Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano
Abstract
1. Introduction
2. Starting Materials and Methods
3. Results
3.1. Phase Relations
3.2. Phase Compositions
3.3. Achievement of Equilibrium
4. Discussion
4.1. H2O-Undersaturated Versus H2O-Saturated Crystallization Regimes
4.2. H2O Release upon Magma Ascent during 2001 and 2006 Eruptions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corsaro, R.A.; Di Renzo, V.; Distefano, S.; Miraglia, L.; Civetta, L. Relationship between petrologic processes in the plumbing system of Mt. Etna and the dynamics of the eastern flank from 1995 to 2005. J. Volcanol. Geotherm. Res. 2013, 251, 75–89. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Pompilio, M.; Métrich, N.; Sobolev, A.V.; Kuzmin, D.V.; Thomas, R. Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology 2007, 35, 255–258. [Google Scholar] [CrossRef]
- Collins, S.J.; Pyle, D.M.; Maclennan, J. Melt inclusions track pre-eruption storage and dehydratation of magmas at Etna. Geology 2009, 6, 571–574. [Google Scholar] [CrossRef]
- Ferlito, C.; Viccaro, M.; Cristofolini, R. Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): Evidence from glass in tephra of the 2001 eruption. Bull. Volcanol. 2008, 70, 455–473. [Google Scholar] [CrossRef]
- Ferlito, C.; Coltorti, M.; Lanzafame, G.; Giacomoni, P.P. The volatile flushing triggers eruptions at open conduit volcanoes: Evidence from Mount Etna volcano (Italy). Lithos 2014, 184–187, 447–455. [Google Scholar] [CrossRef]
- Bozzano, F.; Gaeta, M.; Lenti, L.; Martino, S.; Paciello, A.; Palladino, D.M.; Sottili, G. Modeling the effects of eruptive and seismic activities on flank instability at Mount Etna, Italy. J. Geophys. Res. Solid Earth 2013, 118, 5252–5273. [Google Scholar] [CrossRef]
- Mollo, S.; Scarlato, P.; Lanzafame, G.; Ferlito, C. Deciphering lava flow post-eruption differentiation processes by means of geochemical and isotopic variations: A case study from Mt. Etna volcano. Lithos 2013, 162–163, 115–127. [Google Scholar] [CrossRef]
- Ferlito, C.; Lanzafame, G. The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 2010, 119, 642–650. [Google Scholar] [CrossRef]
- Giacomoni, P.P.; Ferlito, C.; Coltorti, M.; Bonadiman, C.; Lanzafame, G. Plagioclase as Archive of Magma Ascent Dynamics on “Open Conduit” Volcanoes: The 2001–2006 Eruptive Period at Mount Etna. Earth Sci. Rev. 2014, 138, 371–393. [Google Scholar] [CrossRef]
- Armienti, P.; Tonarini, S.; Innocenti, F.; D’Orazio, M. Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system. In Cenozoic Volcanism in the Mediterranean; Beccaluva, L., Bianchini, G., Wilson, M., Eds.; Geological Society of America Special Papers: Boulder, CO, USA, 2007; Volume 418, pp. 265–276. [Google Scholar]
