Geochemical Features and Mobility of Trace Elements in Technosols from Historical Mining and Metallurgical Sites, Tatra Mountains, Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Object
- Huciańskie Banie (Mn and Fe ore mine)—Profiles 1 and 2.
- Mouth of Kościeliska Valley (Fe ore mine)—Profile 3.
- Kościeliska Valley near the Ornak tourist shelter (Cu and Ag ore prospection adit)—Profile 4.
- Pyszniańska Valley (Cu, Ag and Fe ore mine)—Profiles 5 and 6.
- Żleb pod Banie (Pod Banie Couloir) at the Ornak ridge (Cu, Fe and Ag ore mine)—Profiles 7 and 8.
- Banisty Żleb (Banisty Couloir) at the Ornak ridge (Cu, Ag, Sb and Fe ore mine)—Profiles 9 and 10.
- Kościeliska Valley—an old steelwork (a former iron and non-ferrous metal smelting area at Stare Kościeliska)—Profiles 11 and 12.
- The Kuźnice steelworks area (metal smelter)—Profile 13.
2.2. Laboratory Analyses
2.2.1. Total Contents of PTTE
2.2.2. BCR Sequential Extraction Analysis
2.3. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Total Contents of PTTE in the Studied Soils
3.3. Total Contents of Rare Earth Elements (REE) in the Studied Soils
3.4. Geochemical Forms of Selected PTTE in the Studied Soils Based on BCR Sequential Extraction
4. Discussion
4.1. Contamination of Technosols Based on the Total Contents of PTTE Against Polish Regulations and by Comparison with Other Soils in the Tatra Mountains
4.2. Origin of PTTE in the Studied Technosols
4.3. Assessment of Mobility of PTTE in the Studied Technosols Based on BCR Sequential Extraction
4.4. Relationship Between Element Fractionation and Soil Properties
4.5. Geochemical Features of Technosol Groups Based on the Total Contents of PTTE and REE
5. Conclusions
- The studied Technosols in the Tatra Mountains exhibit significant contamination with several PTTE exceeding Polish regulatory limits for Cu, Zn, Pb, Mo, Hg, As, Co, Ni and Ba.
- The three Technosol groups distinguished in the study are characterised by different geochemical features. Group I Technosols (near-neutral soils developed from Fe/Mn-ore and carbonate-bearing mining waste) are particularly enriched in Co, Ni and REE and contain Cu, Zn, Pb, As, Co, Ni and Cr mostly in immobile forms.
- Group II Technosols (acidic soils developed from polymetallic ore-bearing aluminosilicate mining waste) contained elevated concentrations of Cu, Zn, Hg, As, Sb, Bi, Co, Ag, Ba, Sr, U and Th; the contents of REE were lower than in Group I Technosols. PTTE (in particular Mn, Cu and Zn) exhibited the highest mobility among the studied soils, and Fe and Mn oxides seem to control the mobility of Co, Pb, Cu, Ag, Mn and Ba.
- Group III Technosols (soils developed in smelting-affected areas and containing metallurgical waste) contained high total concentrations of Cu, As, Sb, Ba, Hg, Co and Ag, the lowest REE contents among the studied soils and were characterised by complex behaviours of PTTE, with Pb and Cu having high affinity to Fe/Mn oxides and organic matter, respectively.
- The study showed relationships between element fractionation and soil properties such as pH, presence of carbonates and contents of SOM. Statistical analyses showed increases in Cu, Zn, Pb, Sb, Ba, Co and Mn mobility along with decreases in soil pH and carbonate contents. However, the behaviours of As and Sr exhibited the opposite trend: the higher the pH, the higher the mobility of these elements. The results also showed that Zn, Pb and Cr have a high affinity for SOM. On the other hand, As is an element whose mobility is not related to SOM in the studied Technosols.
- The four-step BCR analysis allowed for the identification of PTTE in the most mobile forms (fraction F1). High contents of Cu, Zn, Sb, Pb, As, Co, Ni, Cd, Cr, Sr, Ba and Mn were found in F1 in specific horizons of several Technosols, indicating that these elements may be readily mobilised. This highlights the potential environmental risks of PTTE related to possible uptake of PTTE by plants and leaching of PTTE into groundwater and surface water.
- The findings highlight opportunities for further research to better understand the mechanisms driving PTTE mobility in contaminated soils. Future studies could explore the accumulation of PTTE in plants, as well as how pH variations and interactions with groundwater and surface water influence the mobilisation of individual elements. Such research may also support predictions of how PTTE could spread from contaminated soils, which could improve environmental risk assessment in Tatra National Park.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCR | The modified European Community Bureau of Reference |
F | Fraction |
ICP-MS | Inductively coupled plasma-mass spectroscopy |
ICP-OES | Inductively coupled plasma-optical emission spectrometry |
P | Profile |
PTTE | Potentially toxic trace elements |
REE | Rare earth elements |
SEM-EDS | Scanning electron microscope—energy dispersive X-ray spectroscopy |
SOM | Soil organic matter |
TNP | Tatra National Park |
TOC | Total organic carbon |
References
- Skrzydłowski, T. Przewodnik Przyrodniczy po Tatrach Polskich; Wydawnictwo Tatrzańskiego Parku Narodowego: Zakopane, Poland, 2019; pp. 1–432. [Google Scholar]
- Jost, H. O górnictwie i Hutnictwie w Tatrach Polskich; Wydawnictwo Naukowo-Techniczne: Warsaw, Poland, 1962; pp. 1–182. (In Polish) [Google Scholar]
- Górecki, J.; Sermet, E. Hawiarskie Szlaki Tatr Polskich, Dzieje Górnictwa–Element Europejskiego Dziedzictwa Kultury; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2012. (In Polish) [Google Scholar]
