Evaluation of the Homogeneity of the Uranium Isotope Composition of NIST SRM 610/611 by MC-ICP-MS, MC-TIMS, and SIMS
Abstract
:1. Introduction
2. Samples
3. Methods
3.1. Dissolution and Uranium Purification
3.2. Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS)
3.3. Multicollector Thermal Ionization Mass Spectrometry (MC-TIMS)
IsotopX Isoprobe-T MC-TIMS Collector Configuration | |||||||
---|---|---|---|---|---|---|---|
Magnet Configuration | L1 | Daly | H1 | H2 | H3 | H4 | H5 |
Jump 1 | 234U | 235U | 236U | 238U | |||
Jump 2 | 235U | 236U | 238U | ||||
Jump 3 | 235U | 236U | 238U | ||||
Thermo Neptune MC-ICP-MS Collector Configuration | |||||||
Magnet Configuration | L1 | SEM | H1 | H2 | H3 | H4 | |
Jump 1 | 234U | 235U | 236U | 238U | |||
Jump 2 | 235U | 236U | 238U |
3.4. Secondary Ion Mass Spectrometry (SIMS)
4. Results and Discussion
234U/238U | 235U/238U | 236U/238U | |
---|---|---|---|
Mean * | 9.45 × 10−6 | 2.39555 × 10−3 | 4.314 × 10−5 |
Uncertainty ** | 5.0 × 10−8 | 4.7 × 10−7 | 4.0 × 10−8 |
4.1. Matrix Complications When Using NIST SRM 610/611 as a U isotope Microbeam Standard
234U | 194Pt40Ar+ | 196Pt38Ar+ | 198Pt36Ar+ | 204Pb30Si+ | 206Pb28Si+ |
---|---|---|---|---|---|
ΔM | 0.12 | 0.11 | 0.11 | 0.09 | 0.09 |
MRP | 2019 | 2066 | 2218 | 2486 | 2613 |
235U | 195Pt40Ar+ | 206Pb29Si+ | 207Pb28Si+ | ||
ΔM | 0.12 | 0.09 | 0.09 | ||
MRP | 2013 | 2528 | 2579 | ||
236U | 196Pt40Ar+ | 198Pt38Ar+ | 206Pb30Si+ | 207Pb29Si+ | 208Pb28Si+ |
ΔM | 0.12 | 0.11 | 0.10 | 0.09 | 0.09 |
MRP | 1996 | 2053 | 2425 | 2533 | 2566 |
238U | 198Pt40Ar+ | 208Pb30Si+ | |||
ΔM | 0.12 | 0.10 | |||
MRP | 1975 | 2371 |
4.2. Uranium Isotopic Homogeneity of NIST SRM 610/611
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bourdon, B.; Turner, S.; Henderson, G.M.; Lundstrom, C.C. Introduction to U-series geochemistry. In Uranium-Series Geochemistry; Mineralogical Society of Ameri: Chantilly, VA, USA, 2003; Volume 52, pp. 1–21. [Google Scholar]
- Gill, J.B.; Williams, R.W. Th-Isotope and U-Series Studies of Subduction-Related Volcanic-Rocks. Geochim. Cosmochim. Acta 1990, 54, 1427–1442. [Google Scholar] [CrossRef]
- Henderson, G.M.; Anderson, R.F. The U-series toolbox for paleoceanography. Uranium Ser. Geochem. 2003, 52, 493–531. [Google Scholar]
- Amelin, Y.; Zaitsev, A.N. Precise geochronology of phoscorites and carbonatites: The critical role of U-series disequilibrium in age interpretations. Geochim. Cosmochim. Acta 2002, 66, 2399–2419. [Google Scholar] [CrossRef]
- Eggins, S.M.; Grun, R.; McCulloch, M.T.; Pike, A.W.G.; Chappell, J.; Kinsley, L.; Mortimer, G.; Shelley, M.; Murray-Wallace, C.V.; Spotl, C.; et al. In situ U-series dating by laser-ablation multi-collector ICPMS: New prospects for Quaternary geochronology. Quat. Sci. Rev. 2005, 24, 2523–2538. [Google Scholar] [CrossRef]
- Tamborini, G.; Donohue, D.L.; Rudenauer, F.G.; Betti, M. Evaluation of practical sensitivity and useful ion yield for uranium detection by secondary ion mass spectrometry. J. Anal. At. Spectrom. 2004, 19, 203–208. [Google Scholar] [CrossRef]