- Lanzafame, G.; Mollo, S.; Iezzi, G.; Ferlito, C.; Ventura, G. Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bull. Volcanol. 2013, 75, 703. [Google Scholar] [CrossRef]
- Mollo, S.; Giacomoni, P.P.; Coltorti, M.; Ferlito, C.; Iezzi, G.; Scarlato, P. Reconstruction of magmatic variables governing recent Etnean eruptions: Constraints from mineral chemistry and P-T-fO2-H2O modelling. Lithos 2015, 212–215, 311–320. [Google Scholar] [CrossRef]
- Mollo, S.; Giacomoni, P.P.; Andronico, D.; Scarlato, P. Clinopyroxene and titanomagnetite cation redistributions at Mt. Etna volcano (Sicily, Italy): Footprints of the final solidification history of lava fountains and lava flows. Chem. Geol. 2015, 406, 45–54. [Google Scholar] [CrossRef]
- Métrich, N.; Allard, P.; Spilliaert, N.; Andronico, D.; Burton, M. 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth Planet. Sci. Lett. 2004, 228, 1–17. [Google Scholar] [CrossRef]
- Dolfi, D.; Trigila, R. Clinopyroxene solid solutions and water in magmas: Results in the system phonolitic tephrite-H2O. Mineral. Mag. 1983, 47, 347–351. [Google Scholar] [CrossRef]
- Metrich, N.; Rutherford, M.J. Low pressure crystallization paths of H2O-saturated basaltic-hawaitic melts from Mt Etna: Implications for open-system degassing of basaltic volcanoes. Geochim. Cosmochim. Acta 1998, 62, 1195–1205. [Google Scholar] [CrossRef]
- Vetere, F.; Mollo, S.; Giacomoni, P.P.; Iezzi, G.; Coltorti, M.; Ferlito, C.; Holtz, F.; Perugini, D.; Scarlato, P. Experimental constraints on the origin of pahoehoe “cicirara” lavas at Mt. Etna Volcano (Sicily, Italy). Bull. Volcanol. 2015, 77, 44. [Google Scholar] [CrossRef]
- Hirn, A.; Nicolich, R.; Gallart, J.; Laigle, M.; Cernobori, L.; ETNASEIS Scientific Group. Roots of Etna volcano in faults of great earthquakes. Earth Planet. Sci. Lett. 1997, 148, 171–191. [Google Scholar] [CrossRef]
- Duan, X. A general model for predicting the solubility behavior of H2O-CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions. Geochim. Cosmochim. Acta 2014, 125, 582–609. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Gaetani, G.A.; O’Leary, J.A.; Hairi, E.H. H2O solubility in basalt at upper mantle conditions. Contrib. Mineral. Petrol. 2017, 172, 85. [Google Scholar] [CrossRef]
- Armienti, P.; Perinelli, C.; Putirka, K.D. A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy). J. Petrol. 2013, 54, 795–813. [Google Scholar] [CrossRef]
- Armienti, P.; Clocchiatti, R.; D’Orazio, M.; Innocenti, F.; Petrini, R.; Pompilio, M.; Tonarini, S.; Villari, L. The long-standing 1991–1993 Mount Etna eruption: Petrography and geochemistry of lavas. Acta Vulcanol. 1994, 4, 15–28. [Google Scholar]
