Factors Controlling Hydrothermal Nickel and Cobalt Mineralization—Some Suggestions from Historical Ore Deposits in Italy
Abstract
:1. Introduction
2. Materials and Methods
3. Geological, Mineralogical, and Microchemical Features of the Ni–Co Arsenide-Rich Deposits of Sardinia and Piedmont
3.1. The Southern Arburèse, Polymetallic Ni–Co–As–Pb–Zn–Cu–Ag–Bi Vein System in SW Sardinia
3.1.1. Geology of the Polymetallic Vein System
3.1.2. Ore Assemblages, Textures, and Micro-Chemical Features
3.2. The Usseglio Co–Ni-Rich Vein System in Piedmont, Western Alps
3.2.1. Geological Setting and Field Relationships of the Usseglio Veins
3.2.2. Mineral Assemblages and Chemical Composition of Minerals
- (1)
- The siderite-dominated stage begins with the deposition of ankerite (ankerite I, western sector) or comb quartz (mainly eastern sector), as a millimeter-thick rim at the contact with the host metabasite, followed everywhere by abundant medium-grained siderite (siderite I), with minor interstitial quartz and calcite. The thickest veins of the western sector are almost completely composed of siderite and quartz belonging to this stage.
- (2)
- The baryte stage is characterized by the precipitation of baryte and minor quartz. Baryte is found at core of siderite-rich banded veins or within breccia bodies, where it constitutes the matrix of siderite clasts. Baryte postdates siderite I, but at least locally shows equilibrium relationships with a Fe-carbonate (siderite II), which typically displays a bladed shape.
- (3)
- The Co–Ni–Fe arsenides stage is characterized by the deposition of abundant Co-rich, Ni–Fe-bearing tri- and di-arsenides, and minor native As and Bi ± accessory base metal sulfides and tetrahedrite. The beginning of this stage is generally marked by the deposition of skutterudite I (Figure 10a), as euhedral crystals often showing well developed growth zoning associated with medium-grained siderite (siderite III) and minor interstitial quartz. Native arsenic and bismuth may occur at core of skutterudite. Native arsenic occurs as intergrowths of tabular to dendritic crystals, often enclosing few microns-sized rounded crystals of native bismuth; the latter also forms globular-shaped intergrowths, suggesting coalescence of liquid droplets. Gersdorffite I locally occurs along growth zones in skutterudite. The latter often shows an outer primary rim composed of di-arsenides (safflorite–rammelsbergite–löllingite s.s.). More often, it is replaced by di-arsenides and/or sulfarsenide (gersdorffite II). Within cm- to dm-sized domains almost completely composed of arsenides, skutterudite is replaced by gersdorffite which is, in turn, overgrown by star-shaped twins of safflorite-löllingite s.s. (Figure 10b,d,e). Skutterudite occurring as isolated euhedral crystals in siderite III is, instead, more often partially overgrown by rammelsbergite (Figure 10c). Very rarely, skutterudite II occurs as thin veinlets which crosscut the diarsenides. Late-stage di-arsenides are locally intergrown with minor amounts of tetrahedrite I and sulfides (mostly chalcopyrite with accessory sphalerite).
- (4)
- The final hydrothermal stage is characterized by the abundance of sulfides and sulfosalts, represented by tetrahedrite II, pyrite, chalcopyrite, scanty sphalerite, galena, and bournonite (Figure 10f) associated with variable amounts of quartz and Fe carbonate (siderite IV). These phases locally occur as coatings of the arsenides, or breccia cement of the earlier assemblages. Tetrahedrite II is locally abundant and is partially replaced by bournonite. Locally, late-stage scattered ankerite II or quartz + baryte veinlets occur, which cement clasts of the earlier assemblages.
- (I)
- rammelsbergite–safflorite solid solution (s.s.), with composition ranging from pure rammelsbergite to Ram85.6Saf11.1; the löllingite content is always very low (≤7.6%);
- (II)
- safflorite–rammelsbergite–löllingite s.s.: such a composition is restricted to arsenides rimming—but also replacing—skutterudite, that show a relatively high safflorite content and a variable Ni/Fe ratio (Saf37.4–61.9Ram0.0–30.3Löl21.2–62.2). Part of these compositions fall outside the solid solution field of [44], as also reported by other Authors (e.g., [45] with refs.).
- (III)
- löllingite–rammelsbergite-safflorite s.s.: all the star-shaped “safflorite” twins fall in this composition group. They are mostly characterized by low Ni content (Ram up to 17.4%, mostly close to zero) and rather wide Co/Fe ratio (Saf25.3–48.2Ram0–38.6Löl 38.3–66.5).
- (IV)
- (IV) löllingite–safflorite s.s.: this is the composition of the late-stage di-arsenides which locally enclose sulfides: Strongly enriched in Fe (Lo864.7Sa29.7 to pure Löl) and almost devoid of Ni.
