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Abstract: In this paper, the Weibull extension distribution parameters are estimated under a progres-
sive type-II censoring scheme with random removal. The parameters of the model are estimated
using the maximum likelihood method, maximum product spacing, and Bayesian estimation meth-
ods. In classical estimation (maximum likelihood method and maximum product spacing), we did
use the Newton–Raphson algorithm. The Bayesian estimation is done using the Metropolis–Hastings
algorithm based on the square error loss function. The proposed estimation methods are compared
using Monte Carlo simulations under a progressive type-II censoring scheme. An empirical study
using a real data set of transformer insulation and a simulation study is performed to validate the
introduced methods of inference. Based on the result of our study, it can be concluded that the
Bayesian method outperforms the maximum likelihood and maximum product-spacing methods for
estimating the Weibull extension parameters under a progressive type-II censoring scheme in both
simulation and empirical studies.

Keywords: Weibull extension distribution; progressive type-II censoring; maximum product spacing;
Monte Carlo simulation; binomial removal; Bayesian method; maximum likelihood method

1. Introduction

Several cases in life-testing and reliability experiments arise when units are with-
drawn or lost from the test before failure. These data of such tests or studies are called
censored samples. Right, left, interval censoring, single or multiple censoring, and type-I
or type-II censoring are all examples of censoring schemes, but conventional type-I and
type-II censoring schemes do not allow units to be withdrawn at any stage other than the
end of the experiment. In type-II censoring, a total of n units are placed on the test but
instead of continuing until all units fail, the test is terminated at the time of the mth failure
(1 ≤ m ≤ n) of units. Progressive type-II censoring is a generalization of this type of censor-
ship. Increasingly, the type-II censoring scheme has recently sparked a lot of interest among
statisticians. Under this case, n units are placed under test at time zero, and m failures are
observed. In the first failure observed r1 of surviving units are randomly selected, removed,
and so on. In mth failures are observed and the remaining rm = n− r1 − r2 − rm−1 are all
removed, and the experiment terminates. For more information, see Balakrishnan and
Aggarwala (2000) [1] Balakrishnan, N. (2007) [2].

Under progressive type-II censoring, Almetwally and Almongy (2019) [3] discussed
the Bayesian approach to infer the parameter estimation of the distribution of generalized
power of Weibull. Hashem and Alyami (2021) [4] discussed inference on an exponential
doubly Poisson distribution for a parallel-series structure. Abu-Moussa et al. (2021) [5]
estimated the reliability of the stress–strength parameter for the Rayleigh distribution. Chen
and Gui (2021) [6] estimated the unknown parameters of truncated normal distribution.
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Mahto et al. (2021) [7] introduced statistical inference for progressive stress accelerated
from the Burr X distribution. Almetwally et al. (2021) [8] discussed Bayesian and non-
Bayesian estimation methods to estimate parameters of the Marshall–Olkin alpha power
Weibull distribution.

Abd El-Raheem et al. (2021) [9] discussed accelerated life tests for modified Kies
exponential lifetime distribution. Almongy et al. (2021) [10] discussed parameter estimation
of the Weibull generalized exponential distribution. There are lots of other studies on
this subject.

Sometimes, it is not acceptable to perform the test on some of the tested units, though
these units have not failed. In this status, at each failure, the form of removal is random.
It is proposed that any testing unit being withdrawn from the life test is independent
of the others but with the same probability p. To treat this problem, there are various
types of distributions used in reliability and engineering fields to deal with this type of
censoring. The most widely used are binomial and geometric distribution. Yuen and Tse
(1996) [11] used binomial distribution and a distribution of probability p for progressive
removal R (random removals). Tse et al. (2000) [12] analyzed Weibull distribution data
under Type-II progressive censoring with binomial removals. Ashour et al. (2021) [13]
estimated the Weibull parameters under progressive first-failure with binomial removals.
Alshenawy et al. (2020) [14] discussed progressive type-II censored samples of extended
odd Weibull exponential distribution with binomial removals. Ghahramani et al. (2020) [15]
analyzed the progressive Type-II censored sample with dependent random removals.

Since the Weibull distribution lacks a bathtub or upside-down bathtub-shaped hazard
rate feature, it cannot be used to model a system’s complex lifetime, according to Peng and
Yan (2014) [16]. Hence, many extensions of the Weibull distribution are raised to overcome
this deficiency. For instance, Mudholkar and Srivastava (1993) [17] introduced an expo-
nential Weibull distribution. Several modified Weibull distributions with bathtub-shaped
failure rate functions were proposed by Xie et al. (2002) [18]. Murthy et al. (2004) [19] and
Pham and Lai (2007) [20] introduced detailed overviews of the different developments in
extensions of the Weibull distribution. Bebbington et al. (2007) [21] presented a flexible
Weibull extension. Nadarajah et al. (2011) [22] introduced a beta-generalized Weibull
distribution. Singla et al. (2012) [23] presented a beta-generalized Weibull distribution. The
Weibull extension (WE) distribution was introduced by Yong (2004) [24] for modeling data
in various fields, such as engineering, medicine, and reliability.

It would be advantageous for models with bathtub-shaped failure rate functions to
be an extension of Weibull distribution because the Weibull distribution is highly used.
It is necessary to consider models with few parameters to obtain accurate estimates of
the parameters in the case of a small data size. Even for a Weibull distribution with two
parameters, parameter estimation is a difficult task. Maximum likelihood estimation is
one of the techniques that can be used to estimate the parameters. Although the most
widely used approach for model estimation is maximum likelihood estimation, it does not
include a closed-form solution. As a consequence, many techniques, such as the maximum
product of spacing (MPS) method and the Bayesian method, can be used to estimate the
model parameters.