- Zwoliński, S. Badania nad Historią Górnictwa i Hutnictwa w Tatrach Polskich. Etnogr. Pol. 1962, 6, 163–191. (In Polish) [Google Scholar]
- Jach, R. Ślady dawnego wydobycia rud manganu w Tatrach Zachodnich. Przegląd Geol. 2002, 50, 1159–1164. (In Polish) [Google Scholar]
- Gawęda, A. How to find a gold on the touristic path-a gold-mining in the Tatra Mts. Geoturystyka 2010, 2, 59–64. [Google Scholar] [CrossRef][Green Version]
- Kabała, C.; Greinert, A.; Charzyński, P.; Uzarowicz, Ł. Technogenic soils—Soils of the year 2020 in Poland. Concept, properties and classification of technogenic soils in Poland. Soil Sci. Annu. 2020, 71, 267–280. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Néel, C.; Bril, H.; Courtin-Nomade, A.; Dutreuil, J.P. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma 2003, 111, 1–20. [Google Scholar] [CrossRef]
- Grünewald, G.; Kaiser, K.; Jahn, R. Alteration of secondary minerals along a time series in young alkaline soils derived from carbonatic wastes of soda production. Catena 2007, 71, 487–496. [Google Scholar] [CrossRef]
- Huot, H.; Simonnot, M.O.; Watteau, F.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.L. Early transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci. 2014, 65, 470–484. [Google Scholar] [CrossRef]
- Uzarowicz, Ł.; Charzyński, P.; Greinert, A.; Hulisz, P.; Kabała, C.; Kusza, G.; Kwasowski, W.; Pędziwiatr, A. Studies of technogenic soils in Poland: Past, present, and future perspectives. Soil Sci. Annu. 2020, 71, 281–299. [Google Scholar] [CrossRef]
- Kierczak, J.; Pietranik, A.; Piatak, N.M. Weathering of Slags. In Metallurgical Slags: Environmental Geochemistry and Resource Potential; Piatak, N.M., Ettler, V., Eds.; The Royal Society of Chemistry: London, UK, 2021; Volume 3, pp. 125–150. [Google Scholar]
- Watteau, F.; Morel, J.L.; Liu, C.; Tang, Y.; Huot, H. Technosol micromorphology reveals the early pedogenesis of abandoned rare earth element mining sites undergoing reclamation in south China. Minerals 2025, 15, 514. [Google Scholar] [CrossRef]
- Huot, H.; Simonnot, M.O.; Morel, J.L. Pedogenetic trends in soils formed in technogenic parent materials. Soil Sci. 2015, 180, 182–192. [Google Scholar] [CrossRef]
- Uzarowicz, Ł.; Kwasowski, W.; Lasota, J.; Błońska, E.; Górka-Kostrubiec, B.; Tarnawczyk, M.; Murach, D.; Gilewska, M.; Gryczan, W.; Pawłowicz, E.; et al. Vegetation cover as an important factor affecting the properties and evolution of Spolic Technosols: A case study from a dump of the abandoned iron ore mine in central Poland. Catena 2025, 254, 108906. [Google Scholar] [CrossRef]
- Tarnawczyk, M.; Uzarowicz, Ł.; Kwasowski, W.; Górka-Kostrubiec, B.; Pędziwiatr, A. Soil-forming factors controlling Technosol formation in historical mining and metallurgical sites in the high-alpine environment of the Tatra Mountains, southern Poland. Catena 2024, 247, 108521. [Google Scholar] [CrossRef]
- Tarnawczyk, M.; Uzarowicz, Ł.; Pędziwiatr, A.; Kwasowski, W. Micromorphological, submicromorphological and chemical indicators of pedogenesis in Spolic Technosols developed at historical mining and metallurgical sites in the Tatra Mountains, southern Poland. Soil Sci. Annu. 2025, 76, 205499. [Google Scholar]
- Feluch, K.; Uzarowicz, Ł. Soil development and contents of selected trace elements in Technosols on dumps of historical iron ore mines in the Jaworzynka Valley, Tatra Mountains, southern Poland. Soil Sci. Annu. 2025, 76, 205499. [Google Scholar] [CrossRef]
- Alloway, B.; Ayres, D.C. Chemical Principles of Environmental Pollution, 2nd ed.; Blackie Academic: London, UK, 1997; pp. 3–85. [Google Scholar]
- Gomez-Ros, J.M.; Garcia, G.; Peñas, J.M. Assessment of restoration success of former metal mining areas after 30 years in a highly polluted Mediterranean mining area: Cartagena-La Unión. Ecol. Eng. 2013, 57, 393–402. [Google Scholar] [CrossRef]
- Pellegrini, S.; García, G.; Peñas-Castejon, J.M.; Vignozzi, N.; Costantini, E.A.C. Pedogenesis in mine tails affects macroporosity, hydrological properties, and pollutant flow. Catena 2016, 136, 3–16. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic accumulation by red fescue (Festuca rubra) growing in mine-affected soils—Findings from the field and greenhouse studies. Chemosphere 2020, 248, 126045. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K.; Lewińska, K. Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. Int. J. Environ. Res. Public Health 2020, 17, 3342. [Google Scholar] [CrossRef]
- Ferronato, C.; Vianello, G.; Feudis, M.D.; Vittori Antisari, L. Technosols development in an abandoned mining area and environmental risk assessment. Appl. Sci. 2021, 11, 6982. [Google Scholar] [CrossRef]
- Castillo Corzo, M.; Peña Rodríguez, V.; Manrique Nugent, M.; Villarreyes Peña, E.; Byrne, P.; Gonzalez, J.C.; Patiño Camargo, G.; Barnes, C.H.W.; Sánchez Ortiz, J.F.; Saldaña Tovar, J.; et al. Potentially toxic elements and radionuclides contamination in soils from the vicinity of an ancient mercury mine in Huancavelica, Peru. Soil Sci. Annu. 2025, 76, 204389. [Google Scholar] [CrossRef]
- García-Lorenzo, M.L.; Crespo-Feo, E.; Esbrí, J.M.; Higueras, P.; Grau, P.; Crespo, I.; Sánchez-Donoso, R. Assessment of potentially toxic elements in technosols by tailings derived from Pb–Zn–Ag mining activities at San Quintín (Ciudad Real, Spain): Some insights into the importance of integral studies to evaluate metal contamination pollution hazards. Minerals 2019, 9, 346. [Google Scholar] [CrossRef]