- Andronico, D.; Corsaro, R.A. Lava fountains during the episodic eruption of South–East Crater (Mt. Etna), 2000: Insights into magma-gas dynamics within the shallow volcano plumbing system. Bull. Volcanol. 2011, 73, 1165–1178. [Google Scholar] [CrossRef]
- Viccaro, M.; Giacomoni, P.P.; Ferlito, C.; Cristofolini, R. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 2010, 116, 77–91. [Google Scholar] [CrossRef]
- Devine, J.D.; Gardner, J.E.; Brack, H.P.; Laynet, G.D.; Rutherford, M.J. Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am. Mineral. 1995, 80, 319–328. [Google Scholar] [CrossRef]
- Corsaro, R.A.; Pompilio, M. Dynamics of magmas at Mount Etna. In Mt. Etna Volcano Laboratory; Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S., Eds.; AGU Geophysical Monograph Series: Washington, DC, USA, 2004; Volume 143, pp. 91–110. [Google Scholar]
- Kress, V.G.; Charmichael, I.S.E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox state. Contrib. Mineral. Petrol. 1991, 108, 82–92. [Google Scholar] [CrossRef]
- Toplis, M.J. The thermodynamics of iron and magnesium partitioning between olivine and liquid: Criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib. Mineral. Petrol. 2005, 149, 22–39. [Google Scholar] [CrossRef]
- Conte, A.M.; Dolfi, D.; Gaeta, M.; Misiti, V.; Mollo, S.; Perinelli, C. Experimental constraints on evolution of leucite-basanite magma at 1 and 10−4 GPa: Implications for parental compositions of Roman high-potassium magmas. Eur. J. Mineral. 2009, 21, 763–782. [Google Scholar] [CrossRef]
- Weaver, S.L.; Wallace, P.J.; Johnston, A.D. Experimental constraints on the origins of primitive potassic lavas from the Trans-Mexican Volcanic Belt. Contrib. Mineral. Petrol. 2013, 166, 825–843. [Google Scholar] [CrossRef]
- Stormer, J.C.; Nicholls, J. XLFRAC: A program for the interactive testing of magmatic differentiation models. Comput. Geosci. 1978, 4, 143–159. [Google Scholar] [CrossRef]
- Lange, R.A.; Carmichael, I.S.E. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties. Geochim. Cosmochim. Acta 1987, 51, 2931–2946. [Google Scholar] [CrossRef]
- Mollo, S.; Del Gaudio, P.; Ventura, G.; Iezzi, G.; Scarlato, P. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos 2010, 118, 302–312. [Google Scholar] [CrossRef]
- Frey, H.M.; Lange, R.A. Phenocryst complexity in andesites and dacites from the Tequila volcanic field, Mexico: Resolving the effects of degassing vs. magma mixing. Contrib. Mineral. Petrol. 2011, 162, 415–445. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Putirka, K.D.; Mikaelian, H.; Ryerson, F.; Shaw, H. New clinopyroxene-liquid thermobarometers for maric, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineral. 2003, 88, 1542–1554. [Google Scholar] [CrossRef]
