Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transformation of the Montmorillonite Structure under Acid Treatment
3.2. Transformation of Montmorillonite Adsorption Properties under Acid Treatment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pusch, R.; Knutsson, S.; Al-Taie, L.; Mohammed, M.H. Optimal ways of disposal of highly radioactive waste. Nat. Sci. 2012, 4, 906–918. [Google Scholar] [CrossRef]
- Sellin, P.; Leupin, O.X. The use of clay as an engineered barrier in radioactive-waste management—A review. Clays Clay Miner. 2013, 61, 477–498. [Google Scholar] [CrossRef]
- Laverov, N.P.; Velichkin, V.I.; Omelianenko, B.I.; Yudincev, S.V.; Petrov, V.A.; Bichkova, A.V. Part 5: Changes of the environment and climate. In Isolation of Spent Nuclear Materials: Geological and Geochemical Bases; IGEM RAS, IFZ RAS: Moscow, Russia, 2008; p. 280. (In Russian) [Google Scholar]
- Drits, V.A.; Choubar, C. X-ray Diffraction by Disordered Lamelar Structure. X-ray Diffraction by Disordered Lamelar Structure; Springer-Verlag: Berlin/Heidelberg, Germany, 1990; p. 371. [Google Scholar]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; p. 378. [Google Scholar]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, M.L.L.; Gala, N.E.; Kogure, T.; Stanjek, H. Summary of recommendations of nomenclature committees. Relevant to clay mineralogy: Report of the Association Internationale Pour L’etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays Clay Miner. 2006, 54, 761–772. [Google Scholar] [CrossRef]
- Brindley, G.W.; Brown, G. (Eds.) Crystal Structures of Clay Minerals and Their X-ray Identification; Mineralogical Society: London, UK, 1980. [Google Scholar]
- Wilson, M.J. Rock-Forming Minerals. Sheet Silikates: Clays Minerals; The Geological Society: London, UK, 2013; p. 724. [Google Scholar]
- Laverov, N.P.; Yudintsev, S.V.; Kochkin, B.T.; Malkovsky, V.I. The Russian strategy of using crystalline rock as a repository for nuclear waste. Elements 2016, 12, 253–256. [Google Scholar] [CrossRef]
- Gupalo, T.A.; Kudinov, K.G.; Jardine, L.J.; Williams, J. Development of a Comprehensive Plan for Scientific Research, Exploration, and Design: Creation of an Underground Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif. In Proceedings of the Waste Management 2005 Symposium, Tucson, AZ, USA, 27 February–3 March 2005. [Google Scholar]
- Komadel, P. Chemically modified smectites. Clay Miner. 2003, 38, 127–138. [Google Scholar] [CrossRef]
- Tomić, Z.P.; Antić Mladenović, S.B.; Babić, B.M.; Poharc Logar, V.A.; Đorđević, A.R.; Cupać, S.B. Modification of smectite structure by sulfuric acid and characteristics of the modified smectite. J. Agric. Sci. 2011, 56, 25–35. [Google Scholar]
- Okada, K.; Arimitsu, N.; Kameshima, Y.; Nakajima, A.; MacKenzie, K.J.D. Solid acidity of 2:1 type clay minerals activated by selective leaching. Appl. Clay Sci. 2006, 31, 185–193. [Google Scholar] [CrossRef]
- Kumar, P.; Jasra, R.V.; Bhat, T.S.G. Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation. Ind. Eng. Chem. Res. 1995, 34, 1440–1448. [Google Scholar] [CrossRef]
- Komadel, P.; Madejovа, J. Chapter 7.1: Acid activation of clay minerals. In Handbook of Clay Science; Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, p. 263287. [Google Scholar]
- Carrado, K.A.; Komadel, P. Acid activation of bentonites and polymer-clay nanocompo-sites. Elements 2009, 5, 111–116. [Google Scholar] [CrossRef]
- Dubikova, M.; Cambier, P.; Sucha, V.; Caplovicova, M. Experimental soil acidification. Appl. Geochem. 2002, 17, 245–257. [Google Scholar] [CrossRef]
- Pagano, T.; Sergio, M.; Glisenti, L.; Diano, W.; Grompone, M.A. Use of pillared montmorillonites to eliminate chlorophyll from rice bran oil. Ing. Quim. 2001, 19, 11–19. [Google Scholar]