- Kierczak, J.; Neel, C.; Aleksander-Kwaterczak, U.; Helios-Rybicka, E.; Bril, H.; Puziewicz, J. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere 2008, 73, 776–784. [Google Scholar] [CrossRef]
- Kodirov, O.; Kersten, M.; Shukurov, N.; Peinado, F.J.M. Trace metal (loid) mobility in waste deposits and soils around Chadak mining area, Uzbekistan. Sci. Total Environ. 2018, 622, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Krąż, P. Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe). Minerals 2020, 10, 1120. [Google Scholar] [CrossRef]
- Staszewski, T.; Łukasik, W.; Kubiesa, P. Contamination of Polish national parks with heavy metals. Environ. Monit. Assess. 2012, 184, 4597–4608. [Google Scholar] [CrossRef]
- Kwapuliński, J.; Paprotny, L.; Paukszto, A.; Kowol, J.; Rochel, R.; Nogaj, E.; Musielińska, R.; Celinski, R. Influence of the type of tree habitat on the character of co-occurrence of Fe, Mn, Zn, Cu, Pb, Ni, Cr and Co in the soil of the Tatra Mountain National Park. Ann. Agric. Environ. Med. 2013, 20, 494–499. [Google Scholar]
- Kwapuliński, J.; Paukszto, A.; Paprotny, Ł.; Musielińska, R.; Kowol, J.; Nogaj, E.; Rochel, R. Bioavailability of Lead, Cadmium, and Nickel in Tatra Mountain National Park Soil. Pol. J. Environ. Stud. 2012, 21, 407–413. [Google Scholar]
- Kubica, B.; Kwiatek, W.M.; Stobiński, M.; Skiba, S.; Skiba, M.; Gołaś, J.; Kubica, M.; Tuleja-Krysa, M.; Wrona, A.; Misiak, R.; et al. Concentrations of 137Cs, 40K radionuclides and some heavy metals in soil samples of Chochołowska Valley from Tatra National Park. Pol. J. Environ. Stud. 2007, 16, 723–729. [Google Scholar]
- Stobiński, M.; Kubica, B. Chemometric analysis of 137Cs activity and heavy metals distribution in the Tatras’ soil. Int. J. Environ. Sci. Technol. 2017, 14, 1217–1224. [Google Scholar] [CrossRef]
- Wieczorek, J.; Zadrożny, P. Content of Cd, Pb and Zn in podzols Tatra National Park. Proc. ECOpole 2013, 7, 57. (In Polish) [Google Scholar] [CrossRef]
- Kowalska, J.B.; Gąsiorek, M.; Zadrożny, P.; Nicia, P.; Waroszewski, J. Deep subsoil storage of trace elements and pollution assessment in mountain Podzols (Tatra Mts., Poland). Forests 2021, 12, 291. [Google Scholar] [CrossRef]
- Niemyska-Łukaszuk, J. Całkowita zawartość ołowiu w profilach rankerów Tatrzańskiego Parku Narodowego. Zesz. Probl. Postępów Nauk. Rol. 1999, 467, 429–437. (In Polish) [Google Scholar]
- Niemyska-Łukaszuk, J.; Miechówka, A. Zawartość cynku, ołowiu i kadmu w poziomach powierzchniowych gleb obszarów nieleśnych Tatrzańskiego Parku Narodowego. Przemiany Sr. Przyr. Tatr 2002, 99–103. (In Polish) [Google Scholar]
- Miechówka, A.; Niemyska-Łukaszuk, J. Content diversity of Zn, Pb and Cd in Lithic Leptosols of the Tatra National Park (Poland). Oecologia Mont. 2004, 13, 1–5. [Google Scholar]
- Miechówka, A.; Niemyska-Lukaszuk, J.; Gasiorek, M. Content of Zn, Pb, Cd and Ni in peat-bog and fen soils in the Tatra National Park. Acta Agrophys. 2002, 67, 163–172. [Google Scholar]
- Miechówka, A.; Gąsiorek, M.; Zaleski, T. Contents of cadmium and nickel in soils and plants on grazed mountain glades in Tatra National Park. Zesz. Probl. Postępów Nauk. Rol. 1997, 448, 197–202. [Google Scholar]
- Paprotny, Ł.; Kwapuliński, J.; Wianowska, D.; Gnatowski, M.; Kasprzyk-Pochopień, J.; Piekoszewski, W. A Comparison of Co-Occurrence of Special Forms of Selected Metals in Soil, on the Example of Sycamore, Beech, and Spruce Forest Complexes in Urbanized and Non-Urbanized Regions of Tatra National Park. Pol. J. Environ. Stud. 2024, 33, 4273–4282. [Google Scholar] [CrossRef] [PubMed]
- Miechówka, A. Zawartość różnych form żelaza w rędzinach położonych powyżej górnej granicy lasu w Tatrach. Rocz. Glebozn. Soil Sci. Annu. 2001, 52, 135–143. (In Polish) [Google Scholar]
- Miechówka, A.; Niemyska-Łukaszuk, J.; Ciarkowska, K. Heavy metals in selected non-forest soils from the Tatra National Park. Chem. I Inżynieria Ekol. 2002, 9, 1433–1438. [Google Scholar]
- Paukszto, A.; Mirosławski, J. Using stinging nettle (Urtica dioica L.) to assess the influence of long-term emission upon pollution with metals of the Tatra National Park area (Poland). Atmos. Pollut. Res. 2019, 10, 73–79. [Google Scholar] [CrossRef]
- Ciarkowska, K.; Miechówka, A. Identification of the factors determining the concentration and spatial distribution of Zn, Pb and Cd in the soils of the non-forest Tatra Mountains (southern Poland). Environ. Geochem. Health 2022, 44, 4323–4341. [Google Scholar] [CrossRef]
- Demková, L.; Bobuľská, L.; Árvay, J.; Homolová, Z.; Michalko, M.; Bálintová, M. Potentially toxic elements in soil and air along an altitudinal gradient in Tatra National Park. J. Geochem. Explor. 2023, 252, 107268. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; Technical Paper 9; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of heavy metals in soils and sediments—An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Mossop, K.F.; Davidson, C.M. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta 2003, 478, 111–118. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Chancellery of the Sejm of the Republic of Poland. Regulation of the Minister of Climate and Environment of 31 October 2024 Amending the Regulation on the Method of Conducting the Assessment of Ground Surface Pollution, 2024, No. 2024, Item 1657. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001657 (accessed on 13 September 2025).