- Mollo, S.; Putirka, K.; Iezzi, G.; Scarlato, P. The control of cooling rate on titanomagnetite composition: Implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib. Mineral. Petrol. 2013, 165, 457–475. [Google Scholar] [CrossRef]
- Mollo, S.; Masotta, M. Optimizing pre-eruptive temperature estimates in thermally and chemically zoned magma chambers. Chem. Geol. 2014, 368, 97–103. [Google Scholar] [CrossRef]
- Mollo, S.; Blundy, J.; Scarlato, P.; De Cristofaro, S.P.; Tecchiato, V.; Di Stefano, F.; Vetere, F.; Holtz, F.; Bachmann, O. An integrated P-T-H2O-lattice strain model to quantify the role of clinopyroxene fractionation on REE+Y and HFSE patterns of mafic alkaline magmas: Application to eruptions at Mt. Etna. Earth Sci. Rev. 2018, 185, 32–56. [Google Scholar] [CrossRef]
- Di Carlo, I.; Pichavant, M.; Rotolo, S.G.; Scaillet, B. Experimental Crystallization of a High-K Arc Basalt: The Golden Pumice, Stromboli Volcano (Italy). J. Petrol. 2006, 47, 1317–1343. [Google Scholar] [CrossRef]
- Tanguy, J.C.; Condomines, M.; Kieffer, G. Evolution of the Mount Etna magma: Constraints on the present feeding system and eruptive mechanism. J. Volcanol. Geotherm. Res. 1997, 75, 221–250. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Sack, R.O. Chemical mass-transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquidus-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 1995, 119, 197–212. [Google Scholar] [CrossRef]
- Spilliaert, N.; Allard, P.; Metrich, N.; Sobolev, A.V. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt feeding the powerful 2002 flank eruption of Mount Etna (Italy). J. Geophys. Res. 2006, 111, B04203. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S.; Liuzzo, M.; Shinohara, H.; Favara, R.; Valenza, M. Rates of carbon dioxide plume degassing from Mount Etna volcano. J. Geophys. Res. 2006, 111, B09207. [Google Scholar] [CrossRef]
- Le Cloarec, M.F.; Pennisi, M. Radionuclides and sulfur content in Mount Etna plume in 1983–1995: New constraints on the magma feeding system. J. Volcanol. Geotherm. Res. 2001, 108, 141–155. [Google Scholar] [CrossRef]
- Allard, P.; Behncke, B.; D’Amico, S.; Neri, M.; Gambino, S. Mount Etna 1993–2005: Anatomy of an evolving eruptive cycle. Earth Sci. Rev. 2006, 78, 85–114. [Google Scholar] [CrossRef]
- Ferlito, C. Mount Etna volcano (Italy). Just a giant hot spring! Earth Sci. Rev. 2018, 177, 14–23. [Google Scholar] [CrossRef]
- Ferlito, C.; Viccaro, M.; Nicotra, E.; Cristofolini, R. Regimes of magma recharge and their control on the eruptive behaviour during the period 2001–2005 at Mt. Etna volcano. Bull. Volcanol. 2012, 74, 533–543. [Google Scholar] [CrossRef]