- Tyupina, E.A.; Magomedbekov, E.P.; Tuchkova, A.I.; Timerkaev, V.B. The sorption refinement of liquid organic radioactive waste for Cs-137. Adv. Mater. Spec. Issue 2010, 8, 329–333. (In Russian) [Google Scholar]
- Vicente, M.A.; Suarez Barrios, M.; Lopez Gonzalez, J.D.; Banares Munoz, M.A. Characterization, surface area, and porosity analyses of the solids obtained by acid leaching of a saponite. Langmuir 1996, 12, 566–572. [Google Scholar] [CrossRef]
- Komadel, P. Structure and chemical characteristics of modified clays. In Natural Microporous Materials in Environmental Technology; Misealides, P., Macasek, F., Pinnavaia, T.J., Colella, C., Eds.; Kluwer: Alphen aan den Rijn, The Netherlands, 1999; pp. 3–18. [Google Scholar]
- Tkac, I.; Komadel, P.; Muller, D. Acid-treated Montmorillonites—A Study by 29Si and 27Al MAS NMR. Clay Miner. 1994, 29, 11–19. [Google Scholar] [CrossRef]
- He, H.; Guo, J.; Xie, X.; Lin, H.; Li, L. A microstructural study of acid-activated montmorillonite from Choushan, China. Clay Miner. 2002, 37, 337–344. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Panchenko, V.N.; Gil, A.; Zakusin, S.V.; Krupskaya, V.V.; Volcho, K.P.; Vicente, M.A. Effect of structure and acidity of acid modified clay materials on synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol. Catal. Commun. 2015, 69, 234–238. [Google Scholar] [CrossRef]
- Novikova, L.; Belchinskaya, L.; Krupskaya, V.; Roessner, F.; Zhabin, A. Effect of acid and alkaline treatment on physical-chemical properties of surface of natural glauconite. Sorpt. Chromatogr. Process. 2015, 15, 730–740. [Google Scholar]
- Timofeeva, M.N.; Volcho, K.P.; Mikhalchenko, O.S.; Panchenko, V.N.; Krupskaya, V.V.; Tsybulya, S.V.; Gil, A.; Vicente, M.A.; Salakhutdinov, N.F. Synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol over acid modified montmorillonite clays: Effect of acidity on the Prins cyclization. J. Mol. Catal. A Chem. 2015, 398, 26–34. [Google Scholar] [CrossRef]
- Franco, F.; Pozo, M.; Cecilia, J.A.; Benítez-Guerrero, M.; Lorente, M. Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl. Clay Sci. 2016, 120, 70–80. [Google Scholar] [CrossRef]
- Adams, J.M. Synthetic organic chemistry using pillared, cation-exchanged and acid- treated montmorillonite catalysts—A review. Appl. Clay Sci. 1987, 2, 309–342. [Google Scholar] [CrossRef]
- Brown, D.R. Review: Clays as catalyst and reagent support. Geol. Carpath. Ser. Clays 1994, 45, 45–56. [Google Scholar] [CrossRef]
- Bovey, J.; Jones, W. Characterization of Al-pillared acid-activated clay catalysts. J. Mater. Chem. 1995, 5, 2027–2035. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Panchenko, V.N.; Volcho, K.P.; Zakusin, S.V.; Krupskaya, V.V.; Gil, A.; Mikhalchenko, O.S.; Vicente, M.A. Effect of acid modification of kaolin and metakaolin on Brønsted acidity and catalytic properties in the synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol. J. Mol. Catal. A Chem. 2016, 414, 160–166. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Panchenko, V.N.; Krupskaya, V.V.; Gil, A.; Vicente, M.A. Effect of nitric acid modification of montmorillonite clay on synthesis of sotketal from glycerol and acetone. Catal. Commun. 2017, 90, 65–69. [Google Scholar] [CrossRef]
- Tokarev, I.V.; Rumynin, V.G.; Zubkov, A.A.; Pozdnyakov, S.P.; Polyakov, V.A.; Kuznetsov, V.Y.U. Assessment of the long-term safety of radioactive waste disposal: 1. Paleoreconstruction of groundwater formation conditions. Water Resour. 2009, 36, 206–213. [Google Scholar] [CrossRef]
- Zubkov, A.A.; Balakhonov, B.G.; Sukhorukov, V.A.; Noskov, M.D.; Kessler, A.G.; Zhiganov, A.N.; Zakharova, E.V.; Darskaya, E.N.; Egorov, G.F.; Istomin, A.D. Radionuclide distribution in a sandstone injection zone in the course of acidic liquid radioactive waste disposal. Dev. Water Sci. 2005, 52, 491–500. [Google Scholar]
