Unraveling Reservoir Quality: How Mineralogy Shapes Pore Attributes in Sandstone Lithofacies
Abstract
1. Introduction
2. Materials and Methods
2.1. The Case Study
2.2. Sample Collection and Analyses
2.3. Petrophysical Measurements
2.4. Regression Analysis
3. Results
3.1. Samples Characterization and Petrophysical Investigation
3.2. Specific Surface Areas of Grains (Sgv) and Pores (Spv)
3.3. Effective Pore Throat Radii (Apex)
3.4. Capillary Pressure (Pc) and Microscopic Recovery Efficiency (Re)
3.5. Petrophysical Modeling
4. Discussion
4.1. Influence of Mineralogy on Porosity and Permeability
4.2. Role of Diagenetic Processes
4.3. Pore Structure and Specific Surface Area Relationships
4.4. Capillary Behavior and Recovery Efficiency
4.5. Predictive Modeling and Reservoir Implications
4.6. Broader Geological Significance and Practical Applications
4.7. Limitations
5. Conclusions
- Two sandstone facies, quartz arenite (QA) and quartz wacke (QW), display distinct mineralogical and petrophysical signatures that govern reservoir quality.
- QA shows higher ϕ and k, larger pore/throat radii, and lower specific surface area than QW, reflecting cleaner, better connected pores driven by mineralogy and diagenesis. QA is enriched in quartz and dolomite, which preserve intergranular porosity and promote better pore connectivity, while QW contains higher proportions of clays, iron oxyhydroxides, and dolomitic cements that occlude pores and restrict fluid flow. Consistently, QA has lower irreducible water saturation and higher recovery.
- Multivariate regressions (R2 = 0.78–1.0) translate XRD-derived mineral percentages into ϕ, k, r, Spv, Sgv, and apex radii (R35/R36), yielding predictive equations on a facies scale. This model enables the estimation of reservoir properties directly from mineralogical data, supporting early screening and heterogeneity mapping in Bahariya analogues and similar clastic reservoirs where core data are limited.
- For both facies, the Aguilera R35 and permeability derived R36 parameters reliably reproduce the effective pore throat radius and outperform the porosity-derived R36 alternative.
- The methodology and predictive framework presented here can be readily applied to other clastic systems of similar composition and depositional setting, supporting more reliable reservoir characterization, performance forecasting, and exploration risk assessment in both conventional and unconventional sandstone reservoirs.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, X.; Suo, L.; Huang, Y.; Wang, H.; Yu, H.; Xu, C.; Xu, J.; Qin, X.; Sun, W.; Cao, Y.; et al. Study on the Occurrence Characteristics of the Remaining Oil in Sandstone Reservoirs with Different Permeability after Polymer Flooding. Polymers 2024, 16, 1902. [Google Scholar] [CrossRef] [PubMed]
- Correia Tenório, M.S.; Souza de Lima, T.C.; Vieira Batista, Z.; Diógenes Fernandes, G.M.; Mendonça Tenório de Magalhães Oliveira, L. Parametric analysis by numerical simulation of an oil reservoir analogue from the Maceió formation (Alagoas basin). J. S. Am. Earth Sci. 2022, 119, 104031. [Google Scholar] [CrossRef]
- Tang, T.; Li, H.; Fu, L.; Chen, S.; Wang, J. Gas–Water Distribution and Controlling Factors in a Tight Sandstone Gas Reservoir: A Case Study of Southern Yulin, Ordos Basin, China. Processes 2025, 13, 812. [Google Scholar] [CrossRef]
- Adepehin, E.J.; Bankole, O.M.; Arifin, M.H. Poro-perm evolution in Oligo-Miocene coastal sandstones: Constraining the relative influence of sedimentary facies, mineralogy, and diagenesis on analogue reservoir quality of the Nyalau Formation, Borneo. Mar. Pet. Geol. 2022, 139, 105589. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Z.; Qu, T.; Zhao, J.; Li, Z. Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin. Minerals 2025, 15, 394. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Feng, Y.X.; Zhao, J.X.; Lei, M.; Nguyen, A.D. Distal accumulation of leaked gas from deep overpressured zone: The case of the Yanan Sag, Qiongdongnan Basin, South China Sea. Mar. Pet. Geol. 2023, 151, 106181. [Google Scholar] [CrossRef]