- Perinelli, C.; Mollo, S.; Gaeta, M.; De Cristofaro, S.P.; Palladino, D.M.; Armienti, P.; Scarlato, P.; Putirka, K.D. An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption triggering mechanisms. Am. Mineral. 2016, 101, 2774–2777. [Google Scholar] [CrossRef]
#Oxide | HE | SD (5) | ME | SD (5) |
---|---|---|---|---|
Experimental melt compositions | ||||
SiO2 | 47.78 | 0.39 | 48.27 | 0.43 |
TiO2 | 1.72 | 0.02 | 1.69 | 0.03 |
Al2O3 | 17.10 | 0.19 | 17.32 | 0.16 |
FeOtot | 10.18 | 0.12 | 11.07 | 0.11 |
MnO | 0.17 | 0.01 | 0.17 | 0.03 |
MgO | 5.55 | 0.07 | 4.94 | 0.09 |
CaO | 10.40 | 0.12 | 9.94 | 0.10 |
Na2O | 3.84 | 0.05 | 3.73 | 0.07 |
K2O | 2.03 | 0.03 | 2.06 | 0.05 |
P2O5 | 0.55 | 0.01 | 0.57 | 0.03 |
Tot | 99.32 | 99.76 |
Run | T | t | H2O | Gl | Cpx | Plg | Timt | Ol | Σr2 | cpx-meltKdFe-Mg | ΔDiHd | plg-meltKdAb-An | ol-meltKdFe-Mg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(#) | (°C) | (h) | (wt %) | (wt %–vol %) | (Putirka et al., 2008) | (Mollo et al., 2013b) | (Putirka et al., 2008) | Roeder and Emslie (1970) | |||||
HE-1 | 1200 | 8 | 2.7 | 100–100 | - | - | - | - | 0.01 | - | - | - | - |
HE-2 | 1125 | 8 | 2.1 | 59–57 | 23–24 | 15–16 | 2–2 | 1–1 | 0.25 | 0.26 | 0.03 | 0.14 | 0.42 |
HE-3 | 1050 | 8 | 8.2 | 85–87 | 9–8 | - | 6–5 | - | 0.19 | 0.27 | 0.05 | - | - |
HE-4 | 1020 | 8 | 10 | 100–100 | - | - | - | - | 0.01 | - | - | - | - |
ME-1 | 1175 | 8 | 3.2 | 87–88 | 6–5 | 6–6 | 1–1 | - | 0.32 | 0.27 | 0.02 | 0.21 | - |
ME-2 | 1150 | 8 | 2.3 | 64–67 | 11–10 | 18–16 | 4–4 | 3–3 | 0.19 | 0.27 | 0.04 | 0.18 | 0.35 |
ME-3 | 1150 | 8 | 6.2 | 100–100 | - | - | - | - | 0.01 | - | - | - | - |
ME-4 | 1125 | 8 | 2.4 | 69–73 | 13–12 | 15–14 | 1–1 | 2–2 | 0.21 | 0.27 | 0.08 | 0.14 | 0.54 |
ME-5 | 1090 | 8 | 4.1 | 48–53 | 17–15 | 26–24 | 5–4 | 4–4 | 0.31 | 0.27 | 0.04 | 0.17 | 0.26 |
ME-6 | 1070 | 8 | 3.8 | 48–53 | 18–16 | 28–26 | 1–1 | 5–4 | 0.26 | 0.27 | 0.01 | 0.15 | 0.49 |
ME-7 | 1065 | 8 | 5.0 | 56–60 | 11–10 | 24–22 | 6–5 | 3–3 | 0.24 | 0.27 | 0.07 | 0.14 | 0.55 |
# | HE-2 | SD(4) | HE-3 | SD(4) | ME-1 | SD(4) | ME-2 | SD(4) | ME-4 | SD(4) | ME-5 | SD(4) | ME-6 | SD(4) | ME-7 | SD(4) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experimental melt compositions | ||||||||||||||||
SiO2 | 50.96 | 0.40 | 51.71 | 0.38 | 49.88 | 0.45 | 50.86 | 0.43 | 50.69 | 0.45 | 53.51 | 0.42 | 53.21 | 0.45 | 53.49 | 0.41 |
TiO2 | 2.00 | 0.02 | 1.49 | 0.02 | 1.75 | 0.02 | 2.00 | 0.03 | 1.92 | 0.03 | 1.89 | 0.02 | 1.86 | 0.03 | 2.05 | 0.02 |
Al2O3 | 18.16 | 0.20 | 19.75 | 0.20 | 17.63 | 0.15 | 17.32 | 0.12 | 17.87 | 0.16 | 18.61 | 0.20 | 18.78 | 0.13 | 15.97 | 0.17 |
FeO | 8.35 | 0.10 | 6.08 | 0.06 | 9.59 | 0.14 | 9.50 | 0.09 | 9.57 | 0.10 | 7.40 | 0.07 | 7.08 | 0.07 | 8.35 | 0.12 |