4. Geological, Mineralogical, and Microchemical Features of the Co–Ni Sulfide-Bearing Cu–Ag Deposit of Piazza (Ligurian Sector of the Appennine Belt)
4.1. Features of the Mineralization in the Piazza Mine
4.2. Chemical Composiation of Ore and Gangue Minerals at Piazza
5. Geothermometric Estimates and Fluids
5.1. Fluid Inclusion Analyses on the Usseglio Veins
Microthermometric Results
5.2. Fluid Inclusion Analyses on the SW Sardinian Veins
Microthermometric Results
5.3. Chlorite Geothermometer for the Piazza Cu Mineralization
6. Carbon and Oxygen Isotope Data on Ore-Related Carbonates
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kissin, S.A. Five-element (Ni–Co–As-Ag-Bi) veins. Geosci Can. 1992, 19, 113–124. [Google Scholar]
- Migdisov, A.; Zezin, D.; Williams-Jones, A.E. An experimental study of Cobalt (II) complexation in Cl- and H2S-bearing hydrothermal solutions. Geochim. Cosmochim. Acta 2011, 75, 4065–4079. [Google Scholar] [CrossRef]
- Liu, W.; Borg, S.J.; Testemale, D.; Etschmann, B.; Hazemann, J.-L.; Brugger, J. Speciation and thermodynamic Prop. for cobalt chloride complexes in hydrothermal fluids at 35–440 °C and 600 bar: An in-situ XAS study. Geochim. Cosmochim. Acta 2011, 75, 1227–1248. [Google Scholar] [CrossRef]
- Liu, W.; Migdisov, A.; Williams-Jones, A. The stability of aqueous nickel (II) chloride complexes in hydrothermal solutions: Results of UV–visible spectroscopic experiments. Geochim. Cosmochim. Acta 2012, 94, 276–290. [Google Scholar] [CrossRef]
- Tian, Y.; Etschmann, B.; Liu, W.; Borg, S.J.; Mei, Y.; Testemale, D.; O’Neill, B.; Rae, N.; Sherman, D.M.; Ngothai, Y.; et al. Speciation of nickel (II) chloride complexes in hydrothermal fluids: In situ XAS study. Chem. Geol. 2012, 334, 345–363. [Google Scholar] [CrossRef]
- Markl, G.; Burisch, M.; Neumann, U. Natural fracking and the genesis of five-element veins. Min. Depos. 2016, 51, 703–712. [Google Scholar] [CrossRef]
- Burisch, M.; Gerdes, A.; Walter, B.F.; Neumann, U.; Fettel, M.; Markl, G. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geol. Rev. 2017, 81, 42–61. [Google Scholar] [CrossRef]
- Kreissl, S.; Gerdes, A.; Walter, B.F.; Neumann, U.; Wenzel, T. Reconstruction of a >200 Ma multi-stage “five element” Bi-Co–Ni–Fe-As-S system in the Penninic Alps, Switzerland. Ore Geol. Rev. 2018, 95, 746–788. [Google Scholar] [CrossRef]
- Konnunaho, J.P.; Hanski, E.J.; Karinen, T.T.; Lahaye, Y.; Makkonen, H.V. The petrology and genesis of the Paleoproterozoic mafic intrusion-hosted Co-Cu-Ni deposit at Hietakero, NW Finnish Lapland). Bull. Geol. Soc. Finl. 2018, 90, 104–131. [Google Scholar] [CrossRef]
- Cavinato, A.; Zuffardi, P. Geologia della miniera di Montevecchio. In Notizie Sull’industria del Piombo e dello Zinco in Italia; Società Italiana del Piombo e dello Zinco: Montevecchio, Italy, 1948; Volume 1, pp. 430–464. [Google Scholar]
- Salvadori, I.; Zuffardi, P. Guida per l’escursione a Montevecchio e all’Arcuentu. In Itinerari Geologici, Mineralogici e Giacimentologici in Sardegna; Ente Minerario Sardo: Cagliari, Italy, 1973; Volume 1, pp. 29–44. [Google Scholar]
- Moroni, M.; Ruggieri, G.; Lattanzi, P.; De Giudici, G.B. Polyphase ore deposition at the Montevecchio vein system, SW Sardinia. In Rend. Online Society Geological Italian; Società Geologica Italiana: Roma, Italy, 2014; Volume 31, p. 223. [Google Scholar]
- Moroni, M.; Naitza, S.; Lattanzi, P.; Ruggieri, G.; Aquino, A.; Caruso, S.; Ferrari, E. Emplacement of the huge Zn–Pb–Ag vein system of Montevecchio, Arburese (SW Sardinia): Geological, mineralogical, geothermometric and isotopic inputs towards a new metallogenic model. In Abstract Book, Congresso SGI SIMP Catania; Società Geologica Italiana: Roma, Italy, 2018; Volume 390. [Google Scholar]
- Cuccuru, S.; Naitza, S.; Secchi, F.; Puccini, A.; Casini, L.; Pavanetto, P.; Linnemann, U.; Hofmann, M.; Oggiano, G. Structural and metallogenic map of late Variscan Arbus Pluton (SW Sardinia, Italy). J. Maps 2016, 12, 860–865. [Google Scholar] [CrossRef]
- Piepoli, P. Ètude microscopique de quelque minérais du filon cobalto-nickelifere de Pranu Is Castangias, Gonnosfanadiga, Sardaigne. Bull. Soc. Fr. Minéral. Crist. 1934, 57, 270–282. [Google Scholar]
- Dessau, G. I filoni a nichelio e cobalto dell’Arburese (Sardegna). Period. Di Mineral. 1936, 7, 21–39. [Google Scholar]