- Rybalchenko, A.; Pimenov, M.; Kostin, P. Injection Disposal of Hazardous and Industrial Wastes, Scientific and Engineering Aspects. In Deep Injection Disposal of Liquid Radioactive Waste in Russia; Academic Press: New York, NY, USA, 1998; p. 780. [Google Scholar]
- Rybalchenko, A.I.; Pimenov, M.K.; Kurochkin, V.M.; Kamnev, E.N.; Korotkevich, V.M.; Zubkov, A.A.; Khafizov, R.R. Deep Injection Disposal of Liquid Radioactive Waste in Russia. Dev. Water Sci. 2005, 52, 13–19. [Google Scholar]
- Utkin, S.S.; Linge, I.I. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir. J. Environ. Radioact. 2016. [Google Scholar] [CrossRef] [PubMed]
- Malkovsky, V.I.; Dikov, Y.P.; Asadulin, E.E.; Krupskaya, V.V. Influence of host rocks on composition of colloid particles in groundwater at the Karachai Lake site. Clay Miner. 2012, 47, 391–400. [Google Scholar] [CrossRef]
- Post, J.E.; Bish, D.L. Rietveld refinement of crystal structures using powder X-ray diffraction data. Rev. Mineral. Geochem. 1989, 20, 277–308. [Google Scholar]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Czímerová, A.; Bujdák, J.; Dohrmann, R. Traditional and novel methods for estimating the layer charge of smectites. Appl. Clay Sci. 2006, 34, 2–13. [Google Scholar] [CrossRef]
- Zakusin, S.V.; Krupskaya, V.; Dorzhieva, O.V.; Zhuhlistov, A.P.; Tyupina, E.A. Modification of the adsorption properties. Sorpt. Chromatogr. Processes 2015, 15, 280–289. [Google Scholar]
- Fineevich, V.P.; Allert, N.A.; Karpova, T.R.; Dupliakin, V.K. Composite nanomaterials based on acid-activated montmorillonite. Russ. Chem. J. 2007, 4, 69–74. (In Russian) [Google Scholar]
- Tyagi, B.; Chudasama, C.D.; Jasra, R.V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta Part A 2006, 64, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.N.; Brown, D.R. Catalytic activity of acid-treated montmorillonite in polar and nonpolar reaction media. Catal. Lett. 1994, 24, 285–291. [Google Scholar] [CrossRef]
- Shlikov, V.G. X-ray Analysis of Mineral Composition of Fine-Grained Soil; GEOS: Moscow, Russia, 2006; p. 175. (In Russian) [Google Scholar]
- Madejova, J.; Komadel, P. Baseline studies of The Clay Minerals Society Source Clays: Infrared methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Russell, J.D.; Fraser, A.R. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Wilson, M.J., Ed.; Chapman & Hall: London, UK, 1996; pp. 11–67. [Google Scholar]
- Pentrák, M.; Czímerová, A.; Madejová, J.; Komadel, P. Changes in layer charge of clay minerals upon acid treatment as obtained from their interactions with methylene blue. Appl. Clay Sci. 2012, 55, 100–107. [Google Scholar] [CrossRef]
- Komadel, P. Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 2016, 131, 84–99. [Google Scholar] [CrossRef]
- Dong, H.; Peacor, D.R. TEM observations of coherent stacking relations in smectite, i/s and illite of shales: Evidence for Macewan crystallites and dominance of 2M1 polytypism. Clays Clay Miner. 1996, 44, 257–275. [Google Scholar] [CrossRef]
- Osipov, V.I.; Sokolov, V.N. Clays and Its Properties. Composition, Structure and Properties Formation; GEOS: Moscow, Russia, 2013; p. 576. (In Russian) [Google Scholar]
- Simc, V.; Uhlík, P. Crystallite size distribution of clay minerals from selected Serbian clay deposits. Geoloski Anali Balkanskoga Poluostrva 2006, 67, 109–116. [Google Scholar]
- Kotarba, M.; Srodon, J. Diagenetic evolution of crystallite thickness distribution of illitic material in Carpathian shales, studied by the Bertaut-Warren-Averbach XRD method (MudMaster computer program). Clay Miner. 2000, 35, 383–391. [Google Scholar] [CrossRef]