MnO | 0.16 | 0.02 | 0.20 | 0.03 | 0.14 | 0.00 | 0.20 | 0.02 | 0.22 | 0.01 | 0.21 | 0.03 | 0.24 | 0.01 | 0.20 | 0.01 |
MgO | 3.29 | 0.06 | 4.23 | 0.07 | 4.64 | 0.09 | 3.79 | 0.04 | 3.91 | 0.05 | 2.45 | 0.05 | 2.80 | 0.03 | 4.21 | 0.08 |
CaO | 7.03 | 0.06 | 9.65 | 0.11 | 9.39 | 0.07 | 7.41 | 0.07 | 7.05 | 0.07 | 5.76 | 0.04 | 5.60 | 0.05 | 7.36 | 0.07 |
Na2O | 5.76 | 0.10 | 4.34 | 0.05 | 4.26 | 0.04 | 5.13 | 0.06 | 4.87 | 0.06 | 4.99 | 0.06 | 5.38 | 0.06 | 4.64 | 0.08 |
K2O | 3.31 | 0.07 | 2.23 | 0.03 | 2.22 | 0.03 | 3.12 | 0.05 | 3.20 | 0.08 | 4.32 | 0.06 | 4.16 | 0.06 | 3.02 | 0.07 |
P2O5 | 0.98 | 0.02 | 0.33 | 0.02 | 0.49 | 0.01 | 0.67 | 0.03 | 0.70 | 0.03 | 0.86 | 0.04 | 0.89 | 0.02 | 0.72 | 0.03 |
Total | 97.91 | 91.82 | 96.82 | 97.68 | 97.60 | 95.90 | 96.19 | 95.02 | ||||||||
# | HE-2 | SD(3) | HE-3 | SD(3) | ME-1 | SD(3) | ME-2 | SD(3) | ME-4 | SD(3) | ME-5 | SD(3) | ME-6 | SD(3) | ME-7 | SD(3) |
Experimental clinopyroxene compositions | ||||||||||||||||
SiO2 | 47.86 | 0.39 | 48.95 | 0.40 | 48.95 | 0.40 | 48.56 | 0.39 | 49.56 | 0.40 | 49.35 | 0.40 | 49.29 | 0.40 | 48.73 | 0.39 |
TiO2 | 1.85 | 0.02 | 0.88 | 0.01 | 1.51 | 0.02 | 1.54 | 0.02 | 1.36 | 0.02 | 1.55 | 0.02 | 1.26 | 0.02 | 1.52 | 0.02 |
Al2O3 | 6.22 | 0.12 | 5.34 | 0.10 | 4.98 | 0.09 | 5.34 | 0.10 | 4.56 | 0.09 | 4.52 | 0.09 | 4.63 | 0.09 | 4.99 | 0.09 |
FeO | 8.59 | 0.10 | 6.68 | 0.08 | 8.32 | 0.10 | 8.55 | 0.10 | 8.24 | 0.10 | 8.66 | 0.10 | 7.67 | 0.09 | 8.47 | 0.10 |
MnO | 0.19 | 0.02 | 0.16 | 0.01 | 0.19 | 0.02 | 0.16 | 0.01 | 0.21 | 0.02 | 0.38 | 0.03 | 0.20 | 0.02 | 0.20 | 0.02 |
MgO | 12.25 | 0.15 | 14.86 | 0.18 | 12.79 | 0.15 | 12.57 | 0.15 | 13.15 | 0.16 | 12.64 | 0.15 | 13.49 | 0.16 | 12.74 | 0.15 |
CaO | 22.40 | 0.27 | 22.46 | 0.27 | 22.77 | 0.27 | 22.54 | 0.27 | 21.79 | 0.26 | 22.13 | 0.27 | 22.89 | 0.27 | 22.68 | 0.27 |
Na2O | 0.42 | 0.03 | 0.60 | 0.04 | 0.47 | 0.03 | 0.48 | 0.03 | 0.53 | 0.03 | 0.58 | 0.03 | 0.73 | 0.04 | 0.44 | 0.03 |
Total | 99.77 | 99.93 | 99.99 | 99.74 | 99.39 | 99.81 | 100.17 | 99.76 | ||||||||
Cations on the basis of 6 oxygens | ||||||||||||||||
Si | 1.789 | 1.796 | 1.822 | 1.813 | 1.853 | 1.843 | 1.631 | 1.819 | ||||||||
Ti | 0.211 | 0.204 | 0.178 | 0.187 | 0.147 | 0.157 | 0.169 | 0.181 | ||||||||
AlIV | 0.063 | 0.027 | 0.040 | 0.048 | 0.053 | 0.042 | 0.032 | 0.038 | ||||||||
AlVI | 0.052 | 0.024 | 0.042 | 0.043 | 0.038 | 0.043 | 0.035 | 0.043 | ||||||||
Fe3+ | 0.076 | 0.172 | 0.089 | 0.089 | 0.056 | 0.072 | 0.121 | 0.092 | ||||||||
Fe2+ | 0.192 | 0.033 | 0.170 | 0.178 | 0.201 | 0.199 | 0.115 | 0.173 | ||||||||
Mn | 0.682 | 0.813 | 0.710 | 0.699 | 0.733 | 0.703 | 0.738 | 0.709 | ||||||||