- Charzyński, P.; Plak, A.; Hanaka, A. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environ. Sci. Pollut. Res. 2017, 24, 4801–4811. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; pp. 283–319. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; Taylor & Francis Group: Boca Raton, FL, USA, 2015; p. 468. [Google Scholar]
- Sujith, P.P.; Gonsalves, M.J.B.D. Ferromanganese oxide deposits: Geochemical and microbiological perspectives of interactions of cobalt and nickel. Ore Geol. Rev. 2021, 139, 104458. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; p. 432. [Google Scholar] [CrossRef]
- Pingitore, N.E.; Eastman, M.P. Barium partitioning in carbonates: Theory and applications. AAPG Bull. 1984, 68, 516. [Google Scholar] [CrossRef]
- Wu, K.; Ueno, Y.; Surma, J.; Nakajo, C. Separate determination of strontium and barium mass fractions in calcite and dolomite in carbonate rocks by a multi-step sequential leaching procedure. Geostand. Geoanalytical Res. 2025, 1–19. [Google Scholar] [CrossRef]
- Canet, C.; Anadón, P.; Alfonso, P.; Prol-Ledesma, R.M.; Villanueva-Estrada, R.E.; García-Vallès, M. Gas-seep related carbonate and barite authigenic mineralization in the northern Gulf of California. Mar. Pet. Geol. 2013, 43, 147–165. [Google Scholar] [CrossRef]
- Karczewska, A.; Lewińska, K.; Agata, M.; Krysiak, A. Soil pollution by arsenic within the allotment gardens in Zloty Stok. Ecol. Chem. Eng. 2010, 17, 927–933. [Google Scholar]
- Tarnawczyk, M.; Uzarowicz, Ł.; Perkowska-Pióro, K.; Pędziwiatr, A.; Kwasowski, W. Effect of land reclamation on soil properties, mineralogy and trace-element distribution and availability: The example of technosols developed on the tailing disposal site of an abandoned Zn and Pb mine. Minerals 2021, 11, 559. [Google Scholar] [CrossRef]
- Uzarowicz, Ł.; Swęd, M.; Kwasowski, W.; Pędziwiatr, A.; Kaczmarek, D.; Koprowska, D.; Górka-Kostrubiec, B.; Pawłowicz, E.; Murach, D. Initial pedogenic processes, mineral and chemical transformations and mobility of trace elements in Technosols on dumps of the former copper mines in Miedziana Góra and Miedzianka, the Świętokrzyskie Mts., south-central Poland. Catena 2024, 245, 108293. [Google Scholar] [CrossRef]
- Sitarz, M.; Gołębiowska, B.; Nejbert, K.; Dimitrova, D.; Milovský, R. Hydrothermal ore mineralization from the Polish part of the Tatra Mts., Central Western Carpathians. Geol. Geophys. Environ. 2021, 47, 159–179. [Google Scholar] [CrossRef]
- Swęd, M.; Uzarowicz, Ł.; Duczmal-Czernikiewicz, A.; Kwasowski, W.; Pędziwiatr, A.; Siepak, M.; Niedzielski, P. Forms of metal(loid)s in soils derived from historical calamine mining waste and tailings of the Olkusz Zn–Pb ore district, southern Poland: A combined pedological, geochemical and mineralogical approach. Appl. Geochem. 2022, 139, 105218. [Google Scholar] [CrossRef]
- Hazen, R.M.; Golden, J.; Downs, R.T.; Hystad, G.; Grew, E.S.; Azzolini, D.; Sverjensky, D.A. Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Mineral. 2012, 97, 1013–1042. [Google Scholar] [CrossRef]
- Jolly, J.L.; Van Heyl, A. Mercury and Other Trace Elements in Sphalerite and Wallrocks from Central Kentucky, Tennessee, and Appalachian Zinc Districts; United States Government Printing Office: Washington, DC, USA, 1968; p. 29. [Google Scholar] [CrossRef]
- Tombros, S.F.; Seymour, K.S.; Williams-Jones, A.E.; Zhai, D.; Liu, J. Origin of a barite-sulfide ore deposit in the Mykonos intrusion, Cyclades: Trace element, isotopic, fluid inclusion and Raman spectroscopy evidence. Ore Geol. Rev. 2015, 67, 139–157. [Google Scholar] [CrossRef]
- Warchulski, R. Zn-Pb slag crystallization: Evaluating temperature conditions on the basis of geothermometry. Eur. J. Mineral. 2016, 28, 375–384. [Google Scholar] [CrossRef]
- Kierczak, J.; Potysz, A.; Pietranik, A.; Tyszka, R.; Modelska, M.; Néel, C.; Ettler, V.; Mihaljevič, M. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). J. Geochem. Explor. 2013, 124, 183–194. [Google Scholar] [CrossRef]
- Potysz, A.; van Hullebusch, E.D.; Kierczak, J.; Grybos, M.; Lens, P.N.; Guibaud, G. Copper metallurgical slags–current knowledge and fate: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2424–2488. [Google Scholar] [CrossRef]