- Mystkowski, K.; Srodon, J. Mean thickness and thickness distribution of smectite crystallites. Clay Miner. 2000, 35, 545–557. [Google Scholar] [CrossRef]
- Trofimov, V.T.; Korolev, V.A.; Voznesensky, E.A.; Golodovskaya, G.A.; Vasil’chuk, Y.K.; Ziangirov, R.S. Soil Science, 6th ed.; MSU: Moscow, Russia, 2005; p. 1024. (In Russian) [Google Scholar]
- Rouquerolt, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar]
- Karnauhov, A.P. Adsorption. Texture of Dispersive and Porous Materials; Nauka: Novosibirsk, Russia, 1999; p. 470. (In Russian) [Google Scholar]
- IUPAC. Manual of Symbols and Terminology. Pure Appl. Chem. 1972, 31, 577. [Google Scholar]
- Churakov, S. Mobility of Na and Cs on Montmorillonite Surface under Partially Saturated Conditions. Environ. Sci. Technol. 2013, 47, 9816–9823. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Novikova, L.; Ayrault, P.; Fontaine, C.; Chatel, G.; Jérôme, F.; Belchinskaya, L. Effect of low frequency ultrasound on the surface properties of natural aluminosilicates. Ultrason. Sonochem. 2016, 31, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Kheok, S.C.; Lim, E.E. Mechanism of palm oil bleaching by montmorillonites clay activated at various acid concentrations. J. Am. Oil Chem. Soc. 1982, 59, 129–131. [Google Scholar] [CrossRef]
- Morgan, D.A.; Shaw, D.B.; Sidebottom, T.C.; Soon, T.C.; Taylor, R.S. The function of bleaching earth in the processing of palm, palm kernel and coconut oils. J. Am. Oil Chem. Soc. 1985, 62, 292–299. [Google Scholar] [CrossRef]
Sample | Treatment | Interlayer Space d001 (Å) | Particle Thickness h(00l) (CSR) (nm) | Number of Layers (N) | SBET (m2/g) | VΣ (cm3/g) | CEC (meq/100 g) | ||
---|---|---|---|---|---|---|---|---|---|
Acid (mol/L) | T (°C) | Time Days/Hours | |||||||
HCl | |||||||||
Mt-M | - | - | - | 15.3 | 10.7 | 7 | 77 | 0.211 | 46 |
0.25 | 20 | 7 d | 15.3 | 12.2 | 8 | 79 | 0.219 | 43 | |
0.5 | 20 | 7 d | 14.0 | 7.0 | 5 | 92 | 0.243 | - | |
1.0 | 20 | 7 d | 14.0 | 5.6 | 4 | 95 | 0.256 | 49 | |
3.0 | 20 | 7 d | 13.7 | 5.5 | 4 | 101 | 0.328 | 64 | |
Mt-T1 | - | - | - | 13.7 | 9.6 | 7 | 42 | 0.074 | 75 |
0.125 | 20 | 7 d | 14.0 | 7.0 | 5 | 45 | 0.084 | 65 | |
0.25 | 20 | 7 d | 14.0 | 7.0 | 5 | 50 | 0.095 | 64 | |
0.5 | 20 | 7 d | 14.0 | 5.6 | 4 | 51 | 0.083 | 70 | |
HNO3 | |||||||||
Mt-T2 | - | - | - | 13.9 | 8.2 | 6 | 67 | 0.085 | 86 |
1 | 60 | 12 h | 14.0 | 7.0 | 5 | 110 | 0.114 | 58 | |
1 | 60 | 36 h | 14.0 | 7.0 | 5 | 191 | 0.192 | 56 | |
1 | 60 | 108 h | 13.8 | 5.5 | 4 | 301 | 0.353 | 40 |
Time (h) | Chemical Composition (wt %) | ||||||
---|---|---|---|---|---|---|---|
Si | Al | Fe | Mg | Ca | Na | Si/Al | |
- | 26.4 | 7.8 | 3.9 | 1.9 | 0.6 | 2.4 | 3.4 |
12 | 27.3 | 7.6 | 3.7 | 1.6 | trace | trace | 3.6 |
36 | 28.0 | 6.9 | 3.2 | 1.4 | 0.2 | trace | 4.1 |
108 | 31.8 | 5.0 | 2.0 | 0.9 | trace | trace | 6.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupskaya, V.V.; Zakusin, S.V.; Tyupina, E.A.; Dorzhieva, O.V.; Zhukhlistov, A.P.; Belousov, P.E.; Timofeeva, M.N. Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals 2017, 7, 49. https://doi.org/10.3390/min7040049
Krupskaya VV, Zakusin SV, Tyupina EA, Dorzhieva OV, Zhukhlistov AP, Belousov PE, Timofeeva MN. Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals. 2017; 7(4):49. https://doi.org/10.3390/min7040049
Chicago/Turabian StyleKrupskaya, Victoria V., Sergey V. Zakusin, Ekaterina A. Tyupina, Olga V. Dorzhieva, Anatoliy P. Zhukhlistov, Petr E. Belousov, and Maria N. Timofeeva. 2017. "Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions" Minerals 7, no. 4: 49. https://doi.org/10.3390/min7040049
APA StyleKrupskaya, V. V., Zakusin, S. V., Tyupina, E. A., Dorzhieva, O. V., Zhukhlistov, A. P., Belousov, P. E., & Timofeeva, M. N. (2017). Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals, 7(4), 49. https://doi.org/10.3390/min7040049