Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle
Abstract
:1. Introduction
2. Geological Context
3. Sample Descriptions
4. Materials and Methods
4.1. Electron Probe Microanalyses (EPMA)
4.2. LASER Ablation Trace Element Analyses
5. Results
5.1. Major Element Variability in Pyroxene Grains
5.2. Trace Element Variability in Pyroxene Grains
6. Discussion
6.1. Chemical Variability in Pyroxene Grains
6.2. OPX-CPX REE Equilibrium
6.3. Closure Temperatures
6.4. REE Diffusion and Minimum Ages
6.5. Source of Pyroxenites
6.6. Chronology and Tectonic Setting
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ionov, D.A. Petrology of Mantle Wedge Lithosphere: New Data on Supra-Subduction Zone Peridotite Xenoliths from the Andesitic Avacha Volcano, Kamchatka. J. Petrol. 2010, 51, 327–361. [Google Scholar] [CrossRef]
- Ionov, D.A.; Bénard, A.; Plechov, P.Y.; Shcherbakov, V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes. J. Volcanol. Geotherm. Res. 2013, 263, 122–131. [Google Scholar] [CrossRef]
- Bénard, A.; Arculus, R.J.; Nebel, O.; Ionov, D.A.; McAlpine, S.R.B. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas. Geochim. Cosmochim. Acta 2017, 199, 287–303. [Google Scholar] [CrossRef]
- England, P.C.; Katz, R.F. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 2010, 467, 700. [Google Scholar] [CrossRef] [PubMed]
- Till, C.B. A review and update of mantle thermobarometry for primitive arc magmas. Am. Mineral. 2017, 102, 931–947. [Google Scholar] [CrossRef]
- Grove, T.L.; Till, C.B.; Krawczynski, M.J. The Role of H2O in Subduction Zone Magmatism. Annu. Rev. Earth Plan. Sci. 2012, 40, 413–439. [Google Scholar] [CrossRef]
- Grove, T.L.; Till, C.B.; Lev, E.; Chatterjee, N.; Medard, E. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 2009, 459, 694–697. [Google Scholar] [CrossRef]
- Till, C.B.; Grove, T.L.; Withers, A.C. The beginnings of hydrous mantle wedge melting. Contrib. Mineral. Petrolol. 2012, 163, 669–688. [Google Scholar] [CrossRef]
- Elliott, T.; Plank, T.; Zindler, A.; White, W.; Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. B Solid Earth 1997, 102, 14991–15019. [Google Scholar] [CrossRef]
- Codillo, E.A.; Le Roux, V.; Marschall, H.R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge. Nat. Commun. 2018, 9, 2864. [Google Scholar] [CrossRef] [PubMed]
- Bénard, A.; Le Losq, C.; Nebel, O.; Arculus, R.J. Low-Ca boninite formation by second-stage melting of spinel harzburgite residues at mature subduction zones: New evidence from veined mantle xenoliths from the West Bismarck Arc. Contrib. Mineral. Petrol. 2018, 173, 105. [Google Scholar] [CrossRef]
- Bénard, A.; Nebel, O.; Ionov, D.A.; Arculus, R.J.; Shimizu, N.; Métrich, N. Primary Silica-rich Picrite and High-Ca Boninite Melt Inclusions in Pyroxenite Veins from the Kamchatka Sub-arc Mantle. J. Petrol. 2016, 57, 1955–1982. [Google Scholar] [CrossRef]
- Crawford, A.J.; Falloon, T.; Green, D. Classification, Petrogenesis and Tectonic Setting of Boninites. In Boninites and Related Rocks; Unwin Hyman: London, UK, 1989; pp. 1–49. [Google Scholar]
- Bédard, J.H. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components. J. Petrol. 1999, 40, 1853–1889. [Google Scholar] [CrossRef]
- Bénard, A.; Ionov, D.A. A new petrogenetic model for low-Ca boninites: Evidence from veined sub-arc xenoliths on melt-mantle interaction and melt fractionation. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Bénard, A.; Ionov, D.A. Melt– and Fluid–Rock Interaction in Supra-Subduction Lithospheric Mantle: Evidence from Andesite-hosted Veined Peridotite Xenoliths. J. Petrol. 2013, 54, 2339–2378. [Google Scholar] [CrossRef]
- Mallik, A.; Nelson, J.; Dasgupta, R. Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2–3 GPa: Implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins. Contrib. Mineral. Petrol. 2015, 169, 48. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Vielzeuf, D.; Auzanneau, E. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet. Sci. Lett. 2004, 228, 65–84. [Google Scholar] [CrossRef]
- Foley, S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 1992, 28, 435–453. [Google Scholar] [CrossRef]