- Shu, Y.; Sang, S.X.; Lin, Y.X.; Zhou, X.Z.; Wang, H.; Wang, Z.L. The influence of magmatic-hydrothermal activities on porosity and permeability of sandstone reservoirs in the Linxing area, Ordos Basin, Northern China. J. Asian Earth Sci. 2021, 213, 104741. [Google Scholar] [CrossRef]
- Bello, A.M.; Al-Ramadan, K.; Koeshidayatullah, A.I.; Amao, A.O.; Herlambang, A.; Al-Ghamdi, F.; Malik, M.H. Impact of magmatic intrusion on diagenesis of shallow marine sandstones: An example from Qasim Formation, Northwest Saudi Arabia. Front. Earth Sci. 2023, 11, 1105547. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Feng, Y.X.; Zhao, J.X.; Liu, Q. Igneous intrusion drives in-reservoir oil thermal cracking: A case from the Subei Basin, eastern China. AAPG Bull. 2024, 108, 2045–2072. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, J.; Tian, X.; Zhuo, Q.; Jia, C.; Guo, Z. Evolution of the deeply buried Jurassic reservoirs in the southern Junggar Basin, NW China: Evidences from the Well DS-1. Pet. Res. 2017, 2, 247–263. [Google Scholar] [CrossRef]
- Ocheli, A.; Omoko, E.N.; Aigbadon, G.O.; Ogbe, O.B. Grain size distributions and petrographic analyses of the outcropped Eocene-Miocene sedimentary successions, southern Nigeria: Depositional environments and petroleum reservoir quality predictions. Res. Earth Sci. 2025, 3, 100068. [Google Scholar] [CrossRef]
- Ali, A.; Gabr, M.; Hashem, M.; Elewa, A.M.T.; Mohamed, R.S.A. Sandstone reservoir quality in light of depositional and diagenetic processes of the Messinian Qawasim Formation, onshore Nile Delta, Egypt. J. Asian Earth Sci. 2022, 223, 104992. [Google Scholar] [CrossRef]
- Magoba, M.; Opuwari, M.; Liu, K. The Effect of Diagenetic Minerals on the Petrophysical Properties of Sandstone Reservoir: A Case Study of the Upper Shallow Marine Sandstones in the Central Bredasdorp Basin, Offshore South Africa. Minerals 2024, 14, 396. [Google Scholar] [CrossRef]
- Risha, M.; Tsegab, H.; Rahmani, O.; Douraghi, J. The Impact of Clay Minerals on the Porosity Distribution of Clastic Reservoirs: A Case Study from the Labuan Island, Malaysia. Appl. Sci. 2023, 13, 3427. [Google Scholar] [CrossRef]
- Khidir, A.; Catuneanu, O. Reservoir characterization of Scollard-age fluvial sandstones, Alberta foredeep. J. Mar. Pet. Geol. 2010, 27, 2037–2050. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Ma, Y.; Jiang, S.; Feng, S.; Hu, H. Effects of mineralogy on pore structure and fluid flow capacity of deeply buried sandstone reservoirs with a case study in the Junggar Basin. J. Pet. Sci. Eng. 2020, 189, 106986. [Google Scholar] [CrossRef]
- Azzam, F.; Blaise, T.; Patrier, P.; Elmola, A.A.; Beaufort, D.; Portier, E.; Brigaud, B.; Barbarand, J.; Clerc, S. Diagenesis and Reservoir Quality Evolution of the Lower Cretaceous Turbidite Sandstones of the Agat Formation (Norwegian North Sea): Impact of Clay Grain Coating and Carbonate Cement. Mar. Pet. Geol. 2022, 142, 105768. [Google Scholar] [CrossRef]
- Wu, D.; Yu, Y.; Lin, L.; Chen, H.; Liu, S. Characteristics and Control Factors of a High-Quality Deeply Buried Calcareous Sandstone Reservoir, the Fourth Member of the Upper Xujiahe Formation in the Western Sichuan Basin, China. Minerals 2024, 14, 872. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, H.; Shen, Y.; Jia, L.; Wang, J. Evaluating the potential for oil recovery by imbibition and time-delay effect in tight reservoirs during shut-in. J. Pet. Sci. Eng. 2020, 184, 106557. [Google Scholar] [CrossRef]
