0258 | 0.0036 | 0.0145 | 0.0038 | |||
−0.0027 | 0.0554 | −0.0750 | 0.0498 | 0.0019 | 0.0500 | ||||
0.0116 | 0.0074 | 0.0481 | 0.0117 | 0.0255 | 0.0077 |
MLE | MPS | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|
n | P | Bias | MSE | Bias | MSE | Bias | MSE | ||
40 | 0.35 | 0.7 | 0.0243 | 0.0111 | −0.0364 | 0.0102 | 0.0249 | 0.0102 | |
0.1793 | 0.3713 | 0.0892 | 0.2872 | 0.1758 | 0.1832 | ||||
0.3327 | 0.6297 | 0.0959 | 0.4470 | 0.3181 | 0.5902 | ||||
0.9 | 0.0127 | 0.0090 | −0.0413 | 0.0093 | 0.0125 | 0.0084 | |||
0.1291 | 0.2934 | 0.0566 | 0.2498 | 0.1591 | 0.1553 | ||||
0.2610 | 0.4664 | 0.0870 | 0.3440 | 0.2313 | 0.4577 | ||||
0.85 | 0.7 | 0.0214 | 0.0106 | −0.0419 | 0.0102 | 0.0206 | 0.0103 | ||
0.2049 | 0.4064 | 0.0872 | 0.2849 | 0.1776 | 0.2018 | ||||
0.2606 | 0.6208 | 0.0578 | 0.4352 | 0.2327 | 0.5862 | ||||
0.9 | 0.0148 | 0.0089 | −0.0394 | 0.0087 | 0.0126 | 0.0081 | |||
0.1476 | 0.3701 | 0.0609 | 0.2406 | 0.1694 | 0.1675 | ||||
0.3089 | 0.5408 | 0.1218 | 0.3979 | 0.2318 | 0.5169 | ||||
80 | 0.35 | 0.7 | 0.0104 | 0.0048 | −0.0286 | 0.0049 | 0.0125 | 0.0049 | |
0.0786 | 0.1149 | 0.0335 | 0.1282 | 0.1540 | 0.1142 | ||||
0.1184 | 0.1690 | −0.0084 | 0.1619 | 0.1125 | 0.1493 | ||||
0.9 | 0.0101 | 0.0042 | −0.0230 | 0.0042 | 0.0165 | 0.0014 | |||
0.0812 | 0.1359 | 0.0551 | 0.1402 | 0.1456 | 0.1023 | ||||
0.1211 | 0.2066 | 0.0055 | 0.2113 | 0.0874 | 0.1516 | ||||
0.85 | 0.7 | 0.0073 | 0.0045 | −0.0309 | 0.0048 | 0.0064 | 0.0042 | ||
0.0550 | 0.1152 | 0.0011 | 0.0887 | 0.0553 | 0.1136 | ||||
0.1376 | 0.1928 | 0.0148 | 0.1641 | 0.1259 | 0.1419 | ||||
0.9 | 0.0095 | 0.0043 | −0.0235 | 0.0044 | 0.0124 | 0.0036 | |||
0.0785 | 0.1432 | 0.0601 | 0.1574 | 0.1553 | 0.1309 | ||||
0.1474 | 0.2233 | 0.0369 | 0.2471 | 0.1378 | 0.2139 | ||||
150 | 0.35 | 0.7 | 0.0047 | 0.0036 | −0.0181 | 0.0036 | 0.0118 | 0.0022 | |
0.0871 | 0.1645 | 0.0707 | 0.1559 | 0.1526 | 0.1088 | ||||
0.1514 | 0.2731 | 0.0338 | 0.2339 | 0.1231 | 0.2235 | ||||
0.9 | 0.0059 | 0.0029 | −0.0138 | 0.0029 | 0.0052 | 0.0027 | |||
0.0549 | 0.0967 | 0.0469 | 0.0994 | 0.0530 | 0.0911 | ||||
0.1018 | 0.1592 | 0.0110 | 0.1514 | 0.0651 | 0.1495 | ||||
0.85 | 0.7 | 0.0051 | 0.0036 | −0.0187 | 0.0036 | 0.0110 | 0.0016 | ||
0.0877 | 0.1775 | 0.0598 | 0.1429 | 0.1394 | 0.0960 | ||||
