Petrogenesis of Himalayan Leucogranites: A Perspective from Zircon Trace Elements
Abstract
1. Introduction
2. Geological Setting and Himalayan Leucogranite Overview
3. Sample and Methodology
3.1. Sample Description
3.2. Analytical Methods
3.3. Dat Compilation and Filtering
4. Results
4.1. Zircon Morphology and Internal Structures
4.2. Zircon U-Pb Ages and Trace Element Compositions
5. Discussion
5.1. Origin of Himalayan Leucogranites
5.1.1. Magma Source and Tectonic Setting
5.1.2. Oxygen Fugacity and Temperature of Magma
5.1.3. Fractional Crystallization
5.2. Discrimination of S- and I-Type Granites
6. Conclusions
- (1)
- Two distinct types of zircons are recognized in Himalayan leucogranites: Type I (low-U) zircons exhibit well-defined oscillatory zoning and have U concentrations mostly below 5000 ppm; Type II (high-U) zircons are characterized by spongy textures and U concentrations mostly exceeding 5000 ppm.
- (2)
- Himalayan leucogranites may have formed in a relatively reduced environment and underwent a high degree of magmatic fractionation.
- (3)
- Zircons from Himalayan leucogranites exhibit higher U, Hf, Nb, Ta contents and U/Yb ratios, but lower Eu/Eu*, Ce/Ce*, LREE/HREE, Th/U, and Ce/U ratios than those from I-type granites.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bea, F.; Montero, P. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. et Cosmochim. Acta 1999, 63, 1133–1153. [Google Scholar] [CrossRef]
- Claiborne, L.L.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineral. Mag. 2006, 70, 517–543. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Hanchar, J.M.; Watson, E.B. Rare-earth diffusion in zircon. Chem. Geol. 1997, 134, 289–301. [Google Scholar] [CrossRef]
- Lee†, J.K.W.; Williams, I.S.; Ellis, D.J. Pb, U and Th diffusion in natural zircon. Nature 1997, 390, 159–162. [Google Scholar] [CrossRef]
- Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 2010, 38, 1011–1014. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, D.-C.; Zhao, Z.-D.; Guan, Q.; Zhang, X.-Q.; Sui, Q.-L.; Hu, Z.-C.; Mo, X.-X. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. J. Asian Earth Sci. 2012, 53, 59–66. [Google Scholar] [CrossRef]
- Burnham, A.D.; Berry, A.J. Formation of Hadean granites by melting of igneous crust. Nat. Geosci. 2017, 10, 457–461. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Yakymchuk, C.; Spencer, C.J.; Keller, C.B.; Tapster, S.R. Revisiting the discrimination and distribution of S-type granites from zircon trace element composition. Earth Planet. Sci. Lett. 2024, 633, 118638. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol. 2015, 170, 46. [Google Scholar] [CrossRef]
- Carley, T.L.; Miller, C.F.; Wooden, J.L.; Padilla, A.J.; Schmitt, A.K.; Economos, R.C.; Bindeman, I.N.; Jordan, B.T. Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record. Earth Planet. Sci. Lett. 2014, 405, 85–97. [Google Scholar] [CrossRef]
- Dilles, J.H.; Kent, A.J.R.; Wooden, J.L.; Tosdal, R.M.; Koleszar, A.; Lee, R.G.; Farmer, L.P. ZIRCON COMPOSITIONAL EVIDENCE FOR SULFUR-DEGASSING FROM ORE-FORMING ARC MAGMAS*. Econ. Geol. 2015, 110, 241–251. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Hawkesworth, C.J.; Robb, L.J.; Whitehouse, M.J.; Roberts, N.M.W.; Kirkland, C.L.; Evans, N.J. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar. Sci. Rep. 2017, 7, 748. [Google Scholar] [CrossRef]
- Paolillo, L.; Chiaradia, M.; Ulianov, A. Zircon Petrochronology of the Kişladaǧ Porphyry Au Deposit (Turkey). Econ. Geol. 2021, 117, 401–422. [Google Scholar] [CrossRef]
- Jara, J.J.; Barra, F.; Reich, M.; Leisen, M.; Romero, R.; Morata, D. Episodic construction of the early Andean Cordillera unravelled by zircon petrochronology. Nat. Commun. 2021, 12, 4930. [Google Scholar] [CrossRef]
- Liu, H.; McKenzie, N.R.; Colleps, C.L.; Chen, W.; Ying, Y.; Stockli, L.; Sardsud, A.; Stockli, D.F. Zircon isotope–trace element compositions track Paleozoic–Mesozoic slab dynamics and terrane accretion in Southeast Asia. Earth Planet. Sci. Lett. 2022, 578, 117298. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Deniel, C.; Vidal, P.; Fernandez, A.; Le Fort, P.; Peucat, J.-J. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences on the age and source of Himalayan leucogranites. Contrib. Mineral. Petrol. 1987, 96, 78–92. [Google Scholar] [CrossRef]