Cheng and Amin (1979) [25] proposed the MPS estimation method. Ranneby (1984) [26]
discussed this method as an alternative to the maximum likelihood estimation (MLE)
method for the estimation of parameters of continuous univariate distributions. It gives
efficient estimators for more distributions, such as three-parameter Gamma–Log normal
or Weibull distribution. Cheng and Amin (1983) [27] discuss the MPS consistency and
asymptotic properties, as well as the fact that when they exit, the MPS is at least as effective
as the MLEs.

The major objective of this paper is to address the estimation problem of the WE
distribution parameters when the data are progressively type-II censored with binomial
removals. Here, the MLE of the model parameters is derived. The MPS of this model is
discussed. Moreover, the Bayesian estimation method is derived and the Markov Chain
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Monte Carlo (MCMC) method is used to find an approximate value of integrals of the
posterior model parameters. The performance of the MLE, MPS and Bayesian estimation
methods are investigated numerically for different sample sizes and parameter values.

The rest of this paper is organized as follows. The model description and notations are
introduced in Section 2. MLE, MPS, and Bayesian estimation methods are given in Section 3.
We provide a simulation study in Section 4. In Section 5, the transformer insulation
application of real data is discussed. Finally, some remarks are offered in Section 6.

2. Model Description and Notations

Suppose a random variable t has WE distribution with parameter vector Ω = (β, δ, λ).
The reliability function of WE distribution is given by Yuen and Tse (1996) [11] as follows:

R(t) = exp
{

λδ

[
1− e(

t
λ )

β
]}

; t > 0, f or any λ, δ, β > 0. (1)

The corresponding hazard rate function of the WE model has the following form:

h(t) = δβ

(
t
λ

)β−1
e(

t
λ )

β

(2)

and the pdf is given by the following:

f (t) = R(t)h(t) = δβ

(
t
λ

)β−1
exp

[(
t
λ

)β

+ λδ

(
1− e(

t
λ )

β
)]

(3)

The cumulative distribution function for the new Weibull extended distribution is
given by the following:

F(t) = 1− R(t) = 1− exp
{

λδ
[
1− e(

t
λ )β
]}

(4)

A versatile model that provides left-skewed, symmetrical, right-skewed, and reverse-
J-shaped densities is the WE distribution (See Figure 1 left). Its hazard rate (HR) feature can
provide decreasing, steady, rising, upside down bathtub, bathtub, and reverse-J-shaped
risk rates (see Figure 1 right).
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The quantile function of the WE distribution is as follows:

t = λ

(
ln
[

1− 1
λδ

ln(1− q)
]) 1

β

, 0 < q < 1 (5)
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The progressive type-II censored scheme (PTIICS) can be described as follows:
Assume that n independent observations have been set on life testing and the pro-

gressive censoring scheme <i, i = 1, 2, . . . , m. At the time of the first failure, t1, <1 ∼
binomal(n−m, P), and units are randomly removed from the remaining (n− 1) surviving
items. At the time of the second failure, t2, <2 ∼ binomal(n−m−<1, V) and units of the
remaining n− 2−<1 , are randomly removed, and so on. The test continues until the mth
failure at which time, all the remaining n−m−<1 −<2 − · · · − <m−1 units are removed.

The experimenter determines the number of m failures and the removal probability
V in PTIIC. Assume that each unit being excluded from the test is independent of the
others but has the same removal probability V as the others. Then, at each failure time, the
number of units removed follows a binomial distribution, as follows: for i = 2, 3, . . . , m− 1
<i ∼ binomal

(
n−m−∑i−1

j=1 <j, P
)

and <m = n − m − ∑m−1
j=1 <j. The data form is as

follows: T1:m:n < T2:m:n < · · · < Tm:m:n.
The probability mass function for the number of units removed at each failure time,

it’s a binomial distribution, is as follows:

Pr(<1 = r1) =

(
n−m

r1

)
Pr1(1−P)n−m−r1 , (6)

while for i = 2, 3, . . . , m − 1.

Pr(<i = ri|<i−1 = ri−1, . . . , <1 = r1) =

 n−m−
i−1
∑

j=1
rj

ri

Pri (1−P)
n−m−∑i

j= 1 rj (7)

where 0 ≤ ri ≤ n−m−∑i−1
j=1 rj. Moreover, suppose that <i is independent of Ti:m:n for all

i. Then the joint likelihood function can be derived as follows:

L(ti:m:n, Ω) = L1(ti:m:n, Ω)Pr(< = r), (8)

where Pr(< = r) = Pr(<1 = r1,<2 = r2, . . . , <m−1 = rm−1), i.e.,

Pr(< = r) =
(n−m)!(

n−m−∑m−1
j=1 rj

)
! ∏m−1

j=1 rj

P
∑m−1

j=1 rj(1−P)
(m−1)(n−m)−∑m−1

j=1 (m−j)rj

P’s MLE can be quickly calculated by maximizing Equation (8). As a result, the MLE
of P can be found by solving the equation below.

∂ ln L(ti:m:n, Ω )

∂P
=

∑m−1
i=1 ri

P
−

(m− 1)(n−m)−∑m−1
i=1 (m− i)ri

1−P
.