- Peretomode, E.; Oluyemi, G.; Faisal, N.H. Oilfield chemical-formation interaction and the effects on petrophysical properties: A review. Arab. J. Geosci. 2022, 15, 1223. [Google Scholar] [CrossRef]
- Eyinla, D.S.; Leggett, S.; Badrouchi, F.; Emadi, H.; Adamolekun, O.J.; Akinsanpe, O.T. A comprehensive review of the potential of rock properties alteration during CO2 injection for EOR and storage. Fuel 2023, 353, 129219. [Google Scholar] [CrossRef]
- Vishkai, M.; Wang, J.; Wong, R.; Clarkson, C.; Gates, I. Modeling geomechanical properties in the montney formation, Alberta, Canada. Int. J. Rock Mech. Min. Sci. 2017, 96, 94–105. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, W.; Xu, H.; Xiao, C.; Jiang, S. Experimental study of hydraulic fracture initiation and propagation in unconsolidated sand with the injection of temporary plugging agent. J. Pet. Sci. Eng. 2019, 190, 106813. [Google Scholar] [CrossRef]
- Pang, X.; Wang, G.; Zhao, M.; Wang, Q.; Zhang, X. The reservoir characteristics and their controlling factors of the sublacustrine fan in the Paleogene Dongying Formation Bohai Sea, China. J. Palaeogeogr. 2024, 13, 127–148. [Google Scholar] [CrossRef]
- Oghenekome, M.E.; Chatterjee, T.K.; van Bever Donker, J.M.; Baiyegunhi, C. Impacts of diagenetic alterations on siliciclastic sediments of the pletmos basin: Implications for reservoir quality. J. Pet. Explor. Prod. Technol. 2025, 15, 162. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.S.; Radwan, A.E.; Wang, B.H.; Wang, K.; Tian, H.Y.; Yin, S. Diagenesis of continental tight sandstone and its control on reservoir quality: A case study of the Quan 3 member of the cretaceous Quantou Formation, Fuxin uplift, Songliao Basin. Mar. Pet. Geol. 2022, 145, 105883. [Google Scholar] [CrossRef]
- Du, M.; Yang, Z.; Yang, S.; Feng, C.; Wang, G.; Jia, N.; Li, H.; Shi, X. Study on the Quantitative Characterization and Heterogeneity of Pore Structure in Deep Ultra-High Pressure Tight Glutenite Reservoirs. Minerals 2023, 13, 601. [Google Scholar] [CrossRef]
- Liu, C.; Yin, C.; Lu, J.; Sun, L.; Wang, Y.; Hu, B.; Li, J. Pore structure and physical properties of sandy conglomerate reservoirs in the Xujiaweizi depression, northern Songliao Basin, China. J. Pet. Sci. Eng. 2020, 192, 107217. [Google Scholar] [CrossRef]
- Al-Ojaili, W.A.; Shalaby, M.R.; Bauer, W. Reservoir quality evaluation of the Narimba Formation in Bass Basin, Australia: Implications from petrophysical analysis, sedimentological features, capillary pressure and wetting fluid saturation. Energy Geosci. 2024, 5, 100220. [Google Scholar] [CrossRef]
- Kassab, M.; Weller, A.; Abuseda, H. Integrated petrographical and petrophysical studies of sandstones from the Araba Formation for reservoir characterization. Arab. J. Geosci. 2022, 15, 944. [Google Scholar] [CrossRef]
- Haj Messaoud, J.; Thibault, N.; Bomou, B.; Adatte, T.; Aljahdali, M.H.; Yaich, C. Integrated surface-subsurface reservoir zonation of the early Bartonian nummulitic limestone in central Tunisia and eastern Tunisian offshore. Front. Earth Sci. 2024, 12, 1452977. [Google Scholar] [CrossRef]
- Busch, B.; Spitzner, A.D.; Adelmann, D.; Hilgers, C. The significance of outcrop analog data for reservoir quality assessment: A comparative case study of Lower Triassic Buntsandstein sandstones in the Upper Rhine Graben. Mar. Pet. Geol. 2022, 141, 105701. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, X.; Bin, H.; Zhang, S.; Tan, C.; Xizo, H. Pore Structure and Permeability Characterization of Tight Sandstone Reservoirs: From a Multiscale Perspective. Energy Fuels 2023, 37, 9185–9196. [Google Scholar] [CrossRef]
- You, F.; Liu, G.; Sun, M.; An, C.; Li, C.; Li, Y. Impacts of Pore Structure on the Occurrence of Free Oil in Lacustrine Shale Pore Networks. Energies 2023, 16, 7205. [Google Scholar] [CrossRef]