- Mayer, K.; Wallenius, M.; Ray, I. Nuclear forensics—A methodology providing clues on the origin of illicitly trafficked nuclear materials. Analyst 2005, 130, 433–441. [Google Scholar] [CrossRef]
- Ranebo, Y.; Hedberg, P.M.L.; Whitehouse, M.J.; Ingeneri, K.; Littmann, S. Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes. J. Anal. At. Spectrom. 2009, 24, 277–287. [Google Scholar] [CrossRef]
- Betti, M.; Tamborini, G.; Koch, L. Use of secondary ion mass spectrometry in nuclear forensic analysis for the characterization of plutonium and highly enriched uranium particles. Anal. Chem. 1999, 71, 2616–2622. [Google Scholar] [CrossRef]
- Bellucci, J.J.; Simonetti, A.; Wallace, C.; Koeman, E.C.; Burns, P.C. Isotopic fingerprinting of the world's first nuclear device using post-detonation materials. Anal. Chem. 2013, 85, 4195–4198. [Google Scholar] [CrossRef]
- Varga, Z. Application of laser ablation inductively coupled plasma mass spectrometry for the isotopic analysis of single uranium particles. Anal. Chim. Acta 2008, 625, 1–7. [Google Scholar] [CrossRef]
- Belloni, F.; Himbert, J.; Marzocchi, O.; Romanello, V. Investigating incorporation and distribution of radionuclides in trinitite. J. Environ. Radioact. 2011, 102, 852–862. [Google Scholar] [CrossRef]
- Fahey, A.J.; Newbury, D.E. The microstructure of Trinitite, the glassed sand from the first nuclear explosion. Geochim. Cosmochim. Acta 2010, 74, A277–A277. [Google Scholar]
- Stirling, C.H.; Lee, D.C.; Christensen, J.N.; Halliday, A.N. High-precision in situ U-238-U-234-Th-230 isotopic analysis using laser ablation multiple-collector ICPMS. Geochim. Cosmochim. Acta 2000, 64, 3737–3750. [Google Scholar] [CrossRef]
- Denton, J.S.; Murrell, M.T.; Goldstein, S.J.; Nunn, A.J.; Amato, R.S.; Hinrichs, K.A. Evaluation of new geological reference materials for uranium-series measurements: Chinese Geological Standard Glasses (CGSG) and macusanite obsidian. Anal. Chem. 2013, 85, 9975–9981. [Google Scholar] [CrossRef]
- Matthews, K.A.; Murrell, M.T.; Goldstein, S.J.; Nunn, A.J.; Norman, D.E. Uranium and Thorium Concentration and Isotopic Composition in Five Glass (BHVO-2G, BCR-2G, NKT-1G, T1-G, ATHO-G) and Two Powder (BHVO-2, BCR-2) Reference Materials. Geostand. Geoanal. Res. 2011, 35, 227–234. [Google Scholar] [CrossRef]
- Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumot, M.; Knight, R.J. Determination of Lead, Uranium, Thorium, and Thallium in Silicate Glass Standard Materials by Isotope Dilution Mass-Spectrometry. Anal. Chem. 1973, 45, 880–885. [Google Scholar] [CrossRef]
- Eggins, S.M.; Shelley, J.M.G. Compositional heterogeneity in NIST SRM 610-617 glasses. Geostand. Newsl. 2002, 26, 269–286. [Google Scholar] [CrossRef]
- Hinton, R.W.; Harte, B.; Witteickschen, G. Ion Probe Measurements of National Institute of Standards and Technology Standard Reference Material SRM-610 Glass, Trace-Elements. Analyst 1995, 120, 1315–1319. [Google Scholar] [CrossRef]