- Naitza, S.; Secchi, F.; Oggiano, G.; Cuccuru, S. New observations on the Ni–Co ores of the southern Arburèse Variscan district (SW Sardinia, Italy). Geoph. Res. Abs. 2015, 17, 12659. [Google Scholar]
- Naitza, S.; Conte, A.M.; Cuccuru, S.; Oggiano, G.; Secchi, F.; Tecce, F. A Late Variscan tin province associated to the ilmeniTe–Series granites of the Sardinian Batholith (Italy): The Sn and Mo mineralisation around the Monte Linas ferroan granite. Ore Geol. Rev. 2017, 80, 1259–1278. [Google Scholar] [CrossRef]
- Magnani, L. Rilevamento Geo-Minerario e Caratterizzazione Mineralogica e Geochimica di Filoni a Ni–Co-Fe nel Distretto Dell’arburese. Master’s dissertation, Università di Milano, Milan, Italy, 2017. Unpublished M.Sc. p. 195. [Google Scholar]
- Moroni, M.; Naitza, S.; Magnani, L.; Ferrari, E.; Oggiano, G.; Secchi, F. The Ni–Co–As-Ag-Bi-rich hydrothermal vein ores of the Arburese district (SW Sardinia, Italy): Mineralogical and geochemical characterization of possible sources for critical metals. In Abstract Book, Congresso SGI SIMP Catania; Società Geologica Italiana: Roma, Italy, 2018; Volume 391. [Google Scholar]
- Zuffardi, P. Giacimentologia e Prospezione Mineraria; Pitagora Editrice: Bologna, Italy, 1982; p. 516. [Google Scholar]
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The geological map of Sardinia (Italy) at 1:250,000 scale. J. Maps 2015, 12, 826–835. [Google Scholar] [CrossRef]
- Funedda, A. Foreland- and hinterland-verging structures in fold-and-thrust belt: An example from the Variscan foreland of Sardinia. Int. J. Earth Sci. 2009, 98, 1625–1642. [Google Scholar] [CrossRef]
- Secchi, F.A.; Brotzu, P.; Callegari, E. The Arburèse igneous body (SW Sardinia, Italy)—An example of dominant igneous fractionation leading to peraluminous cordierite-bearing leucogranites as residual melts. Chem. Geol. 1991, 92, 213–249. [Google Scholar] [CrossRef]
- Conte, A.M.; Cuccuru, S.; D’Antonio, M.; Naitza, S.; Oggiano, G.; Secchi, F.; Casini, L.; Cifelli, F. The post-collisional late Variscan ferroan granites of southern Sardinia (Italy): Inferences for inhomogeneity of lower crust. Lithos 2017, 294–295, 263–282. [Google Scholar] [CrossRef]
- Leone, F.; Hammann, W.; Laske, R.; Serpagli, E.; Villas, E. Lithostratigraphic units and biostratigraphy of the post-sardic Ordovician sequence in south-west Sardinia. Boll. Soc. Paleont. Ital. 1991, 30, 201–235. [Google Scholar]
- Corpo Reale delle Miniere. Relazione sul Servizio Minerario e Statistica delle Industrie Estrattive in Italia Nell’anno 1939; Istituto Poligrafico dello Stato: Roma, Italy, 1945; p. 744. [Google Scholar]
- Ministero dell’Agricoltura. Industria e Commercio. Relazione Sul Servizio Minerario. In Annali di Agricoltura; Ministero dell’Agricoltura: Roma, Italy, 1878; Volume 16, p. 177. [Google Scholar]
- Bartoloni, C. New Observations on the Ni—Co Ores of the Arburese Region (South—West Sardinia). Master’s dissertation, Università di Firenze, Florence, Italy, 2016. Unpublished M.Sc. p. 44. [Google Scholar]
- Moroni, M.; Naitza, S.; Ruggieri, G.; Aquino, A.; Costagliola, P.; De Giudici, G.; Caruso, S.; Ferrari, E.; Fiorentini, M.E.; Lattanzi, P. The Pb–Zn–Ag vein system at Montevecchio-Ingurtosu, southwestern Sardinia, Italy: A summary of previous knowledge and new mineralogical, fluid inclusion and isotopic data. Ore Geol. Rev. 2019. under revision. [Google Scholar]
- Pettke, T.; Diamond, L.W.; Kramers, J.D. Mesothermal gold lodes in the north-western Alps: A review of genetic constraints from radiogenic isotopes. Eur. J. Mineral. 2000, 12, 213–230. [Google Scholar] [CrossRef]
- Fenoglio, M. Sui giacimenti di cobalto dell’alta valle di Lanzo. Atti Della Soc. Ital. Di Sci. Nat. E Del Mus. Civ. Di Stor. Nat. Milano 1928, 67, 182–192. [Google Scholar]
- Piepoli, P. Studio micrografico di minerali complessi delle vecchie miniere di cobalto di Usseglio (Val di Viù). Per. Mineral. 1934, 5, 141–153. [Google Scholar]
- Rossi, M.; Gattiglia, A. (Eds.) Terre Rosse, Pietre Verdi e Blu Cobalto; Miniere a Usseglio; Prima raccolta di studi; Museo Civico Alpino “Arnaldo Tazzetti” Usseglio: Usseglio, Italy, 2011; p. 236. [Google Scholar]
- Rossi, M.; Gattiglia, A. (Eds.) Terre Rosse, Pietre Verdi e blu Cobalto; Miniere a Usseglio; Seconda raccolta di studi; Museo Civico Alpino “Arnaldo Tazzetti”, Usseglio: Usseglio, Italy, 2013; p. 291. [Google Scholar]