- Guirguis, A.W.; El Sayed, A.M.A.; Khlaifat, A.L.; Sharaf El-din, A.E.; Baghdady, A.R. Unveiling Reservoir Dynamics: Influence of Mineralogy and Rock Architecture on Petrophysical Properties in the Bahariya Formation, Gebel El Dist, Western Desert, Egypt. Egypt. J. Pet. 2024, 33, 530–542. [Google Scholar] [CrossRef]
- Farrag, G.H.; Baghdady, A.; Elnaggar, O.M. Petrophysical attributes of the middle zone of the Bahariya Formation as a producing reservoir using core analysis correlations and log evaluation, Abu Sennan area, Egypt. J. Afr. Earth Sci. 2021, 180, 104225. [Google Scholar] [CrossRef]
- Sarhan, M.A. Geophysical assessment and hydrocarbon potential of the Cenomanian Bahariya reservoir in the Abu Gharadig Field, Western Desert, Egypt. J. Pet. Explor. Prod. Technol. 2021, 11, 3963–3993. [Google Scholar] [CrossRef]
- Abdelwahhab, M.A.; Raef, A. Integrated reservoir and basin modeling in understanding the petroleum system and evaluating prospects: The Cenomanian reservoir, Bahariya Formation, at Falak Field, Shushan Basin, Western Desert, Egypt. J. Pet. Sci. Eng. 2020, 189, 107023. [Google Scholar] [CrossRef]
- Shehata, A.A.; Abdel-Fattah, M.I.; Hamdan, H.A.; Sarhan, M.A. Seismic interpretation and sequence stratigraphic analysis of the Bahariya Formation in the South Umbaraka oilfields (Western Desert, Egypt): Insights into reservoir distribution, architecture, and evaluation. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 135. [Google Scholar] [CrossRef]
- Catuneanu, O.; Khalifa, M.A.; Wanas, H.A. Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt. Sediment. Geol. 2006, 190, 121–137. [Google Scholar] [CrossRef]
- Yehia, M.; Baghdady, A.; Howari, F.M.; Awad, S.; Gad, A. Natural radioactivity and groundwater quality assessment in the northern area of the Western Desert of Egypt. J. Hydrol. Reg. Stud. 2017, 12, 331–344. [Google Scholar] [CrossRef]
- Awadalla, A.; Farag, A.; Moscariello, A.; Leila, M. Integrated seismic stratigraphic, sedimentological and petrophysical approaches for characterizing the Cenomanian reservoirs in transitional highs of north Western Desert intra-cratonic rift basins, Egypt. Mar. Pet. Geol. 2025, 182, 107581. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Co.: Austin, TX, USA, 1968. [Google Scholar]
- Pettijohn, F.J.; Potter, P.E.; Seiver, R. Sand and Sandstone, 2nd ed.; Springer Science: New York, NY, USA, 1973. [Google Scholar]
- El Sayed, A.M.A. Geological and Petrophysical Studies for the Algyo-2 Reservoir Evaluation-Algyo-Oil and Gas Field, Hungary. Ph.D. Thesis, Hungarian Academy of Science, Budapest, Hungary, 1981. [Google Scholar]
- Tiab, D.; Donaldson, E.C. Petrophysics Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 4th ed.; Gulf Professional Publishing: Houston, TX, USA, 2015. [Google Scholar]
- El Sayed, A.M.A. Petrophysical Studies on Core Samples from Um El Yusr Oil Field, Eastern Desert Egypt. Master’s Thesis, Ain Shams University, Cairo, Egypt, 1976. [Google Scholar]
- Asquith, G.; Krygowski, D.C. Basic Well Log Analysis, 2nd ed.; AAPG Bulletin: Tulsa, OK, USA, 2004. [Google Scholar]
- Dandekar, A.Y. Petroleum Reservoir Rock and Fluid Properties, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar]
- Swanson, B.F. A simple correlation between permeabilities and mercury capillary pressures. J. Pet. Technol. 1981, 12, 2488–2504. [Google Scholar] [CrossRef]
- Liu, M.; Xie, R.; Wu, S.; Zhu, R.; Mao, Z.; Wang, C. Permeability prediction from mercury injection capillary pressure curves by partial least squares regression method in tight sandstone reservoirs. J. Pet. Sci. Eng. 2018, 169, 135–145. [Google Scholar] [CrossRef]
- El Sayed, A.M.A.; El Sayed, N.A. Pore aperture size (r36) calculation from porosity or permeability to distinguish dry and producing wells. Arab. J. Geosci. 2021, 14, 866. [Google Scholar] [CrossRef]