0.1636 | 0.3036 | 0.0571 | 0.2555 | 0.0944 | 0.1697 | ||||
0.9 | 0.0048 | 0.0026 | −0.0152 | 0.0026 | 0.0097 | 0.0014 | |||
0.0615 | 0.1021 | 0.0475 | 0.0972 | 0.0615 | 0.1005 | ||||
0.1015 | 0.1590 | 0.0126 | 0.1412 | 0.0645 | 0.1399 |
MLE | MPS | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|
Bias | MSE | Bias | MSE | Bias | MSE | ||||
40 | 0.35 | 0.7 | −0.5497 | 0.3836 | −0.6783 | 0.5332 | −0.2996 | 0.2667 | |
0.0599 | 0.6490 | 0.4187 | 1.1561 | 0.0714 | 0.5328 | ||||
−0.4922 | 2.0313 | −0.6567 | 1.6827 | 0.3910 | 1.6708 | ||||
0.9 | −0.5427 | 0.3638 | −0.6537 | 0.4860 | −0.3801 | 0.2601 | |||
0.1304 | 0.5611 | 0.4817 | 1.1228 | 0.1788 | 0.5314 | ||||
−0.4362 | 1.4600 | −0.5660 | 1.2457 | 0.3983 | 1.2528 | ||||
0.85 | 0.7 | −0.5542 | 0.3870 | −0.6916 | 0.5509 | −0.3093 | 0.3584 | ||
0.0814 | 0.6626 | 0.3886 | 1.0518 | 0.0693 | 0.6099 | ||||
−0.4406 | 2.0692 | −0.6768 | 1.6793 | 0.3972 | 1.8453 | ||||
0.9 | −0.5416 | 0.3548 | −0.6503 | 0.4741 | −0.3544 | 0.2918 | |||
0.0988 | 0.5114 | 0.4223 | 0.8654 | 0.7015 | 0.4304 | ||||
−0.4652 | 1.3601 | −0.5832 | 1.1464 | 0.3960 | 1.3386 | ||||
80 | 0.35 | 0.7 | −0.5099 | 0.2962 | −0.5944 | 0.3958 | −0.3887 | 0.2053 | |
0.3345 | 1.0292 | 0.5848 | 1.3470 | 0.5289 | 0.9436 | ||||
−0.1545 | 1.5175 | −0.2212 | 1.4993 | 0.1451 | 1.4036 | ||||
0.9 | −0.5378 | 0.3297 | −0.6098 | 0.4146 | −0.3443 | 0.1335 | |||
0.2605 | 0.6336 | 0.4644 | 0.9831 | 0.4972 | 0.4894 | ||||
−0.2495 | 1.7326 | −0.3210 | 1.7723 | 0.4138 | 0.6623 | ||||
0.85 | 0.7 | −0.5192 | 0.3103 | −0.6020 | 0.4093 | −0.3956 | 0.2171 | ||
0.3266 | 1.0126 | 0.5811 | 1.2406 | 0.5269 | 0.9766 | ||||
−0.1750 | 1.3149 | −0.2319 | 1.2915 | 0.1481 | 1.0331 | ||||
0.9 | −0.5396 | 0.3328 | −0.6143 | 0.4206 | −0.3500 | 0.1380 | |||
0.2550 | 0.6232 | 0.4450 | 0.9522 | 0.4777 | 0.4639 | ||||
−0.2393 | 1.5072 | −0.3334 | 1.5011 | 0.3980 | 0.5812 | ||||
150 | 0.35 | 0.7 | −0.5348 | 0.3067 | −0.5768 | 0.3547 | −0.3472 | 0.1266 | |
0.3727 | 0.6694 | 0.6010 | 1.0084 | 0.4804 | 0.3729 | ||||
−0.1878 | 1.0275 | −0.1535 | 0.9948 | 0.3887 | 0.3622 | ||||
0.9 | −0.5330 | 0.3047 | −0.5758 | 0.3522 | −0.3491 | 0.1266 | |||
0.3370 | 0.4859 | 0.4757 | 0.6912 | 0.4440 | 0.2941 | ||||
−0.2145 | 1.0034 | −0.2608 | 0.8461 | 0.3328 | 0.2870 | ||||
0.85 | 0.7 | −0.5369 | 0.3141 | −0.5788 | 0.3616 | −0.3492 | 0.1316 | ||
