Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda
Abstract
:1. Introduction
2. Geologic Setting of Tungsten Mineralization
3. Samples and Methods
3.1. Samples
3.2. Microscopy
3.3. Electron Microprobe Analysis
3.4. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
4. Results
4.1. Microscopy and Mineralogy
4.2. Trace Elements
Element | Gifurwe ( n = 75) | Nyakabingo ( n = 500) | Bugarama ( n = 40) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
type-1 ( n = 14) | type-2 ( n = 20) | type-3 ( n = 6) | |||||||||
p0.25 | median | p0.75 | p0.90 | p0.25 | median | p0.75 | p0.90 | median | median | median | |
Ga (ppm) | 1.41 | 3.81 | 7.27 | 11.45 | 6.12 | 10.69 | 21.81 | 44.03 | <0.46 | 3.10 | 27.34 |
As (ppm) | 28.3 | 59.2 | 98.9 | 131.2 | 22.4 | 37.5 | 79.6 | 157.1 | <0.64 | 23.4 | 86.7 |
Mo (ppm) | 4.1 | 5.1 | 6.9 | 9.7 | 6.3 | 7.8 | 9.3 | 11.4 | <1.1 | 8.7 | 1.4 |
Ag (ppm) | <0.06 | 0.11 | 0.21 | 0.47 | <0.16 | 0.09 | 0.23 | 0.38 | <0.18 | <0.13 | <0.14 |
Cd (ppm) | <0.28 | <0.28 | <0.28 | 0.14 | <0.38 | <0.38 | 0.18 | 0.47 | <0.48 | <0.28 | <0.36 |
In (ppm) | <0.03 | <0.03 | <0.03 | 0.04 | <0.03 | <0.03 | <0.03 | 0.05 | 2.64 | <0.03 | <0.04 |
Sn (ppm) | <1.72 | <1.72 | <1.72 | 0.90 | <0.60 | <0.60 | <0.60 | <0.60 | 1.29 | <0.21 | <0.30 |
Sb (ppm) | <0.12 | 0.24 | 0.42 | 1.01 | <0.16 | 0.15 | 0.41 | 1.12 | <0.16 | <0.16 | 1.20 |
Ba (ppm) | 11.0 | 22.2 | 49.1 | 73.2 | 46.3 | 78.6 | 155.8 | 297.5 | <1.06 | 14.6 | 178.6 |
Hf (ppm) | <0.03 | <0.03 | 0.01 | 0.04 | <0.06 | <0.06 | 0.04 | 0.10 | <0.07 | <0.04 | 0.06 |
Tl (ppm) | 0.02 | 0.04 | 0.06 | 0.11 | 0.01 | 0.03 | 0.08 | 0.18 | <0.03 | 0.02 | <0.02 |
Bi (ppm) | <0.03 | 0.03 | 0.28 | 1.53 | <0.06 | 0.15 | 0.63 | 1.83 | <0.07 | 0.08 | 2.35 |
U (ppm) | 0.07 | 0.14 | 0.33 | 0.77 | 0.13 | 0.29 | 0.74 | 1.94 | 0.03 | 0.01 | 0.21 |
Mg (ppm) | 10 | 17 | 23 | 32 | <7 | 11 | 23 | 31 | 1757 | 12 | 10 |
Al (ppm) | 18 | 81 | 293 | 975 | 36 | 97 | 280 | 619 | <11 | 49 | 595 |
Ca (ppm) | 156 | 230 | 304 | 387 | 168 | 240 | 346 | 507 | <104 | 275 | 685 |
Sc (ppm) | <0.6 | <0.6 | <0.6 | 0.5 | <0.6 | 0.5 | 1.4 | 3.5 | 15.5 | <0.6 | 2.1 |
Ti (ppm) | <0.9 | <0.9 | <0.9 | 2.4 | <4.8 | 0.8 | 3.9 | 10.7 | 64.7 | <1.7 | 31.0 |
V (ppm) | <0.22 | <0.22 | 0.19 | 0.49 | <0.34 | 0.33 | 0.84 | 1.56 | 2.6 | <0.34 | 1.18 |
Cr (ppm) | <0.13 | <0.13 | 0.52 | 1.01 | <0.23 | 0.43 | 1.24 | 2.73 | 0.24 | 0.48 | 1.63 |