- Castelli, D.; Clerico, F.; Rossetti, P. Relict igneous relationships in the eclogitic meta-ophiolite complex of Colle Altare (Valli di Lanzo, Western Italian Alps). Boll. Museo Reg. Sci. Nat. Torino 1995, 13, 131–152. [Google Scholar]
- Pognante, U. Les intercalations gneissique dans une unité des “Schistes Lustrés” de la vallée de Susa (Alp. Occ.): Temoins d’une marge continentale subductée? série II. C. R. Acad. Sci. 1983, 296, 379–383. [Google Scholar]
- Perotto, A.; Salino, C.; Pognante, U.; Genovese, G.; Gosso, G. Assetto geologico-strutturale della falda piemontese nel settore dell’alta Valle di Viù (Alpi occidentali). Mem. Soc. Geol. Ital. 1983, 26, 479–483. [Google Scholar]
- Sandrone, R.; Leardi, L.; Rossetti, P.; Compagnoni, R. P-T conditions for the eclogitic re-equilibration of the metaophiolites from Val d’Ala di Lanzo (Internal Piedmontese Zone, Western Alps). J. Metamorph. Geol. 1986, 4, 161–178. [Google Scholar] [CrossRef]
- Giorza, A.; Castelli, D.; Piana, F.; Rossetti, P. The siderite-Co–Ni-arsenide mesothermal system of Taglio del Ferro (Lanzo Valley, Italy): An integrated petrological and structural study of post-metamorphic hydrothermalism in the metaophiolites of Western Alps. In Proceedings of the Geoitalia 2007, VI Forum Italiano di Scienze della Terra, Rimini, Italy, 10–14 Settembre 2007; Epitome 02. Volume 1418. [Google Scholar]
- Castelli, D.; Giorza, A.; Rossetti, P.; Piana, F.; Clerico, F. Le mineralizzazioni a siderite e arseniuri di cobalto-ferro-nichel del vallone di Arnàs (Usseglio, valli di Lanzo). In Terre Rosse, Pietre Verdi e Blu Cobalto; Rossi, M., Gattiglia, A., Eds.; Miniere a Usseglio; Prima raccolta di studi; Museo Civico Alpino “Arnaldo Tazzetti”, Usseglio: Usseglio, Italy, 2011; pp. 14–21. [Google Scholar]
- Clerico, F. Petrografia della Zona Piemontese e delle Manifestazioni Idrotermali Filoniane Tardo Alpine Lungo il Versante Sinistro della Valle di Viù (Alpi Occidentali). Master’s dissertation, Università di Torino, Torino, Italy, 1995; p. 234. [Google Scholar]
- Roseboom, E.H. Skutterudites (Co, Ni, Fe)As3−x: Composition and cell dimensions. Am. Mineral. 1962, 47, 310–327. [Google Scholar]
- Roseboom, E.H. Co–Fe–Ni diarsenides: Compositions and cell dimensions. Am. Miner. 1963, 48, 271–299. [Google Scholar]
- Fanlo, I.; Subías, I.; Gervilla, F.; Paniegua, A.; García, B. The composition of Co–Ni–Fe sulfarsenides, diarsenides and triarsenides from the San Juan de Plan deposit, Central Pyrenees, Spain. Can. Miner. 2004, 42, 1221–1240. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Minor and trace elements in natural tetrahedrite-tennantite: Effects on element partitioning among base metal sulfides. Minerals 2017, 7, 17. [Google Scholar] [CrossRef]
- Ferrario, A.; Garuti, G. Copper deposits in the basal breccias and volcano-sedimentary sequences of the Eastern Ligurian ophiolites (Italy). Miner. Depos. 1980, 15, 291–303. [Google Scholar] [CrossRef]
- Garuti, G.; Bartoli, O.; Scacchetti, M.; Zaccarini, F. Geological setting and structural styles of volcanic massive sulfide deposits in the northern Appennines (Italy): Evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Thethys. Bol. Soc. Geol. Mex. 2008, 60–61, 121–145. [Google Scholar]
- Zaccarini, F.; Garuti, G. Mineralogy and chemical composition of VMS deposits of northern Apennine ophiolites, Italy: Evidence for the influence of country rock type on ore composition. Min. Pet. 2008, 94, 61–83. [Google Scholar] [CrossRef]
- Hoogerduijn Strating, E.H.; Van Wamel, W.A. The structure of the Bracco Ophiolite complex (Ligurian Apennines, Italy): A change from Alpine to Apennine polarity. J. Geol. Soc. 1989, 146, 933–944. [Google Scholar] [CrossRef]
- Schwarzenbach, E.M.; Früh-Green, G.L.; Bernasconi, S.M.; Alt, J.C.; Shank, W.C., III; Gaggero, L.; Crispini, L. Sulfur geochemistry of peridotite-hosted hydrothermal systems: Comparing the Ligurian ophiolites with oceanic serpentinites. Geoch. Cosmoch. Acta 2012, 91, 283–305. [Google Scholar] [CrossRef]
- Marroni, M.; Monechi, S.; Perilli, N.; Principi, G.; Treves, B. Late Cretaceous flysch deposits of the northern Apennines, Italy: Age of inception of orogenesis-controlled sedimentation. Cretac. Res. 1992, 13, 487–504. [Google Scholar] [CrossRef]