- Rocholl, A.B.E.; Simon, K.; Jochum, K.P.; Bruhn, F.; Gehann, R.; Kramar, U.; Luecke, W.; Molzahn, M.; Pernicka, E.; Seufert, M.; et al. Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostand. Newsl. 1997, 21, 101–114. [Google Scholar] [CrossRef]
- Duffin, A.M.; Hart, G.L.; Hanlen, R.C.; Eiden, G.C. Isotopic analysis of uranium in NIST SRM glass by femtosecond laser ablation MC-ICPMS. J. Radioanal. Nucl. Chem. 2013, 296, 1031–1036. [Google Scholar] [CrossRef]
- Kane, J.S. A history of the development and certification of NIST glass SRMs 610–617. Geostand. Newsl. 1998, 22, 7–13. [Google Scholar] [CrossRef]
- Hinton, R.W. NIST SRM 610, 611 and SRM 612, 613 multi-element glasses: Constraints from element abundance ratios measured by microprobe techniques. Geostand. Newsl. 1999, 23, 197–207. [Google Scholar] [CrossRef]
- Sylvester, P.J.; Eggins, S.M. Analysis of Re, Au, Pd, Pt and Rh in NIST glass certified reference materials and natural basalt glasses by laser ablation ICP-MS. Geostand. Newsl. 1997, 21, 215–229. [Google Scholar] [CrossRef]
- Kane, J.S. An assessment of the suitability of NIST glass SRM literature data for the derivation of reference values. Geostand. Newsl. 1998, 22, 15–31. [Google Scholar] [CrossRef]
- Certificate of Analysis, CRM 112-A; New Brunswick Laboratory: Washington, DC, USA, 2002.
- Certificate of Analysis, CRM U010; New Brunswick Laboratory: Washington, DC, USA, 1987.
- Certificate of Analysis, CRM U005-A; New Brunswick Laboratory: Washington, DC, USA, 1987.
- Certificate of Analysis, CRM U500; New Brunswick Laboratory: Washington, DC, USA, 1987.
- ISO/IEC 98-1:2009. Uncertainty of Measurement—Part 1: Introduction to the Expression of Uncertainty in Measurement; International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Hoff, J.; Gallup, C.D.; Richards, D.A.; Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chem. Geol. 2000, 169, 17–33. [Google Scholar] [CrossRef]
- Jaffey, A.H.; Flynn, K.F.; Glendeni, L.E.; Bentley, W.C.; Essling, A.M. Precision measurement of half-lives and specific activities of U-235 and U-238. Phys. Rev. C 1971, 4, 1889–1906. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zimmer, M.M.; Kinman, W.S.; Kara, A.H.; Steiner, R.E. Evaluation of the Homogeneity of the Uranium Isotope Composition of NIST SRM 610/611 by MC-ICP-MS, MC-TIMS, and SIMS. Minerals 2014, 4, 541-552. https://doi.org/10.3390/min4020541
Zimmer MM, Kinman WS, Kara AH, Steiner RE. Evaluation of the Homogeneity of the Uranium Isotope Composition of NIST SRM 610/611 by MC-ICP-MS, MC-TIMS, and SIMS. Minerals. 2014; 4(2):541-552. https://doi.org/10.3390/min4020541
Chicago/Turabian StyleZimmer, Mindy M., William S. Kinman, Azim H. Kara, and Robert E. Steiner. 2014. "Evaluation of the Homogeneity of the Uranium Isotope Composition of NIST SRM 610/611 by MC-ICP-MS, MC-TIMS, and SIMS" Minerals 4, no. 2: 541-552. https://doi.org/10.3390/min4020541
APA StyleZimmer, M. M., Kinman, W. S., Kara, A. H., & Steiner, R. E. (2014). Evaluation of the Homogeneity of the Uranium Isotope Composition of NIST SRM 610/611 by MC-ICP-MS, MC-TIMS, and SIMS. Minerals, 4(2), 541-552. https://doi.org/10.3390/min4020541