Mg | 0.006 | 0.005 | 0.006 | 0.005 | 0.007 | 0.012 | 0.006 | 0.006 | ||||||||
Ca | 0.897 | 0.883 | 0.908 | 0.902 | 0.873 | 0.886 | 0.900 | 0.907 | ||||||||
Na | 0.030 | 0.042 | 0.034 | 0.035 | 0.038 | 0.042 | 0.052 | 0.032 | ||||||||
Di | 0.58 | 0.67 | 0.62 | 0.60 | 0.60 | 0.60 | 0.65 | 0.62 | ||||||||
Hd | 0.16 | 0.03 | 0.15 | 0.15 | 0.16 | 0.17 | 0.10 | 0.15 | ||||||||
En | 0.05 | 0.07 | 0.04 | 0.05 | 0.07 | 0.05 | 0.04 | 0.05 | ||||||||
Fs | 0.02 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | ||||||||
Jd | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | ||||||||
CaTs | 0.07 | 0.08 | 0.05 | 0.06 | 0.04 | 0.04 | 0.05 | 0.05 | ||||||||
CaFeTs | 0.04 | 0.09 | 0.04 | 0.04 | 0.03 | 0.04 | 0.06 | 0.05 | ||||||||
# | HE-2 | SD(3) | ME-1 | SD(3) | ME-2 | SD(3) | ME-4 | SD(3) | ME-5 | SD(3) | ME-6 | SD(3) | ME-7 | SD(3) | ||
Experimental plagioclase compositions | ||||||||||||||||
SiO2 | 46.72 | 0.38 | 48.91 | 0.40 | 52.40 | 0.42 | 52.10 | 0.42 | 52.30 | 0.42 | 50.21 | 0.41 | 51.27 | 0.42 | ||
TiO2 | 0.12 | 0.01 | 0.05 | 0.00 | 0.09 | 0.01 | 0.08 | 0.01 | 0.10 | 0.01 | 0.07 | 0.01 | 0.11 | 0.01 | ||
Al2O3 | 32.31 | 0.36 | 31.35 | 0.34 | 28.99 | 0.32 | 29.92 | 0.33 | 28.75 | 0.32 | 30.42 | 0.33 | 29.99 | 0.33 | ||
FeO | 0.96 | 0.04 | 0.80 | 0.03 | 0.81 | 0.03 | 0.85 | 0.04 | 1.10 | 0.05 | 0.98 | 0.04 | 0.94 | 0.04 | ||
MgO | 0.10 | 0.01 | 0.09 | 0.01 | 0.09 | 0.01 | 0.09 | 0.01 | 0.16 | 0.01 | 0.09 | 0.01 | 0.10 | 0.01 | ||
CaO | 16.61 | 0.20 | 15.46 | 0.19 | 13.01 | 0.16 | 13.62 | 0.16 | 13.07 | 0.16 | 14.08 | 0.17 | 13.74 | 0.16 | ||
Na2O | 2.98 | 0.13 | 2.67 | 0.11 | 3.99 | 0.17 | 3.51 | 0.15 | 3.81 | 0.16 | 3.81 | 0.16 | 3.43 | 0.14 | ||
K2O | 0.16 | 0.01 | 0.21 | 0.01 | 0.44 | 0.03 | 0.34 | 0.02 | 0.45 | 0.03 | 0.31 | 0.02 | 0.38 | 0.02 | ||
Total | 99.96 | 99.53 | 99.82 | 100.51 | 99.74 | 99.96 | 99.97 | |||||||||
Cations on the basis of 8 oxygens | ||||||||||||||||
Si | 2.164 | 2.253 | 2.391 | 2.361 | 2.390 | 2.301 | 2.341 | |||||||||
Al | 1.764 | 1.702 | 1.560 | 1.598 | 1.549 | 1.644 | 1.614 | |||||||||
Fe | 0.037 | 0.031 | 0.031 | 0.032 | 0.042 | 0.037 | 0.036 | |||||||||
Mg | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | |||||||||
Ca | 0.824 | 0.763 | 0.636 | 0.661 | 0.640 | 0.692 | 0.672 | |||||||||
Na | 0.268 | 0.238 | 0.353 | 0.308 | 0.338 | 0.339 | 0.304 | |||||||||
K | 0.010 | 0.012 | 0.025 | 0.019 | 0.026 | 0.018 | 0.022 | |||||||||
An | 75 | 75 | 63 | 67 | 64 | 66 | 67 | |||||||||
Ab | 24 | 24 | 35 | 31 | 34 | 32 | 30 | |||||||||
Or | 1 | 1 | 2 | 2 | 3 | 2 | 2 | |||||||||
# | HE-2 | SD(3) | HE-3 | SD(3) | ME-5 | SD(3) | ||||||||||
Experimental titanomagnetite compositions | ||||||||||||||||
TiO2 | 10.15 | 0.11 | 10.14 | 0.12 | 10.03 | 0.12 | ||||||||||