- Leoni, L.; Marroni, M.; Sartori, F.; Tamponi, M. Metamorphic grade in metapelites of the Internal Liguride Units (Northern Appennines, Italy). Eur. J. Miner. 1996, 8, 35–50. [Google Scholar] [CrossRef]
- Ellero, A.; Leoni, L.; Marroni, M.; Sartori, F. Internal Liguride Units from central Liguria, Italy: New constraints to the tectonic setting from white mica and chlorite studies. Schweiz. Miner. Petrogr. Mitt. 2001, 81, 39–53. [Google Scholar]
- Passarino, G. Deiva Marina: un’antica miniera di rame in provincia di La Spezia; Luna Editore Società Editrice Ligure Apuana: La Spezia, Italy, 1998. [Google Scholar]
- Franklin, A. La Miniera di Rame di Piazza (Deiva, La Spezia): Indagini Minero-Petrografiche del Sistema Filoniano in un Complesso Dicchi-Gabbro nell’Unità del Bracco, Liguridi Interne. Master’s dissertation, Università di Milano, Milano, Italy, 2007; p. 125. [Google Scholar]
- Simon, G.; Essene, E.J. Phase relations among selenides, sulfides, tellurides, and oxides: I. Thermodynamic properties and calculated equilibria. Econ. Geol. 1996, 91, 1183–1208. [Google Scholar] [CrossRef]
- Shibuya, T.; Komiya, T.; Anma, R.; Ota, T.; Omori, S.; Kon, Y.; Yamamoto, S.; Maruyama, S. Progressive metamorphism of the Taitao ophiolite; evidence for axial and off-axis hydrothermal alteration. Lithos 2007, 98, 233–260. [Google Scholar] [CrossRef]
- Yardley, B.W.D. 100th Anniversary Special Paper: Metal Concentrations in Crustal Fluids and Their Relationship to Ore Formation. Econ. Geol. 2005, 100, 613–632. [Google Scholar] [CrossRef]
- Hey, M.H. A new review of the chlorites. Miner. Mag. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Alt, J.C.; Laverne, C.; Vanko, D.A.; Tartarotti, P.; Teagle, D.A.H.; Bach, W.; Zuleger, E.; Erzinger, J.; Honnorez, J.; Pezard, P.A.; et al. Hydrothermal Alteration of a Section of upper Oceanic Crust in the Eastern Equatorial Pacific: A Synthesis of Results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148). 1996. Available online: http://www-odp.tamu.edu/publications/148_SR/VOLUME/CHAPTERS/sr148_34.pdf (accessed on 12 July 2019).
- Goldstein, R.H.; Reynolds, T.J. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 1994, 31, 199. [Google Scholar]
- Roedder, E. Fluid inclusions. In Review in Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 12, p. 640. [Google Scholar]
- Crawford, M.L. Phase equilibria in aqueous fluid inclusions. In Short Course in Fluid Inclusions: Application to Petrology; Hollister, L.S., Crawford, M.L., Eds.; Mineralogical Association of Canada Short Course Handbook 6; Mineralogical Association of Canada: Calgary, AB, Canada, 1981; pp. 75–100. [Google Scholar]
- Steele-MacInnis, M.; Bodnar, R.J.; Naden, J. Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim. Cosmochim. Acta 2011, 75, 21–40. [Google Scholar] [CrossRef]
- Walter, B.F.; Steele MacInnis, M.; Markl, G. Sulfate brines in fluid inclusions of hydrothermal veins: Compositional determinations in the system H2O-Na-Ca-Cl-SO4. Geochim. Cosmochim. Acta 2017, 209, 184–203. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Minerals, Methods and Applications; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Tech: Blacksburg, VA, USA, 1994; pp. 117–130. [Google Scholar]
- Schlegel, T.U.; Wälle, M.; Steele MacInnis, M.; Heinrich, C.A. Accurate and precise quantification of major and trace element compositions of calcic–sodic fluid inclusions by combined microthermometry and LA-ICPMS analysis. Chem. Geol. 2012, 334, 144–153. [Google Scholar] [CrossRef]
- Kozłowski, A. Calcium-rich inclusion solutions in fluorite from the Strzegom pegmatites, Lower Silesia. Acta Geol. Pol. 1984, 34, 131–137. [Google Scholar]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T sections and geothermometry. Contrib. Miner. Pet. 2014, 167, 1–19. [Google Scholar] [CrossRef]
- Vidal, O.; Lanari, P.; Munoz, M.; Bourdelle, F.; De Andrade, V. Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation. Clay Miner. 2016, 51, 615–633. [Google Scholar] [CrossRef]
- Kranidiotis, P.; MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami. Que. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Zang, W.; Fyfe, W.S. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Miner. Depos. 1995, 30, 30–38. [Google Scholar] [CrossRef]