0.3512 | 0.6997 | 0.5762 | 1.0099 | 0.4793 | 0.4096 | ||||
−0.2149 | 1.1353 | −0.1830 | 1.0236 | 0.3684 | 0.3695 | ||||
0.9 | −0.5296 | 0.3047 | −0.5712 | 0.3503 | −0.3468 | 0.1257 | |||
0.3317 | 0.4795 | 0.4687 | 0.6350 | 0.4521 | 0.3033 | ||||
−0.1923 | 0.9853 | −0.2298 | 0.8792 | 0.3693 | 0.3599 |
Estimate | SE | MKS | p-Value | AIC | CAIC | BIC | HQIC | ||
---|---|---|---|---|---|---|---|---|---|
WE | 0.6036 | 0.5544 | 0.1959 | 0.8781 | 82.8207 | 86.8207 | 83.7285 | 81.8249 | |
6.2752 | 2.5001 | ||||||||
0.0101 | 0.0067 | ||||||||
EOW | 6.5449 | 1.4012 | 0.2222 | 0.6875 | 84.8511 | 88.8511 | 85.7589 | 83.8554 | |
177.485 | 81.911 | ||||||||
0.8495 | 0.5044 | ||||||||
EL | 0.8052 | 0.3521 | 0.2100 | 0.7489 | 87.6515 | 91.6514 | 88.5592 | 86.6556 | |
4586.43 | 2353.71 | ||||||||
244528.8 | 478.18 | ||||||||
WL | 0.0825 | 0.1722 | 0.2077 | 0.7603 | 84.5729 | 92.5729 | 85.7832 | 83.2451 | |
0.4638 | 0.5413 | ||||||||
9.5017 | 21.3157 | ||||||||
46.3998 | 15.2160 | ||||||||
OEPIV | 0.0501 | 0.1581 | 0.2083 | 0.7576 | 85.0030 | 93.0030 | 86.2133 | 83.6752 | |
1.4749 | 1.0947 | ||||||||
7.2827 | 12.6281 | ||||||||
90.9410 | 318.669 |
MLE | MPS | Bayesian | ||||
---|---|---|---|---|---|---|
Estimate | SE | Estimate | SE | Estimate | SE | |
0.6036 | 0.5544 | 0.3756 | 0.3317 | 0.5386 | 0.1052 | |
6.2752 | 2.5001 | 1.2778 | 6.8847 | 7.0800 | 0.5654 | |
0.0101 | 0.0067 | 0.0243 | 0.0532 | 0.0153 | 0.0066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almongy, H.M.; Alshenawy, F.Y.; Almetwally, E.M.; Abdo, D.A. Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme. Axioms 2021, 10, 100. https://doi.org/10.3390/axioms10020100
Almongy HM, Alshenawy FY, Almetwally EM, Abdo DA. Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme. Axioms. 2021; 10(2):100. https://doi.org/10.3390/axioms10020100
Chicago/Turabian StyleAlmongy, Hisham M., Fatma Y. Alshenawy, Ehab M. Almetwally, and Doaa A. Abdo. 2021. "Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme" Axioms 10, no. 2: 100. https://doi.org/10.3390/axioms10020100
APA StyleAlmongy, H. M., Alshenawy, F. Y., Almetwally, E. M., & Abdo, D. A. (2021). Applying Transformer Insulation Using Weibull Extended Distribution Based on Progressive Censoring Scheme. Axioms, 10(2), 100. https://doi.org/10.3390/axioms10020100