Hence,

P̂ =
∑m−1

i=1 ri

(m− 1)(n−m)−∑m−1
i=1 (m− i− 1)ri

Since L1(ti:m:n, Ω) does not require the binomial parameter P, then the likelihood
function under PTIICS can be written as

L1(ti:m:n, Ω) = A
m

∏
i=1

f (ti:m:n, Ω)R(ti:m:n, Ω)<i . (9)

In MPS, the joint MPS under PTIICS can be written in the same mode as follows:

S(ti:m:n, Ω) = S1(ti:m:n, Ω)Pr(< = r),
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where

S1(ti:m:n, Ω) = A
m+1

∏
i=1

Di:m:n(Ω)R(ti:m:n, Ω)<i (10)

where A is a constant that does not depend on parameters and the following is true:

Di:m:n(Ω) =


1− R(t1:m:n, Ω)

R(ti−1:m:n, Ω)− R(ti:m:n, Ω)
R(tm:m:n, Ω))

; i = 2, . . . m,

3. The MLE, MPS, and Bayesian Estimation Methods under PTIICS

The MLE, MPS, and Bayesian estimation methods of WE distribution parameters
based on PTIICS data with binomial random removal are discussed in this section.

3.1. MLE Method

Using Equation (9), the likelihood function for WE distribution based on PTIICS can
be written as follows:

L1(ti:m:n, Ω ) = A(δβ)m
m

∏
i=1

(
ti:m:n

λ

)β−1
e∑m

i=1 (
ti:m:n

λ )
β

exp

[
λδ

m

∑
i=1

(1 +<i)

(
1− e(

ti:m:n
λ )

β
)]

, (11)

where A = n(n−<i − 1) . . .
(

n−∑m−1
i=1 <i − (m− 1)

)
is a constant that does not depend

on the parameters.
The natural logarithm of the likelihood function equation can be obtained as follows:

lnL1(ti:m:n, Ω) = ln(A) + m[ln(β) + ln(δ)] + (β− 1)
m
∑

i=1
ln
(

ti:m:n
λ

)
+

m
∑

i=1

(
ti:m:n

λ

)β

+λδ
m
∑

i=1
(1 +<i)

(
1− e(

ti:m:n
λ )

β
)

.
(12)

For convenience, lnL1(ti:m:n, Ω), hence the partial derivatives of Equation (12) are
given as follows:

∂ lnL1(ti:m:n ,Ω )
∂β

= m
β +

m
∑

i = 1
ln
(

ti:m:n
λ

)
+

m
∑

i=1

(
ti:m:n

λ

)β
ln
(

ti:m:n
λ

)
−λδ

m
∑

i=1
(1 +<i)e(

ti:m:n
λ )

β(
ti:m:n

λ

)β
ln
(

ti:m:n
λ

)
,

(13)

∂ lnL1(ti:m:n, Ω)

∂δ
=

m
δ
+ λ

m

∑
i=1

(1 +<i)

(
1− e(

ti:m:n
λ )

β
)

, (14)

and
∂ lnL1(ti:m:n , Ω)

∂λ

= (β− 1)−m
λ −

β
λ

m
∑

i=1

(
ti:m:n

λ

)β
+ δ

m
∑

i=1
(1 +<i)

+δ
m
∑

i=1
(1 +<i)e(

ti:m:n
λ )

β
[

1 + λ + β
λ

(
ti:m:n

λ

)β
] (15)

The MLE has no tractable expression since the above Equations (13)–(15) are difficult
to solve analytically. However, through the use of statistical tools, they can be approached
by regular optimization algorithms, such as the Newton–Raphson, Nelder–Mead or quasi-
Newton Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithms.

3.2. MPS Method

Using Equation (9), the MPS function of WE distribution based on PTIICS can be
written as follows:
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S1(ti:m:n, Ω) = A
{

1− exp
(

λδ

[
1− e(

t1:m:n
λ )

β
])}

exp
{

λδ

([
1− e(

tm:m:n
λ )

β
]
+ ∑m

i = 1 <i

[
1− e(

ti:m:n
λ )

β
])}

∏m
i=2

(
exp
(

λδ

[
1− e(

ti−1:m:n
λ )

β
])
− exp

(
λδ

[
1− e(

ti:m:n
λ )

β
]))

,
(16)

where A is a constant which does not depend on the parameters. The natural logarithm of
the product spacing function is as follows:

lnS1(ti:m:n, Ω) = ln(A) + ln
{

1− exp
(

λδ

[
1− e(

t1:m:n
λ )

β
])}

+ λδ

([
1− e(

tm:m:n
λ )

β
]
+

m
∑

i=1
<i

[
1− e(

ti:m:n
λ )

β
])

+
m
∑

i=2
ln
(

exp
(

λδ

[
1− e(

ti−1:m:n
λ )

β
])
− exp

(
λδ

[
1− e(

ti:m:n
λ )

β
]))

.
(17)

Let s(Ω) = lnS1(ti:m:n, Ω), then the partial derivatives by the MPS method of
Equation (17) are given as follows:

∂s(Ω)
∂β =

λδ
(

t1:m:n
λ

)β
ln
(

t1:m:n
λ

)
H1(β,λ)eλδ[1−H1(β,λ)]

1−eλδ[1−H1(β,λ)] − λδ
(

tm:m:n
λ

)β
ln
(

tm:m:n
λ

)
Hm(β, λ)