- Cruz-Uribe, A.; Marschall, H.R.; Gaetani, G.; Le Roux, V. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs—An experimental study. Geology 2018, 46, 343–346. [Google Scholar] [CrossRef]
- Naemura, K.; Hirajima, T.; Svojtka, M.; Shimizu, I.; Iizuka, T. Fossilized Melts in Mantle Wedge Peridotites. Sci. Rep. 2018, 8, 10116. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Ishimaru, S. Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: A review. J. Petrol. 2008, 49, 665–695. [Google Scholar] [CrossRef]
- Vannucci, R.; Tiepolo, M.; Defant, M.J.; Kepezhinskas, P. The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc). Lithos 2007, 99, 25–44. [Google Scholar] [CrossRef]
- Pearson, D.G.; Canil, D.; Shirey, S.B. 2.05-Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. In Treatise on Geochemistry; Heinrich, D.H., Karl, K.T., Eds.; Pergamon: Oxford, UK, 2003; pp. 171–275. [Google Scholar]
- Bodinier, J.L.; Godard, M. 3.4-Orogenic, Ophiolitic, and Abyssal Peridotites. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 103–167. [Google Scholar]
- Batanova, V.G.; Suhr, G.; Sobolev, A.V. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: Ion probe study of clinopyroxenes. Geochim. Cosmochim. Acta 1998, 62, 853–866. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Sinton, J.M. Compositional layering in alpine peridotites—Evidence for pressure solution creep in the mantle. J. Geol. 1979, 87, 403–416. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Dick, H.J.B. Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J. Geophys. Res. 1995, 100, 423–438. [Google Scholar] [CrossRef]
- Saleeby, J.B.; Harper, G.D.; Snoke, A.W.; Sharp, W.D. Time Relations and Structural-Stratigraphic Patterns in Ophiolite Accretion, West Central Klamath Mountains, California. J. Geophys. Res. 1982, 87, 3831–3848. [Google Scholar] [CrossRef]
- Dick, H.J.B. Origin and Emplacement of the Josephine Peridotite of Southwestern Oregon. Ph.D. Thesis, Yale University, New Haven, CT, USA, 1976. [Google Scholar]
- Harper, G.D. The Josephine Ophiolite, Northwestern California. Geol. Soc. Am. Bull. 1984, 95, 1009–1026. [Google Scholar] [CrossRef]
- Dick, H.J.B. Partial melting in Josephine Peridotite.1. Effect on mineral composition and its consequence for geobarometry and geothermometry. Am. J. Sci. 1977, 277, 801–832. [Google Scholar] [CrossRef]
- Harper, G.D. A depositional contact between the Galice Formation and a Late Jurassic ophiolite in northwestern California and southwestern Oregon. Or. Geol. 1983, 45, 3–7. [Google Scholar]
- Harper, G.D. Fe-Ti basalts and propagating-rift tectonics in the Josephine Ophiolite. Geol. Soc. Am. Bull. 2003, 115, 771–787. [Google Scholar] [CrossRef]
- Harper, G.D. Tectonic implications of boninite, arc tholeiite, and MORB magma types in the Josephine Ophiolite, California-Oregon. Geol. Soc. Lond. Spec. Publ. 2003, 218, 207–230. [Google Scholar] [CrossRef]
- Loney, R.A.; Himmelberg, G.R. Structure of Vulcan peak alpine-type peridotite, Southwestern Oregon. Geol. Soc. Am. Bull. 1976, 87, 259–274. [Google Scholar] [CrossRef]
- Vail, S.G. Geology and geochemistry of the Oregon Mountain area, southwestern Oregon and northern California-an investigation of the origin and development of a Jurassic ophiolite in the Klamath Mountains. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1977. [Google Scholar]
- Pearce, J.A.; Lippard, S.J.; Roberts, S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. Spec. Publ. 1984, 16, 77–94. [Google Scholar] [CrossRef]
- Morgan, Z.; Liang, Y.; Kelemen, P. Significance of the concentration gradients associated with dunite bodies in the Josephine and Trinity ophiolites. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Le Roux, V.; Dick, H.J.B.; Shimizu, N. Tracking flux melting and melt percolation in supra-subduction peridotites (Josephine ophiolite, USA). Contrib. Mineral. Petrol. 2014, 168, 1–22. [Google Scholar] [CrossRef]
- Armstrong, J.T. CITZAF-A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal. 1995, 4, 177–200. [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rampone, E.; Bottazzi, P.; Ottolini, L. Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature 1991, 354, 518–520. [Google Scholar] [CrossRef]