Mn (wt %) | 0.52 | 0.88 | 1.32 | 1.81 | 0.83 | 0.98 | 1.18 | 1.44 | 1.12 | 0.51 | 2.02 |
Fe (wt %) | 16.82 | 17.59 | 18.45 | 19.84 | 18.39 | 19.06 | 19.97 | 20.72 | 19.5 | 19.04 | 19.3 |
Co (ppm) | <0.21 | 0.70 | 4.53 | 24.14 | <0.34 | 8.51 | 36.76 | 68.90 | <0.43 | <0.28 | <0.50 |
Cu (ppm) | <3.1 | <3.1 | 1.0 | 7.1 | <6.6 | <6.6 | 7.4 | 15.6 | <9.6 | <5.2 | <8.0 |
Zn (ppm) | 9 | 12 | 26 | 127 | 13 | 32 | 327 | 477 | 39 | 10 | 3 |
Sr (ppm) | 2.7 | 4.3 | 6.1 | 8.5 | 4.1 | 6.9 | 10.6 | 17.7 | <0.9 | 7.8 | 30.2 |
Zr (ppm) | <0.20 | <0.20 | 0.35 | 1.48 | <0.49 | 0.60 | 2.22 | 5.89 | 1.06 | 0.35 | 1.35 |
Nb (ppm) | 17 | 32 | 58 | 78 | 37 | 59 | 90 | 122 | 183 | 5 | 188 |
Ta (ppm) | 0.22 | 0.40 | 0.73 | 0.88 | 0.50 | 0.80 | 1.18 | 1.76 | 1.91 | 0.13 | 1.67 |
Th (ppm) | 0.04 | 0.15 | 0.36 | 0.85 | 0.07 | 0.29 | 0.91 | 2.50 | 0 | 0.47 | 3.78 |
Pb (ppm) | 40 | 56 | 84 | 98 | 58 | 77 | 104 | 134 | <0.42 | 37 | 86 |
Element | Gifurwe ( n = 75) | Nyakabingo ( n = 500) | Bugarama ( n = 40) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
type-1 ( n = 14) | type-2 ( n = 20) | type-3 ( n = 6) | |||||||||
p0.25 | median | p0.75 | p0.90 | p0.25 | median | p0.75 | p0.90 | median | median | median | |
La (ppm) | 1.68 | 3.63 | 5.21 | 6.95 | 3.00 | 4.37 | 7.00 | 9.77 | <0.02 | 3.34 | 11.32 |
Ce (ppm) | 4.83 | 9.84 | 14.74 | 17.65 | 10.39 | 14.34 | 19.98 | 28.27 | <0.01 | 5.14 | 12.46 |
Pr (ppm) | 0.79 | 1.49 | 2.28 | 3.08 | 2.00 | 2.72 | 3.92 | 5.24 | <0.01 | 7.68 | 15.50 |
Nd (ppm) | 4.11 | 7.59 | 12.52 | 17.75 | 10.00 | 15.47 | 22.69 | 31.09 | <0.05 | 12.51 | 22.61 |
Sm (ppm) | 1.08 | 2.22 | 4.01 | 5.43 | 2.74 | 4.96 | 7.77 | 11.46 | <0.05 | 18.57 | 89.67 |
Eu (ppm) | 0.65 | 1.35 | 1.96 | 2.94 | 1.36 | 2.48 | 3.98 | 5.54 | <0.04 | 19.46 | 22.92 |
Gd (ppm) | 1.09 | 2.57 | 4.65 | 7.53 | 2.63 | 6.05 | 10.70 | 17.74 | <0.17 | 16.32 | 170.08 |
Tb (ppm) | 0.26 | 0.72 | 1.11 | 1.77 | 0.59 | 1.41 | 2.46 | 4.00 | 1.48 | 22.19 | 204.61 |
Dy (ppm) | 1.96 | 6.21 | 11.66 | 16.99 | 4.90 | 11.26 | 22.21 | 34.58 | 3.50 | 27.35 | 202.82 |
Y (ppm) | 11.22 | 30.39 | 69.81 | 128.08 | 26.59 | 71.37 | 154.04 | 241.76 | 4.32 | 21.55 | 126.23 |
Ho (ppm) | 0.57 | 1.93 | 3.27 | 5.43 | 1.30 | 3.14 | 6.16 | 9.90 | 6.97 | 35.51 | 201.95 |
Er (ppm) | 3.12 | 7.43 | 13.84 | 21.36 | 5.86 | 13.33 | 24.48 | 37.86 | 16.37 | 48.13 | 222.91 |
Tm (ppm) | 0.93 | 1.88 | 3.22 | 4.17 | 1.41 | 3.02 | 5.21 | 7.41 | 41.95 | 53.35 | 256.07 |