- Le Fort, P.; Cuney, M.; Deniel, C.; France-Lanord, C.; Sheppard, S.M.F.; Upreti, B.N.; Vidal, P. Crustal generation of the Himalayan leucogranites. Tectonophysics 1987, 134, 39–57. [Google Scholar] [CrossRef]
- Harris, N.; Massey, J. Decompression and anatexis of Himalayan metapelites. Tectonics 1994, 13, 1537–1546. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Harris, N. Experimental Constraints on Himalayan Anatexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Hopkinson, T.N.; Harris, N.B.W.; Warren, C.J.; Spencer, C.J.; Roberts, N.M.W.; Horstwood, M.S.A.; Parrish, R.R.; EIMF. The identification and significance of pure sediment-derived granites. Earth Planet. Sci. Lett. 2017, 467, 57–63. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Z.; Kohn, M.J. Himalayan “S-type” granite generated from I-type sources. Proc. Natl. Acad. Sci. USA 2025, 122, e2500480122. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Liu, X.-C.; Liu, Z.-C.; Wang, R.-C.; Xie, L.; Wang, J.-M.; Ji, W.-Q.; Yang, L.; Liu, C.; Khanal, G.P.; et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 2020, 352–353, 105319. [Google Scholar] [CrossRef]
- Cao, H.-W.; Pei, Q.-M.; Santosh, M.; Li, G.-M.; Zhang, L.-K.; Zhang, X.-F.; Zhang, Y.-H.; Zou, H.; Dai, Z.-W.; Lin, B.; et al. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization. Earth-Sci. Rev. 2022, 234, 104229. [Google Scholar] [CrossRef]
- Gao, L.-E.; Zeng, L.; Zhao, L.; Hou, K.; Guo, C.; Gao, J.; Wang, Y. Geochemical behavior of rare metals and high field strength elements during granitic magma differentiation: A record from the Borong and Malashan Gneiss Domes, Tethyan Himalaya, southern Tibet. Lithos 2021, 398–399, 106344. [Google Scholar] [CrossRef]
- Wang, Z.-Z.; Teng, F.-Z.; Zeng, L.; Liu, Z.-C. Himalayan Leucogranites: A Geochemical Perspective. Elements 2024, 20, 395–400. [Google Scholar] [CrossRef]
- Guillot, S.; Le Fort, P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos 1995, 35, 221–234. [Google Scholar] [CrossRef]
- Zeng, L.; Gao, L.-E.; Xie, K.; Liu-Zeng, J. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet. Sci. Lett. 2011, 303, 251–266. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, M. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res. 2012, 22, 360–376. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wu, F.-Y.; Ji, W.-Q.; Wang, J.-G.; Liu, C.-Z. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos 2014, 208–209, 118–136. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wu, F.-Y.; Liu, X.-C.; Wang, J.-G.; Yin, R.; Qiu, Z.-L.; Ji, W.-Q.; Yang, L. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos 2019, 340–341, 71–86. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Liu, Z.-C.; Liu, X.-C.; Ji, W.-Q. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol. Sin. 2015, 31, 1–36. [Google Scholar]
- Weinberg, R.F. Himalayan leucogranites and migmatites: Nature, timing and duration of anatexis. J. Metamorph. Geol. 2016, 34, 821–843. [Google Scholar] [CrossRef]
- Gao, L.-E.; Zeng, L.; Asimow, P.D. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology 2017, 45, 39–42. [Google Scholar] [CrossRef]
- Qin, K.-Z.; Zhao, J.-X.; He, C.-T.; Shi, R.-Z. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China. Acta Petrol. Sin. 2021, 37, 3277–3286. [Google Scholar] [CrossRef]
- Ji, M.; Gao, X.-Y.; Zheng, Y.-F. Geochemical evidence for partial melting of progressively varied crustal sources for leucogranites during the Oligocene–Miocene in the Himalayan orogen. Chem. Geol. 2022, 589, 120674. [Google Scholar] [CrossRef]
- Barth, A.P.; Wooden, J.L. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem. Geol. 2010, 277, 149–159. [Google Scholar] [CrossRef]
- Claiborne, L.L.; Miller, C.F.; Wooden, J.L. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib. Mineral. Petrol. 2010, 160, 511–531. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, H.; Palin, R.M.; Dong, X.; Tian, Z.; Kang, D.; Jiang, Y.; Qin, S.; Li, W. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Res. 2022, 104, 4–22. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wu, F.-Y.; Ji, W.-Q.; Liu, X.-C.; Wang, J.-G. Monazite record of assimilation and differentiation processes in the petrogenesis of Himalayan leucogranites. Chem. Geol. 2023, 639, 121700. [Google Scholar] [CrossRef]