- Tyszka, R.; Pietranik, A.; Potysz, A.; Kierczak, J.; Schulz, B. Experimental simulations of ZnPb slag weathering and its impact on the environment: Effects of acid rain, soil solution, and microbial activity. J. Geochem. Explor. 2021, 228, 106808. [Google Scholar] [CrossRef]
- Ilutiu-Varvara, D.A. Researching the hazardous potential of metallurgical solid wastes. Pol. J. Environ. Stud. 2016, 25, 147–152. [Google Scholar] [CrossRef]
- Kupczak, K.; Warchulski, R.; Ettler, V.; Mihaljevič, M. The impact of buried historical copper slags on contemporary soil contamination. J. Geochem. Explor. 2025, 273, 107743. [Google Scholar] [CrossRef]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci. Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Doner, H.E.; Lynn, W.C. Carbonate, Halide, Sulfate, and Sulfide Minerals. In Minerals in Soil Environments; Dixon, J.B., Weed, S.B., Eds.; American Society for Agronomy and the Soil Science Society of America: Madison, WI, USA, 1989; pp. 279–330. [Google Scholar]
- Lee, H.H. Adsorption characteristics of cadmium onto calcite and its agricultural environmental relevance. Heliyon 2024, 11, e40241. [Google Scholar] [CrossRef]
- Kubová, J.; Matúš, P.; Bujdoš, M.; Hagarová, I. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil–plant metal transfer predictions in contaminated lands. Talanta 2008, 75, 1110–1122. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef]
- Martínez, C.E.; Motto, H.L. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 2000, 107, 153–158. [Google Scholar] [CrossRef]
- Wilson, M.J. Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Miner. 2004, 39, 233–266. [Google Scholar] [CrossRef]
- Sracek, O. Formation of secondary hematite and its role in attenuation of contaminants at mine tailings: Review and comparison of sites in Zambia and Namibia. Front. Environ. Sci. 2015, 2, 64. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, D.; Gou, J.; Ni, X.; Zeng, X.; Zhang, X.; Liu, W.; Liang, S.; Deng, C. Chalcopyrite geochemistry: Advancements and implications in ore deposit research. Ore Geol. Rev. 2025, 179, 106528. [Google Scholar] [CrossRef]
- Guillevic, F.; Rossi, M.; Develle, A.-L.; Spadini, L.; Martins, J.M.F.; Arnaud, F.; Poulenard, J. Pb dispersion pathways in mountain soils contaminated by ancient mining and smelting activities. Appl. Geochem. 2023, 150, 105556. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Sierra-Aragón, M.; Ortiz-Bernad, I.; Martín-Peinado, F.J. Toxicity of arsenic in relation to soil properties: Implications to regulatory purposes. J. Soils Sediments 2014, 14, 968–979. [Google Scholar] [CrossRef]
- Hattab, N.; Motelica-Heino, M.; Faure, O.; Bouchardon, J.L. Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J. Environ. Manag. 2015, 159, 37–47. [Google Scholar] [CrossRef]
- Paniagua-López, M.; Aguilar-Garrido, A.; Contero-Hurtado, J.; García-Romera, I.; Sierra-Aragón, M.; Romero-Freire, A. Ecotoxicological assessment of polluted soils one year after the application of different soil remediation techniques. Toxics 2023, 11, 298. [Google Scholar] [CrossRef]
- Liang, T.; Li, K.; Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 2014, 186, 1499–1513. [Google Scholar] [CrossRef]
Fraction | Reagent | Extraction Conditions | |
---|---|---|---|
Time | Temperature | ||
F1—exchangeable forms of an element | 0.11 M·dm−3 CH3COOH (pH = 7.0) | 16 h | 22 ± 5 °C |
F2—forms of an element susceptible to reduction, including metal forms bound to Fe and Mn oxides | 0.5 M·dm−3 NH2OH·HCl (pH = 1.5) | 16 h | 22 ± 5 °C |
F3—oxidisable forms of an element, including metal forms associated with organic matter and sulphides | 30% H2O2, next 1.0 M·dm−3 CH3COONH4 (pH = 2.0) | 1 h 22 ± 5 °C, 1 h 85 ± 2 °C, 1 h 85 ± 5 °C, 16 h 22 ± 5 °C | |
F4—residual forms of an element | Aqua regia (HNO3 + HCl 3:1) | Appropriate mineralisation program Ethos UP apparatus |
Soil Profile | Horizon | Depth (cm) | Sc | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Sum of REE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | % | |||||||||||||||||||
P1 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
AC1 | 1–5 | 9 | 62.1 | 70.4 | 213.7 | 17.25 | 71.3 | 14.12 | 3.18 | 15.12 | 2.09 | 11.72 | 2.23 | 5.95 | 0.78 | 4.37 | 0.65 | 504 | 0.05 | |