Al2O3 | 6.32 | 0.32 | 5.28 | 0.26 | 5.43 | 0.27 | ||||||||||
FeO | 73.01 | 0.66 | 71.45 | 0.79 | 74.61 | 0.60 | ||||||||||
MnO | 0.38 | 0.05 | 0.62 | 0.07 | 0.42 | 0.05 | ||||||||||
MgO | 4.19 | 0.25 | 1.53 | 0.09 | 1.89 | 0.11 | ||||||||||
Total | 94.05 | 89.01 | 92.38 | |||||||||||||
Cations on the basis of 3 oxygens | ||||||||||||||||
Ti | 0.275 | 0.297 | 0.283 | |||||||||||||
Al | 0.269 | 0.243 | 0.240 | |||||||||||||
Fe3+ | 0.000 | 0.000 | 0.000 | |||||||||||||
Fe2+ | 2.203 | 2.330 | 2.340 | |||||||||||||
Mn | 0.012 | 0.020 | 0.013 | |||||||||||||
Mg | 0.225 | 0.089 | 0.106 | |||||||||||||
Usp | 32 | 37 | 34 | |||||||||||||
# | HE-2 | SD(3) | ME-2 | SD(3) | ME-4 | SD(3) | ME-5 | SD(3) | ME-6 | SD(3) | ME-7 | SD(3) | ||||
Experimental olivine compositions | ||||||||||||||||
SiO2 | 37.28 | 0.30 | 38.34 | 0.31 | 38.57 | 0.31 | 38.07 | 0.31 | 37.28 | 0.30 | 38.07 | 0.31 | ||||
FeO | 30.13 | 0.36 | 22.81 | 0.27 | 24.79 | 0.30 | 23.33 | 0.28 | 30.13 | 0.36 | 23.33 | 0.28 | ||||
MnO | 0.74 | 0.04 | 0.66 | 0.03 | 0.64 | 0.03 | 0.59 | 0.03 | 0.74 | 0.04 | 0.59 | 0.03 | ||||
MgO | 31.08 | 0.34 | 36.57 | 0.40 | 35.28 | 0.39 | 36.47 | 0.40 | 31.08 | 0.34 | 36.47 | 0.40 | ||||
CaO | 0.43 | 0.03 | 0.44 | 0.04 | 0.44 | 0.02 | 0.39 | 0.03 | 0.43 | 0.02 | 0.39 | 0.03 | ||||
Tot | 99.66 | 98.82 | 99.72 | 98.85 | 99.66 | 98.85 | ||||||||||
Cations on the basis of 4 oxygens | ||||||||||||||||
Si | 1.013 | 1.014 | 1.018 | 1.009 | 1.013 | 1.009 | ||||||||||
Fe | 0.685 | 0.504 | 0.547 | 0.517 | 0.685 | 0.517 | ||||||||||
Mn | 0.017 | 0.015 | 0.014 | 0.013 | 0.017 | 0.013 | ||||||||||
Mg | 1.259 | 1.441 | 1.389 | 1.441 | 1.259 | 1.441 | ||||||||||
Ca | 0.013 | 0.012 | 0.012 | 0.011 | 0.013 | 0.011 | ||||||||||
Fo | 65 | 74 | 72 | 74 | 65 | 74 | ||||||||||
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perinelli, C.; Mollo, S.; Gaeta, M.; De Cristofaro, S.P.; Palladino, D.M.; Scarlato, P. Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano. Minerals 2018, 8, 482. https://doi.org/10.3390/min8110482
Perinelli C, Mollo S, Gaeta M, De Cristofaro SP, Palladino DM, Scarlato P. Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano. Minerals. 2018; 8(11):482. https://doi.org/10.3390/min8110482
Chicago/Turabian StylePerinelli, Cristina, Silvio Mollo, Mario Gaeta, Serena Pia De Cristofaro, Danilo Mauro Palladino, and Piergiorgio Scarlato. 2018. "Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano" Minerals 8, no. 11: 482. https://doi.org/10.3390/min8110482
APA StylePerinelli, C., Mollo, S., Gaeta, M., De Cristofaro, S. P., Palladino, D. M., & Scarlato, P. (2018). Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano. Minerals, 8(11), 482. https://doi.org/10.3390/min8110482