−λδ
m
∑

i = 1
<i

(
ti:m:n

λ

)β
ln
(

ti:m:n
λ

)
Hi(β, λ) +

m
∑

i=2

λδ
(

ti:m:n
λ

)β
ln
(

ti:m:n
λ

)
Hi(β,λ)e(λδ[1−Hi(β,λ)])

e(λδ[1−Hi−1(β,λ)])−e(λδ[1−Hi(β,λ)])

−
m
∑

i=2

λδ
( ti−1:m:n

λ

)β
ln
( ti−1:m:n

λ

)
Hi−1(β,λ)e(λδ[1−Hi−1(β,λ)])

e(λδ[1−Hi−1(β,λ)])−e(λδ[1−Hi(β,λ)]) ,

(18)

∂s(Ω)
∂δ = −δ[1−Hi(β,λ)]

1−eλδ[1−H1(β,λ)] + δ[1−Hm(β, λ)] + δ
m
∑

i=1
<i[1−Hi(β, λ)]

+δ
m
∑

i=2

[1−Hi−1(β,λ)]e(λδ[1−Hi−1(β,λ)])−[1−Hi(β,λ)]e(λδ[1−Hi(β,λ)])

e(λδ[1−Hi−1(β,λ)])−e(λδ[1−Hi(β,λ)]) ,
(19)

and

∂s(Ω)
∂λ = −δ[1−H1(β,λ)]eλδ[1−H1(β,λ)]

(1−eλδ[1−H1(β,λ)])
−

δβ
(

t1:m:n
λ

)β
H1(β,λ)eλδ[1−H1(β,λ)]

(1−eλδ[1−H1(β,λ)])

+δ

(
[1−Hm(β, λ)] +

m
∑

i=1
<i[1−Hm(β, λ)]

)
+ δβ

(
tm:m:n

λ

)β
Hm(β, λ) + δβ

m
∑

i=1
<i

(
ti:m:n

λ

)β
Hi(β, λ)

−δ
m
∑

i=2

e(λδ[1−Hi(β,λ)])
{
[1−Hi(β,λ)]−β

(
ti:m:n

λ

)β
Hi(β,λ)

}
e(λδ[1−Hi−1(β,λ)])−e(λδ[1−Hi(β,λ)])

+δ
m
∑

i=2

e(λδ[1−Hi−1(β,λ)])
{
[1−Hi−1(β,λ)]−β

( ti−1:m:n
λ

)β
Hi−1(β,λ)

}
e(λδ[1−Hi−1(β,λ)])−e(λδ[1−Hi(β,λ)]) ,

(20)

where Hi(β, λ) = e(
ti:m:n

λ )
β

.
Using the Newton–Raphson algorithm, the MPS estimates of the WE distribution

parameters can be obtained.

3.3. Bayesian Estimation

We consider the Bayesian approximation in this section for estimating the WE dis-
tribution parameters based on PTIICS under the assumption that the random variables
Ω = (β, λ, δ) have an independent prior distribution of gamma, assuming that β ∼
Gamma(u1,v1), λ ∼ Gamma(u2,v2) and δ ∼ Gamma(u3,v3). Then, the prior joint
density of β, λ, and δ can be written as follows:

π(Ω) ∝ βu1−1e−βv1 λu2−1e−λv2 δu3−1e−δv3 (21)
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The posterior probability can be interpreted as a proportion to the probability equation
product (11) and the densities of the joint prior to Equation (21):

Π(Ω|ti:m:n ) ∝ L1(ti:m:n, Ω)π(Ω)

Then, the posterior joint density of Ω is as follows:

Π(Ω|ti:m:n ) ∝ βm+u1−1δm+u3−1λu2−1e−(βv1+λv2+δv3)e∑m
i=1 (

ti:m:n
λ )

β

×exp
[

λδ
m
∑

i=1
(1 +<i)

(
1− e(

ti:m:n
λ )

β
)]

m
∏
i=1

(
ti:m:n

λ

)β−1
.

(22)

The squared error (SE) of the loss function, which is the symmetric loss function

used, can be defined by `
(

Ω̃−Ω
)
=
(

Ω̃−Ω
)2

. The Bayes method leads to the estimator
Ω, which, if the SE loss function is applied, is called the Bayes estimator. Under the SE
loss function, the usual estimator of the parameters is the posterior mean. Therefore, the
Bayesian estimators of the parameters Ω under SE, say Ω̃ is obtained as the posterior mean,
as follows:

β̃ =
∫ ∞

0
βΠ(β|λ, δ, ti:m:n )dβ, λ̃ =

∫ ∞

0
λΠ(λ|β, δ, ti:m:n )dλ, δ̃ =

∫ ∞

0
δΠ(δ|β, λ, ti:m:n )dδ

where the conditional posterior densities are defined as follows:

Π(β|λ, δ, ti:m:n ) ∝ βm+u1−1e−βv1+∑m
i=1 (

ti:m:n
λ )

β

eλδ ∑m
i=1 (1+<i)Hi(β,λ)

m

∏
i=1

(
ti:m:n

λ

)β−1
, (23)

Π(λ|β, δ, ti:m:n ) ∝ λu2−1e−λv2 e∑m
i=1 (

ti:m:n
λ )

β

eλδ ∑m
i=1 (1+<i)(1−Hi(β,λ))

m

∏
i=1

(
ti:m:n

λ

)β−1
, (24)

and
Π(δ|β, λ, ti:m:n ) ∝ δm+u3−1e−δv3 eλδ ∑m

i=1 (1+<i)(1−Hi(β,λ)). (25)

It is very difficult, analytically, to solve these integrals, so the MCMC method will
be used. Gibb’s sampling and more general Metropolis within Gibbs samplers are an
important sub-class of the MCMC techniques. Such an algorithm was first developed by
Metropolis et al. (1953) [28] and Hastings (1970) [29].