- El Sayed, A.M.A.; Mousa, S.A.; Hegazi, A.; Al-Kodsh, A. Reservoir characteristics of the Bahariya Formation in both Salaam and Khalda oil fields, Western Desert, Egypt. EGS Proc. 11Th Ann. Mtg 1993, 11, 115–132. [Google Scholar]
- Pittman, E.D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. AAPG Bull. 1992, 76, 191–198. [Google Scholar] [CrossRef]
- El Sayed, A.M.A. Relationship of porosity and permeability to mercury injection derived parameter for sandstones of the Törtel Formation, Hungary. Geophys. Trans. 1993, 38, 35–46. [Google Scholar]
- Sharanik, J.; Sarris, E.; Hadjistassou, C. Storage and Production Aspects of Reservoir Fluids in Sedimentary Core Rocks. Geosciences 2025, 15, 386. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, J.; Qiu, X.; Wang, M.; Geng, B.; Hu, Q. Characteristics and correlations of rock components, structure, and physical properties of deep clastic reservoirs in the LD-X area of Yinggehai basin, western South China Sea. Mar. Pet. Geol. 2024, 167, 106995. [Google Scholar] [CrossRef]
- El Sayed, A.M.A.; El Sayed, A.N.; Hadeer, A.A.; Mohamed, A.K.; Salah, M.A.; Moataz, M.G. Rock typing based on hydraulic and electric flow units for reservoir characterization of Nubia Sandstone, southwest Sinai, Egypt. J. Pet. Explor. Prod. Technol. 2021, 11, 3225–3323. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Al Shehri, D.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E. A Review on Underground Hydrogen Storage: Insight into Geological Sites, Influencing Factors and Future Outlook. Energy Rep. 2022, 8, 461–499. [Google Scholar] [CrossRef]
- Guan, X.; Xiao, D.; Jin, H.; Cui, J.; Wang, M.; Shao, H.; Zheng, L.; Wang, R. Classification and Controlling Factors of Different Types of Pore Throat in Tight Sandstone Reservoirs Based on Fractal Features—A Case Study of Xujiahe Formation in Western Sichuan Depression. Minerals 2025, 15, 18. [Google Scholar] [CrossRef]
- Lu, H.; Yue, D.L.; Jones, S.J.; Li, S.X.; Wang, W.R.; Bai, B.; Hou, X.L.; Li, Z.; Wu, S.H.; Li, Q. Lithofacies assemblage and effects on diagenesis in lacustrine tight sandstone reservoirs: Samples from Upper Triassic Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol. 2024, 167, 107001. [Google Scholar] [CrossRef]
- Gad, A.; Arman, H.; Yagiz, S.; Abdelghany, O.; Amin, B.; Ahmed, A.; Paramban, S.; Abu Saima, M. Strength Characterization of Limestone Lithofacies Under Different Moisture States. Sci. Rep. 2025, 8, 461–499. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, L.; Sima, L.; Guo, Y.; Zhang, H. Understanding stress-sensitive behavior of pore structure in tight sandstone reservoirs under cyclic compression using mineral, morphology, and stress analyses. J. Pet. Sci. Eng. 2022, 218, 110987. [Google Scholar] [CrossRef]
- Nanayakkara, C.J.; Perera, M.S.A.; Islam, Z.F.; Shang, J. Impact of heterogeneity, rock-fluid interactions, and cyclic loading on reservoir rock mechanical integrity during underground hydrogen storage. Gas Sci. Eng. 2026, 145, 205789. [Google Scholar] [CrossRef]
- Zhang, C.J.; Hu, Q.H.; Yang, S.Y.; Zhang, T.; Dong, M.Z.; Sang, Q.; Ke, Y.B.; Jiang, H.Q.; Jin, Z.J. Hierarchical Cluster and Principal Component Analyses of Multi-scale Pore Structure and Shale Components in the Upper Triassic Chang 7 Member in the Ordos Basin of Northern China. J. Asian Earth Sci. 2024, 261, 106001. [Google Scholar] [CrossRef]
- Elnaggar, O.M.; Temraz, M.G. Miocene reservoir rocks: Pore throat size distribution as a strong controller on petrophysical attributes is a reflection of facies change. J. Pet. Explor. Prod. Technol. 2018, 8, 667–675. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Liu, J.; Wang, Y.; Guo, L.; Wu, Z.; Tian, Y. A Fractal Characteristics Analysis of the Pore Throat Structure in Low-Permeability Sandstone Reservoirs: A Case Study of the Yanchang Formation, Southeast Ordos Basin. Fractal Fract. 2025, 9, 224. [Google Scholar] [CrossRef]