- Crowley, J.L.; Waters, D.J.; Searle, M.P.; Bowring, S.A. Pleistocene melting and rapid exhumation of the Nanga Parbat massif, Pakistan: Age and P–T conditions of accessory mineral growth in migmatite and leucogranite. Earth Planet. Sci. Lett. 2009, 288, 408–420. [Google Scholar] [CrossRef]
- Zeng, L.; Gao, L.-E.; Dong, C.; Tang, S. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet. Gondwana Res. 2012, 21, 138–151. [Google Scholar] [CrossRef]
- Hou, Z.-Q.; Zheng, Y.-C.; Zeng, L.-S.; Gao, L.-E.; Huang, K.-X.; Li, W.; Li, Q.-Y.; Fu, Q.; Liang, W.; Sun, Q.-Z. Eocene–Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet. Sci. Lett. 2012, 349–350, 38–52. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wu, F.-Y.; Ding, L.; Liu, X.-C.; Wang, J.-G.; Ji, W.-Q. Highly fractionated Late Eocene (~35Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos 2016, 240–243, 337–354. [Google Scholar] [CrossRef]
- Gou, Z.; Zhang, Z.; Dong, X.; Xiang, H.; Ding, H.; Tian, Z.; Lei, H. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya. Lithos 2016, 256–257, 300–310. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Liu, X.-C.; Liu, Z.-C.; Zhang, C.; Liu, T.; Wang, J.-G.; Paterson, S.R. Pervasive Miocene melting of thickened crust from the Lhasa terrane to Himalaya, southern Tibet and its constraint on generation of Himalayan leucogranite. Geochim. et Cosmochim. Acta 2020, 278, 137–156. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, H.; Dong, X.; Tian, Z.; Kang, D.; Mu, H.; Qin, S.; Jiang, Y.; Li, M. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. J. Earth Sci. 2018, 29, 1010–1025. [Google Scholar] [CrossRef]
- Kang, D.; Zhang, Z.; Palin, R.M.; Tian, Z.; Dong, X. Prolonged Partial Melting of Garnet Amphibolite from the Eastern Himalayan Syntaxis: Implications for the Tectonic Evolution of Large Hot Orogens. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019119. [Google Scholar] [CrossRef]
- Ding, H.; Kohn, M.J.; Zhang, Z. Long-lived (ca. 22–24 Myr) partial melts in the eastern Himalaya: Petrochronologic constraints and tectonic implications. Earth Planet. Sci. Lett. 2021, 558, 116764. [Google Scholar] [CrossRef]
- Zong, K.; Klemd, R.; Yuan, Y.; He, Z.; Guo, J.; Shi, X.; Liu, Y.; Hu, Z.; Zhang, Z. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2009, 51, 537–571. [Google Scholar] [CrossRef]
- Bell, E.A.; Boehnke, P.; Harrison, T.M. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochim. et Cosmochim. Acta 2016, 191, 187–202. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Richards, J.P.; Rees, C.; Creaser, R.; DuFrane, S.A.; Locock, A.; Petrus, J.A.; Lang, J. Elevated Magmatic Sulfur and Chlorine Contents in Ore-Forming Magmas at the Red Chris Porphyry Cu-Au Deposit, Northern British Columbia, Canada. Econ. Geol. 2018, 113, 1047–1075. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Inger, S.; Harris, N. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. J. Petrol. 1993, 34, 345–368. [Google Scholar] [CrossRef]
- Harris, N.; Ayres, M.; Massey, J. Geochemistry of granitic melts produced during the incongruent melting of muscovite: Implications for the extraction of Himalayan leucogranite magmas. J. Geophys. Res. Solid Earth 1995, 100, 15767–15777. [Google Scholar] [CrossRef]
- Harrison, T.M.; Grove, M.; Lovera, O.M.; Catlos, E.J. A model for the origin of Himalayan anatexis and inverted metamorphism. J. Geophys. Res. Solid Earth 1998, 103, 27017–27032. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Chung, S.-L.; Wang, X.-C.; Liu, C.-Z.; Li, Q.-L.; Liu, Z.-C.; Liu, X.-C.; Wang, J.-G. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology 2016, 44, 283–286. [Google Scholar] [CrossRef]