The Metropolis–Hastings (M–H) algorithm is one of the two most popular examples
of the MCMC method, along with Gibb’s sampling. The M–H algorithm is similar to
acceptance–rejection sampling in that it assumes that a candidate value can be derived
from a proposal distribution as a normal distribution for each iteration of the algorithm.

4. Simulation Study

For estimating parameters of the WE distribution in a lifetime under PTIICS, the Monte
Carlo simulation was used to compare MLE, MPS, and Bayesian estimation methods. The
following data were developed from the WE distribution, using Equation (5), where t is
distributed as the WE distribution for different true parameters as follows:

(1) Case I: (β = 0.5, λ = 0.5, δ = 0.5). See Table 1.
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Table 1. The MLE, MPS, and Bayesian of the WE parameters under the PTIICS with random removal
for Case I.

MLE MPS Bayesian

n P r Bias MSE Bias MSE Bias MSE

40

0.35

0.7

β 0.0485 0.0179 −0.0362 0.0111 0.0255 0.0081

λ 0.2746 0.6071 0.0384 0.3387 0.2636 0.2552

δ 0.0275 0.0248 0.0991 0.0441 0.0560 0.0833

0.9

β 0.0454 0.0169 −0.0276 0.0096 0.0180 0.0069

λ 0.2814 0.5521 0.0395 0.2556 0.2307 0.2171

δ 0.0220 0.0237 0.0844 0.0402 0.0616 0.0704

0.85

0.7

β 0.0570 0.0227 −0.0300 0.0118 0.0294 0.0090

λ 0.3117 0.7236 0.0548 0.3498 0.2818 0.2742

δ 0.0330 0.0298 0.0961 0.0475 0.0539 0.0779

0.9

β 0.0505 0.0171 −0.0290 0.0092 0.0289 0.0088

λ 0.2812 0.5694 0.0357 0.2620 0.2779 0.2662

δ 0.0185 0.0225 0.0811 0.0369 0.0504 0.0197

80

0.35

0.7

β 0.0405 0.0107 −0.0154 0.0075 0.0256 0.0065

λ 0.2324 0.3464 0.0824 0.3567 0.2566 0.2403

δ 0.0067 0.0122 0.0540 0.0216 0.0391 0.0993

0.9

β 0.0258 0.0063 −0.0159 0.0050 0.0247 0.0058

λ 0.1418 0.1961 0.0420 0.1529 0.2561 0.2287

δ 0.0007 0.0087 0.0398 0.0135 0.0331 0.0139

0.85

0.7

β 0.0362 0.0102 −0.0190 0.0064 0.0275 0.0060

λ 0.2230 0.3475 0.0520 0.1986 0.2635 0.2307

δ 0.0080 0.0125 0.0526 0.0207 0.0401 0.0409

0.9

β 0.0265 0.0065 −0.0166 0.0048 0.0209 0.0058

λ 0.1518 0.2257 0.0371 0.1436 0.2349 0.2177

δ 0.0006 0.0087 0.0400 0.0147 0.0273 0.0122

150

0.35

0.7

β 0.0001 0.0030 −0.0313 0.0035 0.0022 0.0024

λ 0.0769 0.1166 −0.0652 0.0486 0.0723 0.0419

δ 0.0155 0.0072 0.0506 0.0113 0.0215 0.0058

0.9

β 0.0118 0.0025 −0.0239 0.0040 0.0223 0.0020

λ 0.0064 0.0555 −0.0333 0.0646 0.0052 0.0419

δ 0.0157 0.0072 0.0528 0.0126 0.0237 0.0063

0.85

0.7

β 0.0089 0.0039 −0.0350 0.0038 0.0193 0.0045

λ 0.0481 0.0748 −0.0517 0.0528 0.0420 0.0616

δ 0.0224 0.0077 0.0597 0.0128 0.0350 0.0158

0.9

β −0.0035 0.0031 −0.0258 0.0036 0.0145 0.0038

λ −0.0027 0.0554 −0.0750 0.0498 0.0019 0.0500

δ 0.0116 0.0074 0.0481 0.0117 0.0255 0.0077
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(2) Case II: (β = 0.5, λ = 3, δ = 0.5 ). See Table 2.

Table 2. The MLE, MPS, and Bayesian of the WE parameters under the PTIICS with random removal
for Case II.