- Kane, O.I.; Hu, M.-Y.; Cai, Q.-S.; Deng, Q.-J.; Tong, Z.-B. Sedimentary facies analysis, palaeogeography, and reservoir quality of the Middle–Upper Cambrian Xixiangchi Formation in southeast Sichuan Basin, southwest China. J. Palaeogeogr. 2024, 14, 245–276. [Google Scholar] [CrossRef]
- Kassab, M.A.; Teama, M.A.; Cheadle, B.A.; El-Din, E.S.; Mohamed, I.F.; Mesbah, M.A. Reservoir characterization of the Lower Abu Madi Formation using core analysis data: El-Wastani gas field Egypt. J. Afr. Earth Sci. 2015, 110, 116–130. [Google Scholar] [CrossRef]
- Abu-Hashish, M.F.; Afify, H.M. Effect of petrography and diagenesis on the sandstone reservoir quality: A case study of the Middle Miocene Kareem Formation in the North Geisum oil field, Gulf of Suez, Egypt. Arab. J. Geosci. 2022, 15, 465. [Google Scholar] [CrossRef]
- Opuwari, M.; Ubong, M.O.; Jamjam, S.; Magoba, M. The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data. Minerals 2022, 12, 1009. [Google Scholar] [CrossRef]
- Baiyegunhi, C.; Liu, K.; Gwavava, O. Diagenesis and Reservoir Properties of the Permian Ecca Group Sandstones and Mudrocks in the Eastern Cape Province, South Africa. Minerals 2017, 7, 88. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, S.; Lin, D.; Chen, Y.; Wang, X.; Liu, Z.; Han, F.; Lv, P.; Yang, Z.; Guan, X.; et al. Diagenesis and Diagenetic Mineral Control on Reservoir Quality of Tight Sandstones in the Permian He8 Member, Southern Ningwu Basin. Processes 2023, 11, 2374. [Google Scholar] [CrossRef]
- Li, W.; Hu, D.; Chang, Y.; Li, Y.; Guo, B.; Shi, Q.; Zhang, B. Diagenetic controls over reservoir quality of tight sandstone in the lower Jurassic reservoir in the Lenghu area, the north margin of Qaidam basin. Front. Earth Sci. 2024, 12, 1298802. [Google Scholar] [CrossRef]
- Zongquan, Y.; Tianyu, F.; Jun, W.; Xiaohong, Z.; Chunming, J.; Wang, W.; Jianatayi, D.; Haitao, Y.; Jing, L.; Haoyi, W. Diagenetic facies and pore evolution of tight sandstone reservoirs of the Jiamuhe formation in the Shawan sag, Junggar basin. Sci. Rep. 2025, 15, 22460. [Google Scholar] [CrossRef]
- Rezaei, A.; Abdollahi, H.; Derikvand, Z.; Hemmati-Sarapardeh, A.; Mosavi, A.; Nabipour, N. Insights into the Effects of Pore Size Distribution on the Flowing Behavior of Carbonate Rocks: Linking a Nano-Based Enhanced Oil Recovery Method to Rock Typing. Nanomaterials 2020, 10, 972. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Y.; Swennen, R.; Yuan, J.; Liu, J.; Zhang, S. Pore-Throat Characteristics of Tight Sandstone Reservoirs Composed of Gravity Flow Sediments: Yingcheng Formation, Longfengshan Sag, China. J. Pet. Sci. Eng. 2018, 171, 646–661. [Google Scholar] [CrossRef]
- Jiang, M.; Fang, H.; Liu, Y.; Zhang, Y.; Wang, C. On movable fluid saturation of tight sandstone and main controlling factors —Case study on the Fuyu oil layer in the Da’an oilfield in the Songliao basin. Energy 2023, 267, 126476. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Wang, B.; Ruan, J.; Yan, N.; Chen, H. Effects of pore-throat structures on the fluid mobility in chang 7 tight sandstone reservoirs of longdong area, Ordos Basin. Mar. Pet. Geol. 2022, 135, 105407. [Google Scholar] [CrossRef]