Yb (ppm) | 12.65 | 20.65 | 28.91 | 40.64 | 15.83 | 27.79 | 43.83 | 60.09 | 98.21 | 57.14 | 264.05 |
Lu (ppm) | 2.37 | 3.94 | 5.44 | 6.91 | 3.01 | 5.11 | 6.97 | 9.81 | 135.70 | 69.15 | 208.57 |
4.3. Rare Earth Elements
5. Discussion
5.1. Mineralogy
5.2. Mineral Chemistry
6. Conclusions
Acknowledgments
References
- Varlamoff, N. Les gisements de tungstène au Congo belge et au Ruanda-Urundi [in French]. Acad. R. Sci. Colon. Cl. Sci. Nat. Méd. Mém. Nouv. Sér. 1958, 8, 1–70. [Google Scholar]
- Frisch, W. Die Wolfram-Lagerstätte Gifurwe (Rwanda) und die Genese der zentralafrikanischen Reinit-Lagerstätten [in German]. Jahrb. Geol. Bundesanst. 1975, 118, 119–191. [Google Scholar]
- Pohl, W. Zur Geologie der Wolframlagerstätte Bugarama, Rwanda Afrika [in German]. Jahrb. Geol. Bundesanst. 1976, 119, 129–149. [Google Scholar]
- Sahama, T.G. The secondary tungsten minerals, a review. Mineral. Rec. 1981, 12, 81–87. [Google Scholar]
- De Clercq, F. Metallogenesis of Sn and W Vein-Type Deposits in the Karagwe-Ankole Belt. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, September 2012. [Google Scholar]
- Pargeter, R.C. The Ruhizha ferberite deposit, Kigezi. Rec. Geol. Surv. Uganda 1956, 1954, 27–46. [Google Scholar]
- Reedman, A.J. Partly remobilised syngenetic tungsten deposit at Nyamalilo mine. Overseas Geol. Miner. Resour. 1973, 41, 101–106. [Google Scholar]
- De Magnée, I.; Aderca, B. Contribution à la connaissance du Tungsten-belt ruandais [in French]. Acad. R. Sci. Colon. Cl. Sci. Nat. Méd. Mém. Nouv. Sér. 1960, 11, 1–56. [Google Scholar]
- Cheilletz, A. Stratiform tungsten deposits: A review. Geol. Mijnb. 1988, 67, 293–311. [Google Scholar]
- Günther, M.A. Flüssigkeitseinschlüsse und Geologisches Umfeld Zentralafrikanischer Sn-, W- und Au-Lagerstätten (Rwanda und Burundi) [in German]. Ph.D. Thesis, Technical University Braunschweig, Braunschweig, Germany, January 1990. [Google Scholar]
- Pohl, W. Metallogeny of the northeastern Kibara belt, Central Africa—Recent perspectives. Ore Geol. Rev. 1994, 9, 105–130. [Google Scholar] [CrossRef]
- De Clercq, F. Petrografische, Mineralogische en Geochemische Studie van de Wolfraammineralisaties van Nyakabingo en Gifurwe (Rwanda) [in Dutch]. Master’s Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, June 2007. [Google Scholar]