- Green, T.H.; Blundy, J.D.; Adam, J.; Yaxley, G.M. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200 degrees C. Lithos 2000, 53, 165–187. [Google Scholar] [CrossRef]
- Rampone, E.; Piccardo, G.B.; Vannucci, R.; Bottazzi, P.; Ottolini, L. Subsolidus reactions monitored by trace element partitioning: The spinel- to plagioclase facies transition in mantle peridotites. Contrib. Mineral. Petrol. 1993, 115, 1–17. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Liang, Y. Ti diffusion in natural pyroxene. Geochim. Cosmochim. Acta 2012, 98, 31–47. [Google Scholar] [CrossRef]
- Le Roux, V.; Dasgupta, R.; Lee, C.T.A. Mineralogical heterogeneities in the Earth’s mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth Planet. Sci. Lett. 2011, 307, 395–408. [Google Scholar] [CrossRef]
- Yao, L.J.; Sun, C.G.; Liang, Y. A parameterized model for REE distribution between low-Ca pyroxene and basaltic melts with applications to REE partitioning in low-Ca pyroxene along a mantle adiabat and during pyroxenite-derived melt and peridotite interaction. Contrib. Mineral. Petrol. 2012, 164, 261–280. [Google Scholar] [CrossRef]
- Sun, C.G.; Liang, Y. Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: Effects of major element composition, water, and temperature. Contrib. Mineral. Petrol. 2012, 163, 807–823. [Google Scholar] [CrossRef]
- Van Orman, J.A.; Grove, T.L.; Shimizu, N. Rare earth element diffusion in diopside: Influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib. Mineral. Petrol. 2001, 141, 687–703. [Google Scholar] [CrossRef]
- Brey, G.P.; Kohler, T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, C.G.; Yao, L.J. A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim. Cosmochim. Acta 2013, 102, 246–260. [Google Scholar] [CrossRef]
- Dygert, N.; Liang, Y. Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites. Earth Planet. Sci. Lett. 2015, 420, 151–161. [Google Scholar] [CrossRef]
- Liang, Y. Time scales of diffusive re-equilibration in bi-mineralic systems with and without a fluid or melt phase. Geochim. Cosmochim. Acta 2014, 132, 274–287. [Google Scholar] [CrossRef]
- Le Roux, V.; Nielsen, S.G.; Sun, C.; Yao, L. Dating layered websterite formation in the lithospheric mantle. Earth Planet. Sci. Lett. 2016, 454, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Harper, G.D.; Saleeby, J.B.; Heizler, M. Formation and emplacement of the Josephine ophiolite and the Nevadan orogeny in the Klamath Mountains, California-Oregon: U/Pb zircon and 40Ar/39Ar geochronology. J. Geophys. Res. B Solid Earth 1994, 99, 4293–4321. [Google Scholar] [CrossRef]
- Tamura, A.; Arai, S. Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 2006, 90, 43–56. [Google Scholar] [CrossRef]
- Kaczmarek, M.-A.; Jonda, L.; Davies, H.L. Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex, Papua New Guinea). Contrib. Mineral. Petrol. 2015, 170, 19. [Google Scholar] [CrossRef]
- Varfalvy, V.; Hébert, R.; Bédard, J.; Laflèche, M.R. Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain massif, Bay of Islands Ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas. Can. Mineral. 1997, 35, 543–570. [Google Scholar]
- Batanova, V.G.; Belousov, I.A.; Savelieva, G.N.; Sobolev, A.V. Consequences of Channelized and Diffuse Melt Transport in Supra-subduction Zone Mantle: Evidence from the Voykar Ophiolite (Polar Urals). J. Petrol. 2011, 52, 2483–2521. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, C.; Garrido, C.J.; Godard, M.; Belley, F.; Ferré, E. Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia). Chem. Geol. 2009, 266, 171–186. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. New Occurrence of Pyroxenites in the Veria-Naousa Ophiolite (North Greece): Implications on Their Origin and Petrogenetic Evolution. Geosciences 2017, 7, 92. [Google Scholar] [CrossRef]
- Rampone, E.; Piccardo, G.B.; Vannucci, R.; Bottazzi, P. Chemistry and origin of trapped melts in ophiolitic peridotites. Geochim. Cosmochim. Acta 1997, 61, 4557–4569. [Google Scholar] [CrossRef]