- Chang, B.; Tong, Q.; Cao, C.; Zhang, Y. Effect of pore-throat structure on movable fluid and gas–water seepage in tight sandstone from the southeastern Ordos Basin, China. Sci. Rep. 2025, 15, 7714. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tao, C.; Fu, H.; Miao, H.; Qiu, J. Analysis of the Microscopic Pore Structure Characteristics of Sandstone Based on Nuclear Magnetic Resonance Experiments and Nuclear Magnetic Resonance Logging Technology. Fractal Fract. 2025, 9, 532. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, J.; Wang, M.; Qiao, J.; Cui, H. Comprehensive Multi-Method Characterization of Pore Structure and Its Impact on Fluid Mobility of Tight Sandstones—A Case Study of the Shaximiao Formation in the Central Sichuan Basin. Processes 2024, 12, 2470. [Google Scholar] [CrossRef]
- Sun, Z.F.; Lin, C.Y.; Zhu, P.; Chen, J.Y. Analysis and Modeling of Fluvial-reservoir Petrophysical Heterogeneity Based on Sealed Coring Wells and Their Test Data, Guantao Formation, Shengli Oilfield. J. Pet. Sci. Eng. 2018, 162, 785–800. [Google Scholar] [CrossRef]









| Rock Unit | Lithofacies | Goethite | Quartz | Feldspars | Hematite | Pyrite | Siderite | Clays | Dolomite | Gypsum | Glauconite |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Unit VI | GFQW | 22.47 | 39.00 | 4.00 | 0.00 | 4.00 | 5.80 | 10.00 | 10.00 | 0.00 | 5.20 |
| QA | 16.00 | 59.90 | 3.00 | 0.00 | 1.80 | 2.60 | 7.50 | 7.50 | 0.00 | 1.70 | |
| FQA | 16.00 | 50.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.00 | 8.00 | 0.00 | 17.00 | |
| QA | 12.80 | 64.00 | 1.00 | 1.00 | 2.50 | 2.50 | 7.60 | 7.60 | 0.00 | 1.00 | |
| FQW | 22.00 | 47.90 | 1.00 | 1.00 | 2.00 | 4.00 | 11.00 | 11.00 | 0.00 | 0.00 | |
| FQA | 15.50 | 52.95 | 4.10 | 0.00 | 3.20 | 4.25 | 10.00 | 10.00 | 0.00 | 0.00 | |
| QA | 18.00 | 57.90 | 4.00 | 8.60 | 1.50 | 2.00 | 4.00 | 4.00 | 0.00 | 0.00 | |
| Unit V | FGQW | 25.00 | 32.00 | 5.00 | 3.50 | 3.50 | 7.50 | 9.00 | 9.30 | 1.70 | 3.50 |
| SFGQW | 18.00 | 42.60 | 4.10 | 2.30 | 4.60 | 6.50 | 10.00 | 11.00 | 0.00 | 1.00 | |
| GFQW | 40.00 | 14.00 | 20.00 | 10.00 | 1.00 | 1.50 | 8.00 | 4.00 | 0.50 | 1.00 | |
| FGQW | 28.00 | 39.00 | 0.00 | 10.00 | 2.00 | 3.00 | 7.00 | 10.00 | 0.00 | 1.00 | |
| LGFQW | 27.00 | 10.10 | 6.00 | 6.00 | 3.40 | 9.00 | 13.00 | 13.70 | 5.00 | 6.80 | |
| FGQW | 18.00 | 54.00 | 0.00 | 4.00 | 0.00 | 4.00 | 4.00 | 12.00 | 2.00 | 2.00 | |
| FQW | 37.00 | 15.00 | 25.00 | 10.00 | 2.00 | 4.00 | 0.00 | 0.00 | 6.00 | 1.00 | |
| Unit IV | FQW | 25.00 | 7.50 | 7.50 | 15.00 | 0.00 | 10.00 | 0.00 | 0.00 | 35.00 | 0.00 |
| LFQA | 15.00 | 51.70 | 0.00 | 1.00 | 2.00 | 3.90 | 15.00 | 7.60 | 0.00 | 3.80 | |
| Unit III | FQA | 38.00 | 19.00 | 2.00 | 6.00 | 6.00 | 6.00 | 12.00 | 11.00 | 0.00 | 0.00 |
| FQA | 19.00 | 38.00 | 5.00 | 0.00 | 6.00 | 6.00 | 13.00 | 13.00 | 0.00 | 0.00 | |
| GSQA | 16.00 | 48.90 | 4.80 | 1.00 | 4.80 | 6.50 | 9.00 | 9.00 | 0.00 | 0.00 | |
| FGQW | 22.50 | 37.40 | 1.00 | 1.50 | 7.60 | 5.00 | 10.00 | 15.00 | 0.00 | 0.00 | |
| Unit II | FQW | 16.00 | 51.00 | 10.00 | 0.00 | 0.00 | 0.00 | 1.00 | 22.00 | 0.00 | 0.00 |
| GFQW | 24.00 | 21.20 | 1.80 | 0.90 | 3.00 | 7.50 | 15.00 | 10.60 | 11.00 | 5.00 | |
| GQW | 16.00 | 51.00 | 10.00 | 0.00 | 0.00 | 0.00 | 1.00 | 22.00 | 0.00 | 0.00 | |
| FQA | 22.00 | 35.00 | 3.00 | 2.00 | 4.00 | 6.00 | 9.00 | 9.00 | 9.00 | 1.00 | |
| Unit I | LFQA | 22.00 | 32.00 | 4.00 | 2.00 | 4.00 | 7.00 | 9.00 | 10.00 | 7.00 | 3.00 |
| GFQA | 23.10 | 49.56 | 0.84 | 1.50 | 4.00 | 7.00 | 7.00 | 7.00 | 0.00 | 0.00 | |
| LFGQA | 22.00 | 40.50 | 4.50 | 2.00 | 5.00 | 8.00 | 9.00 | 9.00 | 0.00 | 0.00 |
| Parameter | QA | QW | ||||||
|---|---|---|---|---|---|---|---|---|
| Min | Max | Mean | St. Dev | Min | Max | Mean | St. Dev | |
| Porosity (ɸ) | 0.18 | 0.43 | 0.33 | 0.08 | 0.06 | 0.41 | 0.19 | 0.10 |
| Grain Density (ρg) in gm/cc | 2.48 | 2.97 | 2.71 | 0.14 | 2.38 | 3.07 | 2.61 | 0.14 |
| Permeability (k) in mD | 0.27 | 165.73 | 21.46 | 28.11 | 0.11 | 14.64 | 5.65 | 5.57 |
| Permeability (k) in μm2 | 3 × 10−4 | 0.16 | 0.02 | 0.03 | 1 × 10−4 | 0.014 | 0.01 | 0.01 |
| Cementation (m) | 2.96 | 6.52 | 3.84 | 1.33 | 2.57 | 3.46 | 3.09 | 0.42 |
| No. | Property | Regression Equation | R2 | SEE |