MLE MPS Bayesian

n P r Bias MSE Bias MSE Bias MSE

40

0.35

0.7

β 0.0243 0.0111 −0.0364 0.0102 0.0249 0.0102

λ 0.1793 0.3713 0.0892 0.2872 0.1758 0.1832

δ 0.3327 0.6297 0.0959 0.4470 0.3181 0.5902

0.9

β 0.0127 0.0090 −0.0413 0.0093 0.0125 0.0084

λ 0.1291 0.2934 0.0566 0.2498 0.1591 0.1553

δ 0.2610 0.4664 0.0870 0.3440 0.2313 0.4577

0.85

0.7

β 0.0214 0.0106 −0.0419 0.0102 0.0206 0.0103

λ 0.2049 0.4064 0.0872 0.2849 0.1776 0.2018

δ 0.2606 0.6208 0.0578 0.4352 0.2327 0.5862

0.9

β 0.0148 0.0089 −0.0394 0.0087 0.0126 0.0081

λ 0.1476 0.3701 0.0609 0.2406 0.1694 0.1675

δ 0.3089 0.5408 0.1218 0.3979 0.2318 0.5169

80

0.35

0.7

β 0.0104 0.0048 −0.0286 0.0049 0.0125 0.0049

λ 0.0786 0.1149 0.0335 0.1282 0.1540 0.1142

δ 0.1184 0.1690 −0.0084 0.1619 0.1125 0.1493

0.9

β 0.0101 0.0042 −0.0230 0.0042 0.0165 0.0014

λ 0.0812 0.1359 0.0551 0.1402 0.1456 0.1023

δ 0.1211 0.2066 0.0055 0.2113 0.0874 0.1516

0.85

0.7

β 0.0073 0.0045 −0.0309 0.0048 0.0064 0.0042

λ 0.0550 0.1152 0.0011 0.0887 0.0553 0.1136

δ 0.1376 0.1928 0.0148 0.1641 0.1259 0.1419

0.9

β 0.0095 0.0043 −0.0235 0.0044 0.0124 0.0036

λ 0.0785 0.1432 0.0601 0.1574 0.1553 0.1309

δ 0.1474 0.2233 0.0369 0.2471 0.1378 0.2139

150

0.35

0.7

β 0.0047 0.0036 −0.0181 0.0036 0.0118 0.0022

λ 0.0871 0.1645 0.0707 0.1559 0.1526 0.1088

δ 0.1514 0.2731 0.0338 0.2339 0.1231 0.2235

0.9

β 0.0059 0.0029 −0.0138 0.0029 0.0052 0.0027

λ 0.0549 0.0967 0.0469 0.0994 0.0530 0.0911

δ 0.1018 0.1592 0.0110 0.1514 0.0651 0.1495

0.85

0.7

β 0.0051 0.0036 −0.0187 0.0036 0.0110 0.0016

λ 0.0877 0.1775 0.0598 0.1429 0.1394 0.0960

δ 0.1636 0.3036 0.0571 0.2555 0.0944 0.1697

0.9

β 0.0048 0.0026 −0.0152 0.0026 0.0097 0.0014

λ 0.0615 0.1021 0.0475 0.0972 0.0615 0.1005

δ 0.1015 0.1590 0.0126 0.1412 0.0645 0.1399
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(3) Case III: (β = 1.5, λ = 3, δ = 2 ). See Table 3.

Table 3. The MLE, MPS, and Bayesian of the WE parameters under the PTIICS with random removal
for Case III.