- Klein, E.L.; Koppe, J.C. Chlorite geothermometry and physico–chemical conditions of gold mineralization in the Paleoproterozoic Caxias deposit, São Luis Craton, Northern Brazil. Geochim. Bras. 2000, 14, 219–232. [Google Scholar]
- Frimmel, H.E. Chlorite thermometry in the Witwaterstrand Basin: Constraints on the Paleoproterozoic geotherm in the Kaapvaal Craton, South Africa. J. Geol. 1997, 105, 601–615. [Google Scholar] [CrossRef]
- Liou, J.G.; Kim, H.S.; Maruyama, S. Prehnite-epidote equilibria and their petrologic applications. J. Pet. 1983, 24, 321–342. [Google Scholar] [CrossRef]
- Bell, K.; Simonetti, A. Source of parental melts to carbonatites–critical isotopic constraints. Miner. Pet. 2000, 98, 77–89. [Google Scholar] [CrossRef]
- Maacha, L.; Lebedev, V.I.; Saddiqi, O.; Zouhair, M.; Elghorfi, M.; Borissenko, A.S.; Pavlova, G.G. Arsenide Deposits of the Bou Azzer Ore District (Anti-Atlas Matallogenic Province) and their Economic Outlook. In TuvIENR SB RAS Monography; Yarmolyuk, V.V., Ed.; Tuva Institute for Exploration of Natural Resources: Kyzil, Russia, 2015; p. 66. [Google Scholar]
- Robinson, B.W.; Badham, J.P.N. Stable Isotope Geochemistry and the Origin of the Great Bear Lake Silver Deposits, Northwest Territories, Canada. Can. J. Earth Sci. 1974, 11, 698–711. [Google Scholar] [CrossRef]
- Changkakoti, A.; Morton, R.; Gray, J.; Yonge, C. Oxygen, hydrogen, and carbon isotopic studies of the Great Bear Lake silver deposits, Northwest Territories. Can. J. Earth Sci. 1986, 23, 1463–1469. [Google Scholar] [CrossRef]
- Kerrich, R.; Strong, D.; Andrews, A.; Owsiacki, L. The silver deposits at Cobalt and Gowganda, Ontario. III: Hydrothermal regimes and source reservoirs—evidence from H, O, C, and Sr isotopes and fluid inclusions. Can. J. Earth Sci. 1986, 23, 1519–1550. [Google Scholar] [CrossRef]
- Staude, S.; Wagner, T.; Markl, G. Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, Southern Germany: Implications for the formation of Kongsberg-type silver deposits. Can. Miner. 2007, 45, 1147–1176. [Google Scholar] [CrossRef]
- Segalstad, T.V.; Johansen, H.; Ohmoto, H. Geochemistry of hydrothermal processes at the Kongsberg silver deposit, Southern Norway. Terra Cogn. 1986, 6, 511. [Google Scholar]
- Ahmed, A.H.; Arai, S.; Ikenne, M. Mineralogy and paragenesis of the Co–Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco. Econ. Geol. 2009, 104, 249–266. [Google Scholar] [CrossRef]
- Cortesogno, L.; Lucchetti, G.; Penco, A.M. Le associazioni a zeoliti, carbonati e solfuri della miniera di Campegli: Un esempio di mineralizzazione in condizioni di tipo idrotermale durante le ultime fasi della tettonica alpina. Ofioliti 1976, 3, 383–389. [Google Scholar]
- Cortesogno, L.; Lucchetti, G.; Penco, A.M. Le attuali conoscenze sulle zeoliti in Liguria: Distribuzione, significato genetico e minerali associati. Rend. S.I.M.P. 1977, 33, 15–33. [Google Scholar]
- Marcello, A.; Pretti, S.; Valera, P. Metallogeny in Sardinia (Italy): From the Cambrian to the Tertiary. Field trip guide book P30. In Proceedings of the 32nd International Geological Congress, Florence, Italy, 20–28 August 2004; p. 41. [Google Scholar]
- Fenoglio, M.; Fornaseri, M. Il giacimento di nichelio e cobalto del Cruvino in Val di Susa. Per. Miner. 1940, 11, 23–43. [Google Scholar]
- Halbach, P.E.; Jahn, A.; Cherkashov, G. Marine Co-rich ferromanganese crust deposits; description and formation, occurrences and distribution, estimated world-wide resources. In Deep Sea Mining—Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer: Berlin, Germany, 2017; pp. 65–141. [Google Scholar]
- Hitzman, M.W.; Bookstrom, A.A.; Slack, J.F.; Zientek, M.L. Cobalt—Styles of deposits and the search for primary deposits. In U.S. Geological Survey Open-File Report 2017–1155; U.S. Geological Survey: Boulder, CO, USA, 2017; p. 47. [Google Scholar]
- Diamond, L.W.; Akinfiev, N.N. Solubility of CO2 in water from ~1.5 to 100 °C and from 0.1 to 100 MPa, evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria 2003, 208, 265–290. [Google Scholar] [CrossRef]
- Giorza, A. Studio petrografico-strutturale delle manifestazioni idrotermali dell’alta Valle di Viù (Alpi Nord-Occidentali). Master’s dissertations, Università di Torino, Torino, Italy, 2006. Unpublished M.Sc. [Google Scholar]