|---|---|---|---|---|
| 1 | Porosity | ɸ = r (0.61) − Spv (0.03) + Sgv (0.17) − 0.007 | 0.85 | 0.47 |
| 2 | Pore radius | r = − Q (4.44) − F (0.27) − H (0.71) − (P + S) (0.13) + C (1.02) + D (0.64) − Glau (2.80) + 0.603 | 1 | 0 |
| 3 | Spv | Spv = − Q (2.61) − F (10) + H (12.36) − P (22.408) − S (12.41) − C (56.67) − D (32.41) − Glau (12.11) + 13.72 | 1 | 0 |
| 4 | Sgv | Sgv = − Q (0.83) − F (6.47) + H (10.35) + P (19.22) + S (5.64) − C (18.44) − D (0.83) − Glau (17.23) + 2.21 | 1 | 0 |
| 5 | WR35 | WR35 = Q (0.82) + F (6.02) + H (2.67) − P (15.15) − S (4.67) + C (15) + D (0.76) + Glau (5) + 0.28 | 1 | 0 |
| 6 | AR35 | AR35 = − Q (0.12) + F (0.5) − H (0.80) + P (0.5) − S (0.6) + C (1.43) + D (0.84) − Glau (1.5) + 0.44 | 1 | 0 |
| 7 | ɸR36 | ɸR36 = − Q (61) − F (168.2) + H (41.13) + P 450.47) + S (99.32) − C (204.37) + D (80) − Glau (628.227) + 525.6 | 1 | 0 |
| 8 | kR36 | kR36 = − Q (261.4) − F (538.57) − H (265.5) + P (1892.73) + S (193.73) − C (573) + D (460.26) − Glau (2651) + 288.46 | 1 | 0 |
| 9 | Sorting coefficient | σI = F (1.73) − H (0.55) − P (2.52) − (S + C − Q) − D (0.75) + Glau (8.52) − 0.8 | 1 | 0 |
| 10 | Sorting coefficient | σI = − r (1.43) − Spv (0.006) + Sgv (0.17) + 1.2 | 0.93 | 0.25 |
| No. | Property | Regression Equation | R2 | SEE |
|---|---|---|---|---|
| 1 | Porosity | ɸ = − r (0.06) − Spv (103.25) + Sgv (0.121) + 0.451 | 0.78 | 0.32 |
| 2 | Pore Radius | r = G (83.56) − Q (103.25) − F (51.15) − H (140.36) − P (11) − S (161.4) − C (272.8) +D (0.87) − Gyp (100.13) − Glau (103.14) + 104 | 1 | 0 |
| 3 | Spv | Spv = G (625.4) + Q (613.5) + F (506.73) +H (541.46) + P (71.8) +S (834.73) + C (1584.53) − D (26.58) + Gyp (619.38) + Glau (459.16) − 627.97 | 1 | 0 |
| 4 | Sgv | Sgv = G (162.84) + Q (190.6) + H (239.24) + P (21.84) + S (283.75) + C (513) − D (3) + Gyp (186.62) + Glau (176.45) − 192.22 | 1 | 0 |
| 5 | WR35 | WR35 = Q (3.25) − F (0.66) + H (7.6) − P (1.64) + S (57) + D (31.23) − Gyp (9) + Glau (146) − 7.16 | 1 | 0 |
| 6 | AR35 | AR35 = Q (3.25) − F (0.661) + H (7.6) − P (0.5) + S (24.1) + D (12.3) − Gyp (1.1) + Glau (53.4) − 3.54 | 1 | 0 |
| 7 | ɸR36 | ɸR36 = − G (959.05) − Q (337.62) − F (1053.51) + H (1259.4) − P (101.84) + S (62.45) − C (357) + D (86.23) − Gyp (551.9) + Glau (448) + 900.05 | 1 | 0 |
| 8 | kR36 | kR36 = Q (768.85) − F (1993.7) − H (506.2) − P (220.33) + S (7899.22) + D (4022.34) − Gyp (1101.06) + Glau (19163.9) − 888.35 | 1 | 0 |
| 9 | Sorting coefficient | σI = − G (10.07) − Q (3.44) − F (9.30) +H (14.83) − P (0.44) + S 1.77) − C (4.35) + D (1.14) − Gyp (5.85) + Glau (3.35) + 4.48 | 1 | 0 |
| 10 | Sorting coefficient | σI = − r (0.06) − Spv (103.25) + Sgv (0.121) + 0.451 | 0.78 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guirguis, A.W.; El Sayed, A.A.; Baghdady, A.R.; Khlaifat, A.L.; Sharaf-Eldin, A.A.; Gad, A. Unraveling Reservoir Quality: How Mineralogy Shapes Pore Attributes in Sandstone Lithofacies. Minerals 2025, 15, 1203. https://doi.org/10.3390/min15111203
Guirguis AW, El Sayed AA, Baghdady AR, Khlaifat AL, Sharaf-Eldin AA, Gad A. Unraveling Reservoir Quality: How Mineralogy Shapes Pore Attributes in Sandstone Lithofacies. Minerals. 2025; 15(11):1203. https://doi.org/10.3390/min15111203
Chicago/Turabian StyleGuirguis, Antoine W., Abdelmoktader A. El Sayed, Ashraf R. Baghdady, Abdelaziz L. Khlaifat, Ahmed A. Sharaf-Eldin, and Ahmed Gad. 2025. "Unraveling Reservoir Quality: How Mineralogy Shapes Pore Attributes in Sandstone Lithofacies" Minerals 15, no. 11: 1203. https://doi.org/10.3390/min15111203
APA StyleGuirguis, A. W., El Sayed, A. A., Baghdady, A. R., Khlaifat, A. L., Sharaf-Eldin, A. A., & Gad, A. (2025). Unraveling Reservoir Quality: How Mineralogy Shapes Pore Attributes in Sandstone Lithofacies. Minerals, 15(11), 1203. https://doi.org/10.3390/min15111203

