Editorial for the Special Issue of Minerals: “Mineral Dissolution and Precipitation in Geologic Porous Media”
Acknowledgments
Conflicts of Interest
References
- Molins, S.; Trebotich, D.; Yang, L.; Ajo-Franklin, J.B.; Ligocki, T.J.; Shen, C.; Steefel, C.I. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 2014, 48, 7453–7460. [Google Scholar] [CrossRef]
- Noiriel, C.; Steefel, C.I.; Yang, L.; Bernard, D. Effects of pore-scale precipitation on permeability and flow. Adv. Water Resour. 2016, 95, 125–137. [Google Scholar] [CrossRef]
- Yoon, H.; Chojnicki, K.N.; Martinez, M.J. Pore-Scale Analysis of Calcium Carbonate Precipitation and Dissolution Kinetics in a Microfluidic Device. Environ. Sci. Technol. 2019, 53, 14233−14242. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Hong, J.-W.; Kim, K.Y.; Yeom, S.; Kwon, T.-H. X-Ray Computed Microtomography Imaging of Abiotic Carbonate Precipitation in Porous Media from a Supersaturated Solution: Insights Into Effect of CO2 Mineral Trapping on Permeability. Water Resour. Res. 2019, 55, 3835–3855. [Google Scholar] [CrossRef]
- Armstrong, R.; Ajo-Franklin, J. Investigating biomineralization using synchrotron based X-ray computed microtomography. Geophys. Res. Lett. 2011, 38, 2011GL046916. [Google Scholar] [CrossRef]
- Bray, J.M.; Lauchnor, O.G.; Redden, G.D.; Gerlach, R.; Fujita, Y.; Codd, S.L.; Seymour, J.D. Impact of Mineral Precipitation on Flow and Mixing in Porous Media Determined by Microcomputed Tomography and MRI. Environ. Sci. Technol. 2017, 51, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Kang, Q.; Valocchi, A.J. Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport. Rev. Mineral. Geochem. 2015, 80, 393–431. [Google Scholar] [CrossRef]
- Kang, Q.; Lichtner, P.C.; Janecky, D.R. Lattice Boltzmann Method for Reacting Flows in Porous Media. Adv. Appl. Math. Mech. 2010, 2, 545–563. [Google Scholar] [CrossRef]
- Nogues, J.P.; Fitts, J.P.; Celia, M.A.; Peters, C.A. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour. Res. 2013, 49, 6006–6021. [Google Scholar] [CrossRef]
- Noiriel, C.; Steefel, C.I.; Yang, L.; Ajo-Franklin, J. Upscaling calcium carbonate precipitation rates from pore to continuum scale. Chem. Geol. 2012, 318–319, 60–74. [Google Scholar] [CrossRef]
- Kang, Q.; Zhang, D.; Chen, S. Simulation of dissolution and precipitation in porous media. J. Geophys. Res. Solid Earth 2003, 108, 2003JB002504. [Google Scholar] [CrossRef]
- Bringedal, C.; von Wolff, L.; Pop, I.S. Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Model. Simul. 2020, 18, 1076–1112. [Google Scholar] [CrossRef]
- Roman, S.; Rembert, F.; Kovscek, A.R.; Poonoosamy, J. Microfluidics for geosciences: Metrological developments and future challenges. Lab Chip 2025, 25, 4273–4289. [Google Scholar] [CrossRef] [PubMed]
- Ling, B.; Sodwatana, M.; Kohli, A.; Ross, C.M.; Jew, A.; Kovscek, A.R.; Battiato, I. Probing multiscale dissolution dynamics in natural rocks through microfluidics and compositional analysis. Proc. Natl. Acad. Sci. USA 2022, 119, e2122520119. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, M.A.; Lee, S.H.; Kang, P.K. Fluid inertia controls mineral precipitation and clogging in pore to network-scale flows. Proc. Natl. Acad. Sci. USA 2024, 121, e2401318121. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chu, Y.; Wang, X.; Pan, P.; Feng, D. Numerical Investigation of Heterogeneous Calcite Distributions in MICP Processes. Minerals 2024, 14, 999. [Google Scholar] [CrossRef]
- Rodrigues, N.T.; Carrasco, I.S.S.; Voller, V.R.; Reis, F.D.A.A. Mineral Deposition on the Rough Walls of a Fracture. Minerals 2024, 14, 1213. [Google Scholar] [CrossRef]
- Cao, W.; Strounina, E.; Hofmann, H.; Scheuermann, A. Discernible Orientation for Tortuosity During Oxidative Precipitation of Fe(II) in Porous Media: Laboratory Experiment and Micro-CT Imaging. Minerals 2025, 15, 91. [Google Scholar] [CrossRef]
- Testa, M.P.; Larson, E.B.; Kirkland, B.L. Calcite Precipitation with Palmitic and Stearic Acids. Minerals 2025, 15, 361. [Google Scholar] [CrossRef]
- Viveros, F.E.; Liu, N.; Fernø, M.A. Biogeochemical Interactions and Their Role in European Underground Hydrogen Storage. Minerals 2025, 15, 929. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, J.; Liu, N. Editorial for the Special Issue of Minerals: “Mineral Dissolution and Precipitation in Geologic Porous Media”. Minerals 2026, 16, 36. https://doi.org/10.3390/min16010036
Xu J, Liu N. Editorial for the Special Issue of Minerals: “Mineral Dissolution and Precipitation in Geologic Porous Media”. Minerals. 2026; 16(1):36. https://doi.org/10.3390/min16010036
Chicago/Turabian StyleXu, Jianping, and Na Liu. 2026. "Editorial for the Special Issue of Minerals: “Mineral Dissolution and Precipitation in Geologic Porous Media”" Minerals 16, no. 1: 36. https://doi.org/10.3390/min16010036
APA StyleXu, J., & Liu, N. (2026). Editorial for the Special Issue of Minerals: “Mineral Dissolution and Precipitation in Geologic Porous Media”. Minerals, 16(1), 36. https://doi.org/10.3390/min16010036