- Python, M.; Ceuleneer, G. Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Benoit, M.; Ceuleneer, G.; Polvé, M. The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature 1999, 402, 514–518. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Hirth, G.; Shimizu, N.; Spiegelman, M.; Dick, H.J.B. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 1997, 355, 283–318. [Google Scholar] [CrossRef]
- Warren, J.M. Global variations in abyssal peridotite compositions. Lithos 2016, 248–251, 193–219. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Shimizu, N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 1993, 363, 151–154. [Google Scholar] [CrossRef]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liang, Y.; Dygert, N.; Xu, W. Formation of orthopyroxenite by reaction between peridotite and hydrous basaltic melt: An experimental study. Contrib. Mineral. Petrol. 2016, 171, 77. [Google Scholar] [CrossRef]
- Navon, O.; Stolper, E. Geochemical consequence of melt percolation: The upper mantle as a chromatographic column. J. Geol. 1987, 95, 285–307. [Google Scholar] [CrossRef]
- Le Roux, V.; Bodinier, J.L.; Tommasi, A.; Alard, O.; Dautria, J.M.; Vauchez, A.; Riches, A.J.V. The Lherz spinel lherzolite: Refertilized rather than pristine mantle. Earth Planet. Sci. Lett. 2007, 259, 599–612. [Google Scholar] [CrossRef] [Green Version]
- Bodinier, J.-L.; Vasseur, G.; Vernières, J.; Dupuy, C.; Fabriès, J. Mechanism of mantle metasomatism: Geochemical evidence from the Lherz orogenic peridotite. J. Petrol. 1990, 31, 597–628. [Google Scholar] [CrossRef]
- Frei, D.; Liebscher, A.; Franz, G.; Wunder, B.; Klemme, S.; Blundy, J. Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1230 to 1535 °C in the model system Na2O–CaO–MgO–Al2O3–SiO2. Contrib. Mineral. Petrol. 2008, 157, 473. [Google Scholar] [CrossRef]
- Kelemen, P.; Yogodzinski, G.; Scholl, D.W. Along-strike variation in the Aleutian Island Arc: Genesis of high Mg# andesite and implications for continental crust. Inside Subduction Fact. 2003, 138, 223–276. [Google Scholar]
- McDade, P.; Blundy, J.D.; Wood, B.J. Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am. Mineral. 2003, 88, 1825–1831. [Google Scholar] [CrossRef]
- Le Maitre, R.W. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed.; Streckeisen, A., Ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Meffre, S.; Aitchison, J.C.; Crawford, A.J. Geochemical evolution and tectonic significance of boninites and tholeiites from the Koh ophiolite, New Caledonia. Tectonics 1996, 15, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, C. Geodynamic Information in Peridotite Petrology. J. Petrol. 2004, 45, 2507–2530. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, I.J.; Pearce, J.A. Peridotites from the Izu-Bonin-Mariana forearc (ODP leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol. 1998, 39, 1577–1618. [Google Scholar] [CrossRef]
- Herzberg, C. Partial melting below the Ontong Java Plateau. Geol. Soc. Lond. Spec. Publ. 2004, 229, 179–183. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Kovach, V.P.; Kotov, A.B.; Kuzmichev, A.B.; Lavrenchuk, A.V.; Perelyaev, V.I.; Shchipansky, A.A. Boninites and ophiolites: Problems of their relations and petrogenesis of boninites. Russ. Geol. Geophys. 2016, 57, 127–140. [Google Scholar] [CrossRef]
- König, S.; Münker, C.; Schuth, S.; Luguet, A.; Hoffmann, J.E.; Kuduon, J. Boninites as windows into trace element mobility in subduction zones. Geochim. Cosmochim. Acta 2010, 74, 684–704. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Roux, V.; Liang, Y. Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle. Minerals 2019, 9, 565. https://doi.org/10.3390/min9090565
Le Roux V, Liang Y. Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle. Minerals. 2019; 9(9):565. https://doi.org/10.3390/min9090565
Chicago/Turabian StyleLe Roux, Véronique, and Yan Liang. 2019. "Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle" Minerals 9, no. 9: 565. https://doi.org/10.3390/min9090565
APA StyleLe Roux, V., & Liang, Y. (2019). Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle. Minerals, 9(9), 565. https://doi.org/10.3390/min9090565