- De Clercq, F.; Muchez, P.; Dewaele, S.; Boyce, A. The tungsten mineralization at Nyakabingo and Gifurwe (Rwanda): Preliminary results. Geol. Belg. 2008, 11, 251–258. [Google Scholar]
- Fletcher, C.J.N. The geology, mineralization, and alteration of Ilkwang mine, Republic of Korea: A Cu-W-bearing tourmaline breccias pipe. Econ. Geol. 1977, 72, 753–768. [Google Scholar] [CrossRef]
- Van Horn, F.R. Replacement of wolframite by scheelite with observations on the fluorescence of certain tungsten minerals. Am. Mineral. 1930, 15, 461–469. [Google Scholar]
- Tack, L.; Wingate, M.T.D.; De Waele, B.; Meert, J.; Belousova, E.; Griffin, B.; Tahon, A.; Fernandez-Alonso, M. The 1375 Ma “Kibaran Event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Res. 2010, 180, 63–84. [Google Scholar] [CrossRef]
- Cahen, L.; Snelling, N.J.; Delhal, J.; Vail, J.R.; Bonhomme, N.; Ledent, D. The Geochronology and Evolution of Africa; Clarendon Press: Oxford, UK, 1984. [Google Scholar]
- Cahen, L.; Snelling, N.J. The Geochronology of Equatorial Africa; North-Holland Publishing Company: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Lepersonne, J. Carte géologique du Zaïre [in French], Département des Mines, République du Zaïre, Royal Museum for Central Africa: Tervuren, Belgium, 1974; 1:2000000.
- Lavreau, J. Le Groupe de la Rusizi (Rusizien du Zaïre, Rwanda et Burundi) à la Lumière des Connaissances Actuelles [in French]; Rapport Annuel 1983–1984; Department of Geology and Mineralogy, Royal Museum for Central Africa: Tervuren, Belgium, 1985; pp. 111–119. [Google Scholar]
- Baudet, D.; Hanon, M.; Lemonne, E.; Theunissen, K. Lithostratigraphie du domaine sédimentaire de la chaine Kibarienne au Rwanda [in French]. Ann. Soc. Géol. Belg. 1988, 112, 225–246. [Google Scholar]
- Fernandez-Alonso, M.; Cutten, H.; De Waele, B.; Tack, L.; Tahon, A.; Baudet, D.; Barritt, S.D. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Res. 2012, 216–219, 63–86. [Google Scholar] [CrossRef]
- Dewaele, S.; Henjes-Kunst, F.; Melcher, F.; Sitnikova, S.; Burgess, R.; Gerdes, A.; Fernandez, M.A.; De Clercq, F.; Muchez, P.; Lehmann, B. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). J. Afr. Earth Sci. 2011, 61, 10–26. [Google Scholar] [CrossRef]
- Theunissen, K.; Hanon, M.; Fernandez-Alonso, M. Carte Géologique du Rwanda [in French], Service Géologique, Ministère de l’Industrie et de l’Artisanat, République Rwandaise: Tervuren, Belgium, 1991; 1:250000.