AC2 | 5–15 | 12 | 61.2 | 85.3 | 286.7 | 21.16 | 87.5 | 16.56 | 3.48 | 16.29 | 2.25 | 12.05 | 2.28 | 5.98 | 0.74 | 4.29 | 0.62 | 618 | 0.06 | |
C | 15–35 | 15 | 65.1 | 83.4 | 255.8 | 21.80 | 90.2 | 16.95 | 3.70 | 16.98 | 2.34 | 12.40 | 2.30 | 5.95 | 0.77 | 4.30 | 0.62 | 598 | 0.06 | |
2C | 35–60 | 17 | 33.3 | 49.6 | 106.6 | 11.65 | 45.4 | 8.51 | 1.76 | 7.58 | 1.08 | 6.11 | 1.17 | 3.28 | 0.44 | 2.82 | 0.44 | 297 | 0.03 | |
P2 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
AC1 | 1–25 | 16 | 87.7 | 93.8 | 241.1 | 23.76 | 98.2 | 19.14 | 4.13 | 20.03 | 2.76 | 15.23 | 2.88 | 7.46 | 0.92 | 5.27 | 0.78 | 639 | 0.06 | |
AC2 | 25–45 | 17 | 113.2 | 115.8 | 292.5 | 28.7 | 120.1 | 23.18 | 5.19 | 24.94 | 3.47 | 19.02 | 3.75 | 9.77 | 1.21 | 6.71 | 0.99 | 786 | 0.08 | |
AC3 | 45–65 | 17 | 101.7 | 108.9 | 273.9 | 26.16 | 109.5 | 21.28 | 4.71 | 22.73 | 3.12 | 17.91 | 3.37 | 8.82 | 1.09 | 6.27 | 0.89 | 727 | 0.07 | |
2C | 65–90 | 20 | 69.6 | 82.5 | 148.7 | 19.64 | 81.0 | 15.13 | 3.24 | 14.23 | 1.94 | 11.12 | 2.11 | 5.87 | 0.77 | 4.64 | 0.73 | 481 | 0.05 | |
P3 | Oe | 0–6 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
O/C | 6–25 | 3 | 8.4 | 10.4 | 20.0 | 2.36 | 9.5 | 1.68 | 0.33 | 1.63 | 0.23 | 1.34 | 0.26 | 0.78 | 0.10 | 0.64 | 0.09 | 61 | 0.01 | |
AC | 25–40 | 4 | 13.2 | 16.4 | 29.7 | 3.50 | 13.6 | 2.60 | 0.49 | 2.39 | 0.37 | 2.09 | 0.45 | 1.31 | 0.18 | 1.10 | 0.18 | 92 | 0.01 | |
BC | 40–60 | 4 | 28.8 | 17.5 | 36.0 | 4.27 | 15.9 | 3.33 | 0.64 | 3.74 | 0.67 | 4.34 | 0.98 | 2.64 | 0.38 | 2.37 | 0.36 | 126 | 0.01 | |
P4 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
A | 1–13 | 9 | 20.5 | 27.3 | 53.7 | 6.27 | 23.4 | 4.30 | 0.75 | 4.01 | 0.63 | 3.90 | 0.76 | 2.14 | 0.32 | 1.99 | 0.30 | 159 | 0.02 | |
C1 | 13–35 | 13 | 27.3 | 35.4 | 72.8 | 8.30 | 31.0 | 6.04 | 1.35 | 6.14 | 0.89 | 4.97 | 0.97 | 2.73 | 0.36 | 2.34 | 0.36 | 214 | 0.02 | |
C2 | 35–60 | 13 | 27.0 | 35.4 | 73.2 | 8.25 | 30.7 | 6.25 | 1.36 | 6.01 | 0.89 | 5.06 | 0.96 | 2.73 | 0.40 | 2.47 | 0.37 | 214 | 0.02 | |
P5 | Oe | 0–3 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Oa | 3–10 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | |
A | 10–15 | 11 | 43.7 | 40.3 | 82.2 | 9.97 | 38.0 | 7.52 | 1.24 | 6.96 | 1.17 | 7.14 | 1.47 | 4.46 | 0.61 | 3.73 | 0.54 | 260 | 0.03 | |
Bw | 15–20 | 13 | 36.7 | 39.5 | 83.8 | 10.09 | 38.4 | 8.26 | 1.48 | 7.96 | 1.19 | 6.85 | 1.30 | 3.68 | 0.50 | 3.07 | 0.45 | 256 | 0.03 | |
C | 20–45 | 14 | 45.7 | 36.1 | 75.5 | 9.43 | 36.3 | 8.37 | 1.49 | 8.34 | 1.38 | 8.12 | 1.68 | 4.78 | 0.63 | 3.97 | 0.56 | 256 | 0.03 | |
P6 | Oe | 0–2 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Oa | 2–10 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | |
ABw | 10–20 | 10 | 32.4 | 55.4 | 115.6 | 14.12 | 52.8 | 9.74 | 1.44 | 8.09 | 1.16 | 6.38 | 1.13 | 3.16 | 0.42 | 2.62 | 0.37 | 315 | 0.03 | |
C | 20–65 | 10 | 35.0 | 61.4 | 127.3 | 15.52 | 58.9 | 10.99 | 1.74 | 9.03 | 1.21 | 6.51 | 1.27 | 3.39 | 0.44 | 2.83 | 0.43 | 346 | 0.04 | |
P7 | Oe | 0–2 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 2–15 | 10 | 20.2 | 32.1 | 63.8 | 7.68 | 28.3 | 5.42 | 0.90 | 4.51 | 0.63 | 3.74 | 0.69 | 1.99 | 0.27 | 1.82 | 0.27 | 182 | 0.02 | |
C | 15–50 | 13 | 27.1 | 39.5 | 83.8 | 9.96 | 38.4 | 7.69 | 1.58 | 6.74 | 0.94 | 5.30 | 0.96 | 2.73 | 0.40 | 2.45 | 0.36 | 241 | 0.02 | |
P8 | Oe | 0–4 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 4–15 | 13 | 25.0 | 32.9 | 63.0 | 7.48 | 28.0 | 5.40 | 1.24 | 5.09 | 0.74 | 4.79 | 0.85 | 2.52 | 0.34 | 2.14 | 0.32 | 193 | 0.02 | |
C1 | 15–35 | 13 | 30.2 | 32.6 | 64.8 | 7.54 | 29.5 | 6.51 | 1.67 | 6.68 | 1.02 | 5.81 | 1.13 | 3.14 | 0.43 | 2.64 | 0.40 | 207 | 0.02 | |
C2 | 35–55 | 16 | 29.2 | 32.2 | 64.4 | 7.72 | 29.8 | 6.59 | 1.76 | 6.43 | 0.96 | 5.65 | 1.01 | 2.90 | 0.39 | 2.40 | 0.38 | 208 | 0.02 | |
P9 | Oi | 0–2 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 2–10 | 10 | 21.6 | 31.3 | 61.2 | 7.18 | 27.9 | 5.57 | 1.15 | 4.55 | 0.64 | 3.99 | 0.77 | 2.28 | 0.31 | 2.01 | 0.32 | 181 | 0.02 | |
C1 | 10–40 | 12 | 28.8 | 35.6 | 70.8 | 8.41 | 33.0 | 6.66 | 1.50 | 5.96 | 0.88 | 5.34 | 1.00 | 2.81 | 0.40 | 2.61 | 0.39 | 216 | 0.02 | |