MLE MPS Bayesian

n P r Bias MSE Bias MSE Bias MSE

40

0.35

0.7

β −0.5497 0.3836 −0.6783 0.5332 −0.2996 0.2667

λ 0.0599 0.6490 0.4187 1.1561 0.0714 0.5328

δ −0.4922 2.0313 −0.6567 1.6827 0.3910 1.6708

0.9

β −0.5427 0.3638 −0.6537 0.4860 −0.3801 0.2601

λ 0.1304 0.5611 0.4817 1.1228 0.1788 0.5314

δ −0.4362 1.4600 −0.5660 1.2457 0.3983 1.2528

0.85

0.7

β −0.5542 0.3870 −0.6916 0.5509 −0.3093 0.3584

λ 0.0814 0.6626 0.3886 1.0518 0.0693 0.6099

δ −0.4406 2.0692 −0.6768 1.6793 0.3972 1.8453

0.9

β −0.5416 0.3548 −0.6503 0.4741 −0.3544 0.2918

λ 0.0988 0.5114 0.4223 0.8654 0.7015 0.4304

δ −0.4652 1.3601 −0.5832 1.1464 0.3960 1.3386

80

0.35

0.7

β −0.5099 0.2962 −0.5944 0.3958 −0.3887 0.2053

λ 0.3345 1.0292 0.5848 1.3470 0.5289 0.9436

δ −0.1545 1.5175 −0.2212 1.4993 0.1451 1.4036

0.9

β −0.5378 0.3297 −0.6098 0.4146 −0.3443 0.1335

λ 0.2605 0.6336 0.4644 0.9831 0.4972 0.4894

δ −0.2495 1.7326 −0.3210 1.7723 0.4138 0.6623

0.85

0.7

β −0.5192 0.3103 −0.6020 0.4093 −0.3956 0.2171

λ 0.3266 1.0126 0.5811 1.2406 0.5269 0.9766

δ −0.1750 1.3149 −0.2319 1.2915 0.1481 1.0331

0.9

β −0.5396 0.3328 −0.6143 0.4206 −0.3500 0.1380

λ 0.2550 0.6232 0.4450 0.9522 0.4777 0.4639

δ −0.2393 1.5072 −0.3334 1.5011 0.3980 0.5812

150

0.35

0.7

β −0.5348 0.3067 −0.5768 0.3547 −0.3472 0.1266

λ 0.3727 0.6694 0.6010 1.0084 0.4804 0.3729

δ −0.1878 1.0275 −0.1535 0.9948 0.3887 0.3622

0.9

β −0.5330 0.3047 −0.5758 0.3522 −0.3491 0.1266

λ 0.3370 0.4859 0.4757 0.6912 0.4440 0.2941

δ −0.2145 1.0034 −0.2608 0.8461 0.3328 0.2870

0.85

0.7

β −0.5369 0.3141 −0.5788 0.3616 −0.3492 0.1316

λ 0.3512 0.6997 0.5762 1.0099 0.4793 0.4096

δ −0.2149 1.1353 −0.1830 1.0236 0.3684 0.3695

0.9

β −0.5296 0.3047 −0.5712 0.3503 −0.3468 0.1257

λ 0.3317 0.4795 0.4687 0.6350 0.4521 0.3033

δ −0.1923 0.9853 −0.2298 0.8792 0.3693 0.3599
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After generating a sample from the WE distribution with different sample sizes (n) as
40, 80, and 150, we determine different probability P as 0.35 and 0.85 and determine the
different size of the censored sample by using the ratio of affected as r = m

n as 0.7 and 0.9,
then m = nr. We generate the random removal of progressive censoring <i from binomial
removal as the following:

<i =


<1 ∼ binomal(n−m, P)

<i ∼ binomal
(

n−m−∑i−1
j=1 <j, P

)
<m = n−m−∑m−1

j=1 <j

; i = 2, 3, . . . , m− 1

Balakrishnan and Sandhu [3] defined the algorithm to generate progressive censoring
scheme as follows:

Generate m independent Uniform (0, 1) observations Ui, Un, . . . , Um.
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ti:m:n = λ

(
ln
[

1− 1
λδ

ln(1− qi)

]) 1
β

The MLE estimators are obtained by solving Equations (13)–(15). The MPS estimators
are obtained by solving Equations (18)–(20). We can use the Newton–Raphson algorithm to
find the optimal solution of MLE. Berndt et al. (1974) [30] discussed the Newton–Raphson
algorithm. To find the root of a parameter’s estimators of WE distribution based on PTIICS
by MLE and MPS method, we use the next algorithm:

(1) Start with a near value of the true value as initial values
(

Ω〈0〉l

)
; Ω = (β, λ, δ); l = 1,2,3

satisfying Ω〈0〉l > 0.

(2) Jacobian matrix defined over the function vector f
(

Ω〈l〉
)

can be defined as:

J f (Ω) =
d

dΩ
f (Ω) =


∂ f (β)

∂β
∂ f (β)

∂λ
∂ f (β)

∂δ
∂ f (λ)

∂β
∂ f (λ)

∂λ
∂ f (λ)

∂δ
∂ f (δ)

∂β
∂ f (δ)

∂λ
∂ f (δ)

∂δ


where f

(
Ω〈l〉l

)
is a first derivative.

(3) The root can be found improved iteratively as the following:

Ω〈l+1〉
l = Ω〈l〉l −

[
J f

(
Ω〈l〉

)]−1

ll
f
(

Ω〈l〉l

)
(4) Repeat these steps M times as 10,000 to get an estimator of Ωl .

The Bayesian estimators are obtained by using the M–H algorithm to generate a
sequence of draws from WE distribution parameters under PTIICS, as follows:

(1) Start with any initial values
(

Ω〈0〉l

)
; Ω = (β, λ, δ); l = 1, 2, 3 satisfying π

(
Ω〈0〉l

)
> 0.

(2) Choose a candidate point based on the initial value (Ω∗) from the proposal q(Ω∗) as

normal with mean Ω〈T−1〉
l and variance is var(Ω〈T−1〉

l ).
(3) Calculate the acceptance rate Al , for T = 0 to N (a big number such as 10,000, for exam-

ple), given the candidate point (Ω∗), Al = min
(

1,
L1(Ω∗l |ti:m:n )π(Ω∗l )
L1( ti:m:n |Ωl)π(Ωl)

q(Ωl)

q(Ω∗l )

)
; l = 1,2,3.
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(4) Draw a value of u from the uniform (0, 1) distribution Θ〈t+1〉
l =

{
Ω∗l i f u ≤ Al

Ω〈T〉l i f u ≤ Al
.

(5) Steps 2–4 should be repeated T+ 1 times more until we have N draws.

(6) For the squared error loss function, the Bayes approximation of Ωl is used ∑N
T=1

(ΩT−1
l )T
N .

(7) To get a Bayesian approximation of Ωl repeat these steps l times.

To find the best efficiency of estimators, we use the bias and the mean squared error
(MSE(Ω)) of estimation. To compute the MLE, MPS, and Bayesian, 10,000 such iterations
are made.

Concluding Remarks on the Simulation

1. Tables 1–3 show the simulation effects. Based on these Tables, the following conclud-
ing remarks have been made: Case-I: (β = 0.5, λ = 0.5, δ = 0.5).
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The most accurate method is MLE, as it has a minimum square error (MSE).

2. Case II: (β = 0.5, λ = 3, δ = 0.5).
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The Bayesian estimation method represents the most accurate method because
it has a MSE less than the others.

3. Case III: (β = 1.5, λ = 3, δ = 2).
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We find that Bayesian estimators are more reliable than MLE and MPS estima-
tors in the vast majority of cases.