- Pohl, W.; Günther, M.A. The origin of Kibaran (late Mid-Proterozoic) tin, tungsten and gold quartz vein deposits in Central Africa: a fluid inclusion study. Miner. Depos. 1991, 26, 51–59. [Google Scholar]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. J. Geostand. Geoanal. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Perkins, W.T.; Pearce, N.J.G.; Westgate, J.A. The development of laser ablation ICP-MS and calibration strategies: Examples from the analysis of trace elements in volcanic glass shards and sulfide minerals. Geostand. Newsl. J. Geostand. Geoanal. 1997, 21, 175–190. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Jackson, S.S. Calibration strategies for elemental analysis by LA-ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, 1st; Sylvester, P., Ed.; Mineralogical Association of Canada: Vancouver, Canada, 2008; Volume 40, pp. 169–188. [Google Scholar]
- Heinrich, C.A.; Pettke, T.; Halter, W.E.; Aigner-Torres, M.; Audétat, A.; Günther, D.; Hattendorf, B.; Bleiner, D.; Guillong, M.; Horn, I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 2003, 67, 3473–3496. [Google Scholar] [CrossRef]
- Gäbler, H.-E.; Melcher, F.; Graupner, T.; Bahr, A.; Sitnikova, M. A.; Henjes-Kunst, F.; Oberthür, T.; Brätz, H.; Gerdes, A. Speeding up the analytical workflow for Coltan fingerprinting by an integrated Mineral Liberation Analysis/LA-ICP-MS approach. Geostand. Geoanal. Res. 2011, 35, 431–448. [Google Scholar] [CrossRef]
- Varlamoff, N. Anthoinite, nouveau tungstate hydraté d’alumine [in French]. Ann. Soc. Géol. Belg. 1947, 70, 153–166. [Google Scholar]
- Van Tassel, R. Ferritungstite et meymacite de Meymac, France, et d’Afrique centrale [in French]. Bull. Soc. Belg. Géol. 1961, 70, 376–406. [Google Scholar]
- Bertossa, A. Inventaire des minéraux du Rwanda [in French]. Bull. Serv. Géol. Rwanda 1967, 4, 25–45. [Google Scholar]
- Von Knorring, O.; Sahama, T.G.; Lehtinen, M. Mpororoite, a new secondary tungsten mineral from Uganda. Bull. Geol. Soc. Finl. 1972, 44, 107–110. [Google Scholar]
- Pohl, W. Géologie de la mine de Bugarama et de ses environs (Rwanda, Afrique) [in French]. Bull. Serv. Géol. Rwanda 1975, 8, 13–42. [Google Scholar]
- Jedwab, J.; Preat, A. Présence de raspite (PbWO4 MONOCL.) dans l’anthoinite (Al.OH.WO4.H2O TRICL.) de Gifurwe, Rwanda [in French]. Bull. Soc. Belg. Géol. 1979, 88, 185–195. [Google Scholar]
- Nakashima, K.; Watanabe, M.; Soeda, A. Regional and local variations in the composition of the wolframite series from SW Japan and possible factors controlling compositional variations. Miner. Depos. 1986, 21, 200–206. [Google Scholar]
- Tindle, A.G.; Webb, P.C. Niobian wolframite from Glen Gairn in the Eastern highlands of Scotland: A microprobe investigation. Geochim. Cosmochim. Acta 1989, 53, 1921–1935. [Google Scholar] [CrossRef]
- Belkasmi, M.; Cuney, M.; Pollard, P.J.; Bastoul, A. Chemistry of the Ta-Nb-Sn-W oxide minerals from the Yichun rare metal granite (SE China): Genetic implications and comparison with Moroccan and French Hercynian examples. Mineral. Mag. 2000, 64, 507–523. [Google Scholar] [CrossRef]
- Ferenc, Š; Uher, P. Magnesian wolframite from hydrothermal quartz veins in the Rochovce granite exocontact, Ochtiná, Western Carpathians, Slovakia. Neues Jahrb. Mineral. Abh. 2007, 183, 165–172. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Martin, R.F.; Shi, L.; LeBarge, W.; Fedortchouk, Y. Oscillatory zoning in stanniferous hematite and associated W- and Bi-rich minerals from Canadian Creek, Yukon, Canada. Can. Mineral. 2008, 46, 59–72. [Google Scholar] [CrossRef]
- Neiva, A.M.R. Geochemistry of cassiterite and wolframite from tin and tungsten quartz veins in Portugal. Ore Geol. Rev. 2008, 33, 221–238. [Google Scholar] [CrossRef]
- Mignardi, S.; Ferrini, V.; Masi, U.; Nabais, L.C.; de Sousa Bernardo, M. Significance of the Major- and Trace-Element Contents of Wolframite from the Deposits of Panasqueira and Vale de Gatas, Portugal. In Proceedings of the Ninth Quadrennial IAGOD Symposium, Beijing, China, 12–18 August 1994; Hagni, R.D., Ed.; Schweizerbart: Stuttgart, Germany, 1998; pp. 475–484.