C2 | 40–80 | 12 | 29.6 | 35.1 | 69.8 | 8.28 | 33.0 | 6.50 | 1.53 | 6.33 | 0.88 | 5.35 | 1.02 | 2.95 | 0.44 | 2.69 | 0.40 | 216 | 0.02 | |
P10 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 1–10 | 16 | 41.1 | 39.9 | 81.9 | 10.06 | 39.3 | 8.37 | 1.80 | 7.67 | 1.17 | 7.08 | 1.41 | 3.93 | 0.56 | 3.51 | 0.53 | 264 | 0.03 | |
C1 | 10–50 | 15 | 33.4 | 38.5 | 78.2 | 9.70 | 38.0 | 7.65 | 1.66 | 6.96 | 1.01 | 5.92 | 1.15 | 3.33 | 0.47 | 2.95 | 0.45 | 244 | 0.02 | |
C2 | 50–70 | 13 | 29.8 | 36.8 | 74.6 | 9.08 | 34.7 | 6.99 | 1.37 | 6.18 | 0.90 | 5.33 | 1.03 | 2.96 | 0.41 | 2.73 | 0.41 | 226 | 0.02 | |
P11 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
A | 1–15 | 8 | 18.7 | 26.6 | 50.9 | 5.97 | 22.5 | 4.15 | 0.81 | 3.60 | 0.55 | 3.33 | 0.67 | 1.96 | 0.27 | 1.84 | 0.28 | 150 | 0.02 | |
C1 | 15–30 | 9 | 21.5 | 31.7 | 61.9 | 7.45 | 28.0 | 5.21 | 1.03 | 4.65 | 0.67 | 4.08 | 0.77 | 2.16 | 0.29 | 2.00 | 0.31 | 181 | 0.02 | |
C2 | 30–45 | 6 | 13.1 | 19.5 | 36.7 | 4.44 | 17.0 | 3.13 | 0.60 | 2.75 | 0.38 | 2.54 | 0.47 | 1.37 | 0.17 | 1.30 | 0.19 | 110 | 0.01 | |
C3 | 45–60 | 5 | 9.8 | 13.6 | 26.8 | 3.25 | 12.4 | 2.21 | 0.47 | 2.03 | 0.28 | 1.59 | 0.35 | 0.97 | 0.13 | 0.84 | 0.14 | 80 | 0.01 | |
P12 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
A | 1–20 | 7 | 14.8 | 23.6 | 45.8 | 5.54 | 20.5 | 3.70 | 0.68 | 3.23 | 0.45 | 2.60 | 0.50 | 1.48 | 0.20 | 1.33 | 0.20 | 132 | 0.01 | |
C1 | 20–28 | 9 | 20.1 | 29.2 | 59.2 | 6.92 | 25.2 | 4.45 | 0.81 | 3.76 | 0.57 | 3.36 | 0.69 | 1.90 | 0.28 | 1.89 | 0.28 | 168 | 0.02 | |
2C | 28–50 | 3 | 7.9 | 10.8 | 19.2 | 2.31 | 9.0 | 1.78 | 0.24 | 1.57 | 0.22 | 1.30 | 0.24 | 0.66 | 0.10 | 0.67 | 0.09 | 59 | 0.01 | |
3C | 50–60 | 5 | 11.4 | 13.6 | 26.7 | 3.11 | 12.4 | 2.60 | 0.96 | 2.75 | 0.38 | 2.09 | 0.35 | 0.99 | 0.14 | 0.98 | 0.13 | 84 | 0.01 | |
4C | 60–75 | 9 | 24.6 | 34 | 67.7 | 8.10 | 29.4 | 5.52 | 0.86 | 4.73 | 0.71 | 4.22 | 0.86 | 2.63 | 0.36 | 2.33 | 0.36 | 195 | 0.02 | |
P13 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 1–15 | 15 | 28.5 | 35.9 | 89.0 | 8.90 | 33.2 | 6.55 | 1.54 | 5.82 | 0.86 | 5.05 | 0.95 | 2.82 | 0.39 | 2.38 | 0.36 | 237 | 0.02 | |
2C | 15–25 | 5 | 11.1 | 24.7 | 48.3 | 5.76 | 22.0 | 3.67 | 0.84 | 2.99 | 0.38 | 2.02 | 0.36 | 0.95 | 0.13 | 0.84 | 0.12 | 129 | 0.01 |
Soil Profile | Horizon | Depth (cm) | Cu | Zn | Pb | Cd | As | Sb | Ba | Sr | Co | Ni | Mn | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | ||||||||||||||
P1 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – |
AC1 | 1–5 | 0.00 | 0.56 | 0.00 | 0.00 | 0.70 | 0.40 | 2.88 | 17.14 | 0.00 | 0.00 | 9.14 | 0.00 | |
AC2 | 5–15 | 0.00 | 0.06 | 0.00 | 0.00 | 0.23 | 0.17 | 1.74 | 13.79 | 0.00 | 0.00 | 0.72 | 0.00 | |
C | 15–35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.12 | 3.88 | 10.60 | 0.00 | 0.00 | 0.73 | 0.00 | |
2C | 35–60 | 0.00 | 0.00 | 0.00 | 0.02 | 0.10 | 0.20 | 5.58 | 7.59 | 0.00 | 0.01 | 47.04 | 0.00 | |
P2 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – |
AC1 | 1–25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.01 | 1.45 | 9.73 | 0.00 | 0.02 | 10.05 | 0.00 | |
AC2 | 25–45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.54 | 0.12 | 1.11 | 10.22 | 0.00 | 0.00 | 0.47 | 0.00 | |
AC3 | 45–65 | 0.00 | 0.00 | 0.00 | 0.02 | 0.15 | 0.02 | 0.92 | 9.29 | 0.00 | 0.00 | 0.44 | 0.00 | |
2C | 65–90 | 0.00 | 0.07 | 0.00 | 0.00 | 0.18 | 0.00 | 0.78 | 8.30 | 0.00 | 0.00 | 0.34 | 0.00 | |
P3 | Oe | 0–6 | – | – | – | – | – | – | – | – | – | – | – | – |
O/C | 6–25 | 0.00 | 9.25 | 0.00 | 0.16 | 1.19 | 0.44 | 3.14 | 12.90 | 0.00 | 0.00 | 90.82 | 0.00 | |
AC | 25–40 | 0.00 | 0.23 | 0.00 | 0.00 | 0.18 | 0.00 | 0.64 | 2.05 | 0.00 | 0.00 | 3.58 | 0.00 | |
BC | 40–60 | 0.00 | 0.04 | 0.00 | 0.00 | 0.10 | 0.00 | 0.43 | 1.60 | 0.00 | 0.00 | 0.00 | 0.00 | |
P4 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – |
A | 1–13 | 0.00 | 0.41 | 0.01 | 0.00 | 0.00 | 0.00 | 9.11 | 2.37 | 0.00 | 0.00 | 31.81 | 0.00 | |
C1 | 13–35 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 45.03 | 1.36 | 0.00 | 0.00 | 55.72 | 0.00 | |
C2 | 35–60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 60.29 | 0.74 | 0.00 | 0.00 | 54.51 | 0.00 | |
P5 | Oe | 0–3 | – | – | – | – | – | – | – | – | – | – | – | – |
Oa | 3–10 | – | – | – | – | – | – | – | – | – | – | – | – | |