5. Transformer Insulation Application

A real dataset is analyzed in this section to explain the proposed model and methods
in the preceding sections. In addition, this dataset is used to demonstrate that the WE
distribution based on the PTIICS sample can be a potential alternative to commonly known
distributions, such as extended odd Weibull exponential (EOW) distribution, which is
discussed under the PTIICS sample by Alshenawy et al. (2020) [14]; exponential Lomax(EL)
distribution, introduced by El-Bassiouny et al. (2015) [31]; Weibull Lomax (WL) which was
introduced by Tahir et al. (2015) [32]; and Odds Exponential-Pareto IV (OEPIV) which was
introduced by Baharith et al. (2020) [33].

Chapter three of the book by Nelson (1990) [34], presents the results of an accelerated
constant-stress based on the PTIICS life test of transformer insulation. The test consisted of
a 42:4 kV constant voltage, where 14.4 kV is the standard voltage. These data are 0.6, 13.4,
15.2, 19.9, 25.0, 30.2, 32.8, 44.4, *, 56.2, where the sign “*” in these data refers to censored
results when R progressives are 0, 0, 0, 0, 0, 0, 0, 1, 0.

We explain how to conduct a goodness-of-fit test for the transformer insulation data
and the proposed WE distribution based on PTIICS in the following subsection. The
empirical cdf, the histogram of the pdf, and PP plots are displayed in Figure 2.
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Modified Kolmogorov–Smirnov Algorithm for Censored Data Fitting

We have to use the modified Kolmogorov–Smirnov (KS) goodness-of-fit test if the
data are PT-II censored data and not complete. Pakyari and Balakrishnanan (2012) [35]
originally produced the modified KS (MKS) statistics for THE PTIICS data. This algorithm
relies on a number of steps:

(1) Estimate the parameters of WE distribution based on PTIICS.
(2) Calculate the statistic of the MKS test as the following:

D = max
(

D+
i:m:n, D−i:m:n

)
where D+

i:m:n = max(vi:m:n − ui:m:n), D−i:m:n = max(ui:m:n − vi−1:m:n),

vi:m:n = 1−
m

∏
j=m−i+1

j +<m−j+1 + · · ·+<m

j + 1 +<m−j+1 + · · ·+<m
; i = 1, . . . , m,ui:m:n = 1− R

(
ti:m:n, Ω̂

)
.

(3) By using the statistic of MKS test and sample size, we calculate the p-Value of this test.

The summary of the results of the MKS test for WE distribution and commonly known
distributions, such as EOW, WL, EL, and OEPIV, are shown in Table 4 based on the results
of MLE.

Table 4. MLE for parameters of WE distribution and commonly known distributions under PTIICS
for real data.

Estimate SE MKS p-Value AIC CAIC BIC HQIC

WE

β 0.6036 0.5544

0.1959 0.8781 82.8207 86.8207 83.7285 81.8249λ 6.2752 2.5001

δ 0.0101 0.0067

EOW

β 6.5449 1.4012

0.2222 0.6875 84.8511 88.8511 85.7589 83.8554λ 177.485 81.911

δ 0.8495 0.5044

EL

β 0.8052 0.3521

0.2100 0.7489 87.6515 91.6514 88.5592 86.6556λ 4586.43 2353.71

δ 244528.8 478.18

WL

β 0.0825 0.1722

0.2077 0.7603 84.5729 92.5729 85.7832 83.2451
λ 0.4638 0.5413

δ 9.5017 21.3157

β 46.3998 15.2160

OEPIV

λ 0.0501 0.1581

0.2083 0.7576 85.0030 93.0030 86.2133 83.6752
δ 1.4749 1.0947

β 7.2827 12.6281

λ 90.9410 318.669

We conclude that the best model to fit the data of the transformer insulation is WE
distribution based on PTIICS, according to the results of the MKS test with p-value, the
Akaike information criterion (AIC), the corrected AIC (CAIC), and the Hannan–Quinn
information criterion (HQIC). The WE distribution based on PTIICS has the smallest value
of MKS, AIC, BIC, CAIC, and HQIC, and has the largest value of p-value.

Using the MLE, MPS, and Bayesian methods, Table 5 shows the parameter estimates
and their standard errors (SEs) for the WE distribution based on PTIICS. We conclude that
the Bayesian estimation method is the best.
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Table 5. MLE, MPS, and Bayesian estimation methods for parameters of WE distribution under
PTIICS for real data.

MLE MPS Bayesian

Estimate SE Estimate SE Estimate SE

β 0.6036 0.5544 0.3756 0.3317 0.5386 0.1052

λ 6.2752 2.5001 1.2778 6.8847 7.0800 0.5654

δ 0.0101 0.0067 0.0243 0.0532 0.0153 0.0066

Figure 3 shows the history plots, estimated marginal posterior density, and MCMC
convergence of β, λ, and δ.
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6. Conclusions

In this article, the Bayesian estimation, MPS, and MLE methods were adopted for
estimating the WE distribution parameters under a progressive type-II censored sample
with binomial removals. Simulations were used to investigate the output of the three
proposed estimators for various parameter values and sample sizes. The Newton–Raphson
algorithm and Metropolis–Hastings algorithm were determined for the non-Bayesian and
Bayesian estimation methods. Furthermore, the simulation results were used to investigate
the effects of sample size, failure size, and removal probabilities P on estimate accuracy.
We may infer from our research that the Bayesian estimation method outperforms the
MLE and MPS methods in estimating the WE parameters in PTIICS with random removal.
Finally, to illustrate the methods of inference discussed in the paper, transformer insulation
of real data from engineering fields was investigated.
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have read and agreed to the published version of the manuscript.
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