- Goldmann, S. Mineralogical-Geochemical Characterisation of Cassiterite and Wolframite for an Analytical Fingerprint of Ore Concentrates (Provisional Title). Ph.D. Thesis, Leibniz University Hannover, Hannover, Germany.
- McDonough, W.; Sun, S.S. The composition of the earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Ghaderi, M.; Palin, J.M.; Campbell, I.H.; Sylvester, P.J. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, Western Australia. Econ. Geol. 1999, 94, 423–438. [Google Scholar] [CrossRef]
- Dostal, J.; Kontak, D.J.; Chatterjee, A.K. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineral. Pet. 2009, 97, 95–109. [Google Scholar] [CrossRef]
- Wood, S.A.; Samson, I.M. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Econ. Geol. 2000, 95, 143–182. [Google Scholar] [CrossRef]
- Robie, R.A.; Bethke, P.M; Beardsley, K.K. Selected X-Ray Crystallographic Data, Molar Volumes, and Densities of Minerals and Related Substances; U.S. Geological Survey Bulletin 1248; U.S; Government Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Kuzmin, A.; Purans, J. Local atomic and electronic structure of tungsten ions in AWO4 crystals of scheelite and wolframite types. Radiat. Meas. 2001, 33, 583–586. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Found. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Hazen, R.M.; Finger, L.W.; Mariathasan, J.W.E. High-pressure crystal chemistry of scheelite-type tungstates and molybdates. J. Phys. Chem. Solids 1985, 46, 253–263. [Google Scholar] [CrossRef]
- Macavei, J.; Schulz, H. The crystal structure of wolframite type tungstates at high pressure. Z. Krist. 1993, 207, 193–208. [Google Scholar] [CrossRef]
- Grubb, P.L.C. Solid solution relationships between wolframite and scheelite. Am. Mineral. 1967, 52, 418–426. [Google Scholar]
- Roberts, S.; Palmer, M.R.; Waller, L. Sm-Nd and REE characteristics of tourmaline and scheelite from the Björkdal gold deposit, Northern Sweden: evidence of an intrusion-related gold deposit? Econ. Geol. 2006, 101, 1415–1425. [Google Scholar] [CrossRef]
- Brugger, J.; Lahaye, Y.; Costa, S.; Lambert, D.; Bateman, R. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib. Mineral. Petrol. 2000, 139, 251–264. [Google Scholar] [CrossRef]
- Uspensky, E.; Brugger, J.; Graeser, S. REE geochemistry systematics of scheelite from the Alps using luminescence spectroscopy: From global regularities to local control. Schweiz. Mineral. Petrogr. Mitt. 1998, 78, 31–54. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Goldmann, S.; Melcher, F.; Gäbler, H.-E.; Dewaele, S.; Clercq, F.D.; Muchez, P. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda. Minerals 2013, 3, 121-144. https://doi.org/10.3390/min3020121
Goldmann S, Melcher F, Gäbler H-E, Dewaele S, Clercq FD, Muchez P. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda. Minerals. 2013; 3(2):121-144. https://doi.org/10.3390/min3020121
Chicago/Turabian StyleGoldmann, Simon, Frank Melcher, Hans-Eike Gäbler, Stijn Dewaele, Friso De Clercq, and Philippe Muchez. 2013. "Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda" Minerals 3, no. 2: 121-144. https://doi.org/10.3390/min3020121
APA StyleGoldmann, S., Melcher, F., Gäbler, H.-E., Dewaele, S., Clercq, F. D., & Muchez, P. (2013). Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda. Minerals, 3(2), 121-144. https://doi.org/10.3390/min3020121