- Haas, J.L. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ. Geol. 1971, 66, 940–946. [Google Scholar] [CrossRef]
- Staude, S.; Werner, W.; Mordhorst, T.; Wemmer, K.; Jacob, D.E.; Markl, G. Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: Geological setting, ore mineralogy, and fluid evolution. Miner. Depos. 2012, 47, 251–276. [Google Scholar] [CrossRef]
- Behr, H.J.; Horn, E.E.; Frentzel-Beyme, K.; Reutel, C. Fluid inclusion characteristics of the Variscan and post-Variscan mineralizing fuids in the Federal Republic of Germany. Chem. Geol. 1987, 61, 273–285. [Google Scholar] [CrossRef]
- Boni, M.; Muchez, P.; Schneider, J. Post-Variscan multiple fluid flow and mineralization in Sardinia and the Permo-Mesozoic evolution of Western Europe. In The Timing and Location of Major Ore Deposits in an Evolving Orogen; Blundell, D.J., Neubauer, F., von Quadt, A., Eds.; Geological Society: London, UK, 2002; Volume 204, pp. 199–212. [Google Scholar]
- Boni, M.; Balassone, G.; Fedele, L.; Mondillo, N. Post-Variscan hydrothermal activity and ore deposits in southern Sardinia (Italy): Selected examples from Gerrei (Silius Vein System) and the Iglesiente district. Per. Miner. 2009, 3, 19–35. [Google Scholar]
- Muchez, P.; Heijlen, W.; Banks, D.; Blundell, D.; Boni, M.; Grandia, F. Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol. Rev. 2005, 27, 241–267. [Google Scholar] [CrossRef]
- Cathelineau, M.; Boiron, M.-C.; Fourcade, S.; Ruffet, G.; Clauer, N.; Belcourt, O.; Coulibaly, Y.; Banks, D.A.; Guillocheau, F. A major Late Jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K–Ar dating, fluid chemistry, and related geodynamic context. Chem. Geol. 2012, 322–323, 99–120. [Google Scholar] [CrossRef]
- Walter, B.F.; Burisch, M.; Markl, G. Long-term chemical evolution and modification of continental basement brines—a field study from the Schwarzwald, SW Germany. Geofluids 2016, 16, 604–623. [Google Scholar] [CrossRef]
- Bauer, M.E.; Burisch, M.; Ostendorf, J.; Krause, J.; Frenzel, M.; Seifert, T.; Gutzmer, J. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Miner. Depos. 2019, 54, 237–262. [Google Scholar]
- Kucera, J.; Muchez, P.; Slobodnık, M.; Prochaska, W. Geochemistry of highly saline fluids in siliciclastic sequences: Genetic implications for post-Variscan fluid flow in the Moravosilesian Palaeozoic of the Czech Republic. Int. J. Earth Sci. 2010, 99, 269–284. [Google Scholar] [CrossRef]
- Steele-MacInnis, M.; Lecumberri-Sanchez, P.; Bodnar, R.J. Hokie Flincs_H2O-NaCl: A Microsoft Excel spreadsheet for interpreting micro-thermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar] [CrossRef]
- Zheng, Y.-F. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 1999, 33, 109–126. [Google Scholar] [CrossRef]
- Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochim. Cosmochim. Acta 1988, 52, 2445–2450. [Google Scholar] [CrossRef]
- Chacko, T.; Deines, P. Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim. Cosmochim. Acta 2008, 72, 3642–3660. [Google Scholar] [CrossRef]
- Beaudoin, G.; Therrien, P. The web stable isotope fractionation calculator. In Handbook of Stable Isotope Analytical Techniques; De Groot, P.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume I, pp. 1045–1047. [Google Scholar]
- Beaudoin, G.; Therrien, P. The updated web stable isotope fractionation calculator. In Handbook of Stable Isotope Analytical Techniques; De Groot, P.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume II, pp. 1120–1122. [Google Scholar]
- Taylor, H.P. Oxygen and hydrogen isotope relations in hydrothermal mineral deposits. In Geochemistry of Hydrothermal Mineral Deposits; Barnes, H.L., Ed.; John Wiley & Sons: New York, NY, USA, 1979; pp. 236–277. [Google Scholar]
- Hoefs, H.J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 2006; p. 286. [Google Scholar]
- Afifi, A.M.; Kelly, W.C.; Essene, E.J. Phase relations among tellurides, sulfides and oxides. I. Thermodynamical data and calculated equilibria. Econ. Geol. 1988, 83, 377–394. [Google Scholar] [CrossRef]
- Afifi, A.M.; Kelly, W.C.; Essene, E.J. Phase relations among tellurides, sulfides and oxides. II. Applications to telluride-bearing ore deposits. Econ. Geol. 1988, 83, 395–404. [Google Scholar] [CrossRef]