- Zeming, Z.; Hua, X.; Huixia, D.; Xin, D.; Zhengbin, G.; Zhulin, T.; Santosh, M. Miocene orbicular diorite in east-central Himalaya: Anatexis, melt mixing, and fractional crystallization of the Greater Himalayan Sequence. GSA Bull. 2017, 129, 869–885. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, J.; Wang, X.; Huang, T.; Zhang, B.; Fan, Y. Himalayan Miocene adakitic rocks, a case study of the Mayum pluton: Insights into geodynamic processes within the subducted Indian continental lithosphere and Himalayan mid-Miocene tectonic regime transition. GSA Bull. 2021, 133, 591–611. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wang, J.-G.; Liu, X.-C.; Liu, Y.; Lai, Q.-Z. Middle Miocene ultrapotassic magmatism in the Himalaya: A response to mantle unrooting process beneath the orogen. Terra Nova 2021, 33, 240–251. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Trail, D.; Bruce Watson, E.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. et Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, J.M.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. In The Second Hutton Symposium on the Origin of Granites and Related Rocks; Brown, P.E., Chappell, B.W., Eds.; Geological Society of America: Boulder, CO, USA, 1992; pp. 1–26. [Google Scholar]
- Trail, D.; Watson, E.B.; Tailby, N.D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 2011, 480, 79–82. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.-F.; Mayne, M.J.; Zhao, Z.-F. Miocene high-temperature leucogranite magmatism in the Himalayan orogen. GSA Bull. 2020, 133, 679–690. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.-F.; Zhao, Z.-F. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos 2016, 258–259, 77–91. [Google Scholar] [CrossRef]
- Xie, L.; Tao, X.; Wang, R.; Wu, F.; Liu, C.; Liu, X.; Li, X.; Zhang, R. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be–Nb–Ta and hydrothermal Be–W–Sn mineralization. Lithos 2020, 354–355, 105286. [Google Scholar] [CrossRef]
- Zhou, Q.-F.; Qin, K.-Z.; He, C.-T.; Wu, H.-Y.; Liu, Y.-C.; Niu, X.-L.; Mo, L.-C.; Liu, X.-C.; Zhao, J.-X. Li-Be-Nb-Ta mineralogy of the Kuqu leucogranite and pegmatite in the Eastern Himalaya, Tibet, and its implication. Acta Petrol. Sin. 2021, 37, 3305–3324. [Google Scholar] [CrossRef]
- Li, G.-M.; Zhang, L.-K.; Jiao, Y.-J.; Xia, X.-B.; Dong, S.-L.; Fu, J.-G.; Liang, W.; Zhang, Z.; Wu, J.-Y.; Dong, L.; et al. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Miner. Depos. 2017, 36, 1003–1008. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite type. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Bucholz, C.E.; Stolper, E.M.; Eiler, J.M.; Breaks, F.W. A Comparison of Oxygen Fugacities of Strongly Peraluminous Granites across the Archean–Proterozoic Boundary. J. Petrol. 2018, 59, 2123–2156. [Google Scholar] [CrossRef]
- Zhu, Z.; Campbell, I.H.; Allen, C.M.; Burnham, A.D. S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth Planet. Sci. Lett. 2020, 536, 116140. [Google Scholar] [CrossRef]
- Pichavant, M.; Montel, J.-M.; Richard, L.R. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model. Geochim. et Cosmochim. Acta 1992, 56, 3855–3861. [Google Scholar] [CrossRef]
- Bucholz, C.E. Coevolution of sedimentary and strongly peraluminous granite phosphorus records. Earth Planet. Sci. Lett. 2022, 596, 117795. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Kirkland, C.L.; Clark, C. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 2018, 36, 715–737. [Google Scholar] [CrossRef]
- Stepanov, A.S.; Hermann, J.; Rubatto, D.; Rapp, R.P. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem. Geol. 2012, 300–301, 200–220. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Zhang, Z.; Yuan, J.; Zhang, Y.; Li, Q.; An, Y.; Zhan, D. Petrogenesis of Himalayan Leucogranites: A Perspective from Zircon Trace Elements. Minerals 2025, 15, 1306. https://doi.org/10.3390/min15121306
Lu W, Zhang Z, Yuan J, Zhang Y, Li Q, An Y, Zhan D. Petrogenesis of Himalayan Leucogranites: A Perspective from Zircon Trace Elements. Minerals. 2025; 15(12):1306. https://doi.org/10.3390/min15121306
Chicago/Turabian StyleLu, Weirui, Zeming Zhang, Jia Yuan, Yang Zhang, Qiang Li, Yu An, and Di Zhan. 2025. "Petrogenesis of Himalayan Leucogranites: A Perspective from Zircon Trace Elements" Minerals 15, no. 12: 1306. https://doi.org/10.3390/min15121306
APA StyleLu, W., Zhang, Z., Yuan, J., Zhang, Y., Li, Q., An, Y., & Zhan, D. (2025). Petrogenesis of Himalayan Leucogranites: A Perspective from Zircon Trace Elements. Minerals, 15(12), 1306. https://doi.org/10.3390/min15121306