- Plotinskaya, O.Y.; Kovalenker, V.A.; Seltmann, R.; Stanley, C.J. Te and Se mineralogy of the high-sulfidation Kochbulak and Kairagach epithermal gold telluride deposits (Kurama Ridge, Middle Tien Shan, Uzbekistan). Miner. Pet. 2006, 87, 187–207. [Google Scholar] [CrossRef]
- Simon, G.; Kessler, S.E.; Essene, E.J. Phase relations among selenides, sulfides, tellurides, and oxides. II. Application to selenide-bearing ore deposits. Econ. Geol. 1997, 92, 468–484. [Google Scholar] [CrossRef]
- Hellmann, A.; Cormann, A.; Meyer, F.M. Syn-late orogenic vein-hosted Co–Ni mineralization in the Siegerland District of the Rhenish massif, NW Germany. In Proceedings of the European Mineralogical Conference EMC, Frankfurt, Germany, 2–6 September 2012; Volume 1, p. 616. [Google Scholar]
- Parry, W.T. Fault-fluid compositions from fluid-inclusion observations and solubilities of fracture-sealing minerals. Tectonophysics 1998, 290, 1–26. [Google Scholar] [CrossRef]
- Wheeler, R.S.; Browne, P.R.L.; Rodgers, K.A. Iron-rich and iron-poor prehnites from the Way Linggo epithermal Au-Ag deposit, southwest Sumatra, and the Heber geothermal field, California. Mineral. Mag. 2001, 65, 397–406. [Google Scholar] [CrossRef]
- Pirri, I.V. On the occurrence of selenium in sulfides of the ore deposits of Baccu Locci (Gerrei, SE Sardinia). N. Jahrb. Min. Mon. 2002, 5, 207–224. [Google Scholar] [CrossRef]
- Gervilla, F.; Fanlo, I.; Colás, V.; Subías, I. Mineral compositions and phase relations of Ni–Co–Fe arsenide ores from the Aghbar mine, Bou Azzer, Morocco. Can. Miner. 2012, 50, 447–470. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Maacha, L.; Levresse, G.; Saddiqi, O. The Bou Azzer Co–Ni–Fe–As (±Au ±Ag) district of Central Anti-Atlas (Morocco): A long-lived late Hercynian to Triassic magmatic-hydrothermal to low-sulphidation epithermal system. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, J.F., Eds.; Springer: Cham, Switzerland, 2016; pp. 229–247. [Google Scholar]
- Martin, S.; Toffolo, L.; Moroni, M.; Montorfano, C.; Secco, L.; Agnini, C.; Nimis, P.; Tumiati, S. Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps. Lithos 2017, 284–285, 276–295. [Google Scholar] [CrossRef]
- Paul, D.; Skrzypek, G.; Forizs, I. Normalization of measured stable isotopic compositions to isotope reference scales—a review. Rapid Commun. Mass Spectrom. 2017, 21, 3006–3014. [Google Scholar] [CrossRef]
Sample | Stage | Host Mineral | F.I. Origin | Tmhh Range (°C) | Tmice Range (°C) | Th Range (°C) | Salinity (eq. Mass wt% NaCl) | Salinity (Mass% NaCl + CaCl2) |
---|---|---|---|---|---|---|---|---|
Usseglio Veins System | ||||||||
US110 | siderite | quartz | PS-S | −23.7 to −22.5 [10] | −17.0 to −16.0 [10] | 168.9 to 221.1 [19] | 19.5 to 20.2 | 19.0 to 19.8 |
OF2982 | baryte | baryte | P + PS-S | −24.2 to −22.7 [6] | −22.1 to −14.1 [10] | 176.0 to 234.0 [63] | 17.9 to 23.8 | 18.3 to 23.5 |
Bar1 | Co-Ni-Fe | quartz | P | −23.9 to −23.1 [13] | −23.1 to −15.0 [8] | 147.3 to 184.7 [10] | 18.6 to 24.4 | 18.2 to 24.0 |
Bar1 | Co-Ni-Fe | siderite | P | −25.1 to −21.8 [17] | −19.0 to −14.4 [15] | 156.8 to 220.8 [26] | 18.1 to 21.7 | 17.8 to 21.2 |
SW Sardinian Vein System | ||||||||
PI-04 | quartz | P+PS-S | −23.6 to −18.6 [12] | 52.4 to 105.2 [22] | 21.4 to 24.8 | |||
PI-06 | quartz | PS-S | −22.5 [1] | −23.1 to −16.8 [32] | 54.5 to 115.7 | 20.1 to 24.4 | 20.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, M.; Rossetti, P.; Naitza, S.; Magnani, L.; Ruggieri, G.; Aquino, A.; Tartarotti, P.; Franklin, A.; Ferrari, E.; Castelli, D.; et al. Factors Controlling Hydrothermal Nickel and Cobalt Mineralization—Some Suggestions from Historical Ore Deposits in Italy. Minerals 2019, 9, 429. https://doi.org/10.3390/min9070429
Moroni M, Rossetti P, Naitza S, Magnani L, Ruggieri G, Aquino A, Tartarotti P, Franklin A, Ferrari E, Castelli D, et al. Factors Controlling Hydrothermal Nickel and Cobalt Mineralization—Some Suggestions from Historical Ore Deposits in Italy. Minerals. 2019; 9(7):429. https://doi.org/10.3390/min9070429
Chicago/Turabian StyleMoroni, Marilena, Piergiorgio Rossetti, Stefano Naitza, Lorenzo Magnani, Giovanni Ruggieri, Andrea Aquino, Paola Tartarotti, Andrea Franklin, Elena Ferrari, Daniele Castelli, and et al. 2019. "Factors Controlling Hydrothermal Nickel and Cobalt Mineralization—Some Suggestions from Historical Ore Deposits in Italy" Minerals 9, no. 7: 429. https://doi.org/10.3390/min9070429