A | 10–15 | 3.36 | 0.64 | 0.21 | 0.02 | 0.02 | 0.42 | 15.01 | 3.47 | 0.02 | 0.05 | 71.59 | 0.00 | |
Bw | 15–20 | 6.41 | 0.32 | 0.05 | 0.04 | 0.11 | 0.31 | 26.35 | 4.53 | 0.05 | 0.01 | 115.61 | 0.00 | |
C | 20–45 | 2.74 | 0.14 | 0.00 | 0.20 | 0.04 | 0.48 | 35.18 | 6.88 | 0.00 | 0.00 | 24.30 | 0.00 | |
P6 | Oe | 0–2 | – | – | – | – | – | – | – | – | – | – | – | – |
Oa | 2–10 | – | – | – | – | – | – | – | – | – | – | – | – | |
ABw | 10–20 | 9.80 | 3.12 | 0.00 | 0.00 | 0.00 | 0.22 | 65.92 | 1.91 | 0.44 | 0.13 | 296.36 | 0.00 | |
C | 20–65 | 99.48 | 3.98 | 0.02 | 0.00 | 1.06 | 1.36 | 147.88 | 12.41 | 0.00 | 0.19 | 120.97 | 0.00 | |
P7 | Oe | 0–2 | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 2–15 | 0.73 | 1.23 | 0.49 | 0.00 | 0.10 | 0.00 | 3.73 | 0.21 | 0.00 | 0.00 | 17.86 | 0.00 | |
C | 15–50 | 0.00 | 0.52 | 0.00 | 0.00 | 0.00 | 0.00 | 8.11 | 0.11 | 0.00 | 0.00 | 32.26 | 0.00 | |
P8 | Oe | 0–4 | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 4–15 | 2.29 | 0.63 | 0.05 | 0.00 | 0.02 | 2.18 | 49.60 | 1.14 | 0.01 | 0.00 | 261.77 | 0.00 | |
C1 | 15–35 | 4.04 | 0.27 | 0.05 | 0.00 | 0.00 | 0.99 | 55.54 | 0.79 | 0.00 | 0.00 | 321.57 | 0.00 | |
C2 | 35–55 | 3.66 | 0.38 | 0.00 | 0.00 | 0.00 | 0.64 | 46.23 | 0.61 | 0.00 | 0.00 | 343.39 | 0.00 | |
P9 | Oi | 0–2 | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 2–10 | 56.93 | 1.26 | 0.16 | 0.00 | 0.18 | 2.40 | 141.50 | 0.98 | 1.14 | 0.02 | 230.44 | 0.00 | |
C1 | 10–40 | 131.25 | 0.92 | 0.01 | 0.00 | 0.59 | 4.20 | 162.29 | 1.34 | 0.16 | 0.00 | 168.25 | 0.00 | |
C2 | 40–80 | 105.88 | 0.71 | 0.03 | 0.00 | 0.60 | 3.89 | 173.58 | 1.64 | 0.10 | 0.00 | 163.39 | 0.00 | |
P10 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 1–10 | 101.55 | 1.26 | 0.63 | 0.00 | 0.03 | 2.43 | 85.42 | 0.33 | 0.24 | 0.00 | 156.77 | 0.00 | |
C1 | 10–50 | 174.07 | 1.36 | 0.05 | 0.00 | 0.09 | 3.30 | 101.12 | 0.37 | 0.00 | 0.00 | 92.91 | 0.00 | |
C2 | 50–70 | 154.26 | 1.04 | 0.03 | 0.00 | 0.02 | 2.88 | 87.79 | 0.47 | 0.00 | 0.00 | 66.63 | 0.00 | |
P11 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – |
A | 1–15 | 1.17 | 0.00 | 0.86 | 0.01 | 0.10 | 0.16 | 7.43 | 5.58 | 0.00 | 0.00 | 29.27 | 0.00 | |
C1 | 15–30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 0.15 | 6.05 | 7.54 | 0.00 | 0.00 | 17.98 | 0.00 | |
C2 | 30–45 | 0.00 | 1.39 | 0.00 | 0.17 | 0.00 | 0.39 | 5.98 | 6.51 | 0.00 | 0.00 | 15.08 | 0.00 | |
C3 | 45–60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.03 | 6.21 | 8.26 | 0.00 | 0.00 | 5.97 | 0.00 | |
P12 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – |
A | 1–20 | 1.21 | 0.05 | 0.00 | 0.01 | 0.04 | 0.23 | 16.34 | 5.09 | 0.00 | 0.02 | 22.39 | 0.00 | |
C1 | 20–28 | 5.10 | 0.08 | 0.04 | 0.02 | 0.10 | 2.18 | 58.11 | 4.26 | 0.00 | 0.00 | 7.77 | 0.00 | |
2C | 28–50 | 0.00 | 0.28 | 0.00 | 0.00 | 0.06 | 1.38 | 18.39 | 16.43 | 0.00 | 0.03 | 10.09 | 0.00 | |
3C | 50–60 | 42.48 | 1.19 | 0.00 | 0.02 | 0.00 | 6.45 | 35.90 | 5.18 | 0.00 | 0.02 | 4.95 | 0.00 | |
4C | 60–75 | 2.14 | 0.62 | 0.00 | 0.00 | 0.03 | 4.20 | 29.22 | 6.78 | 0.00 | 0.00 | 4.06 | 0.00 | |
P13 | Oi | 0–1 | – | – | – | – | – | – | – | – | – | – | – | – |
AC | 1–15 | 0.00 | 49.69 | 0.00 | 0.32 | 0.63 | 0.31 | 212.47 | 58.37 | 0.00 | 0.25 | 2241.64 | 0.87 | |
2C | 15–25 | 0.00 | 0.52 | 0.00 | 0.00 | 0.21 | 0.04 | 20.03 | 16.86 | 0.00 | 0.02 | 104.27 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarnawczyk, M.; Uzarowicz, Ł.; Kwasowski, W.; Pędziwiatr, A.; Martín-Peinado, F.J. Geochemical Features and Mobility of Trace Elements in Technosols from Historical Mining and Metallurgical Sites, Tatra Mountains, Poland. Minerals 2025, 15, 988. https://doi.org/10.3390/min15090988
Tarnawczyk M, Uzarowicz Ł, Kwasowski W, Pędziwiatr A, Martín-Peinado FJ. Geochemical Features and Mobility of Trace Elements in Technosols from Historical Mining and Metallurgical Sites, Tatra Mountains, Poland. Minerals. 2025; 15(9):988. https://doi.org/10.3390/min15090988
Chicago/Turabian StyleTarnawczyk, Magdalena, Łukasz Uzarowicz, Wojciech Kwasowski, Artur Pędziwiatr, and Francisco José Martín-Peinado. 2025. "Geochemical Features and Mobility of Trace Elements in Technosols from Historical Mining and Metallurgical Sites, Tatra Mountains, Poland" Minerals 15, no. 9: 988. https://doi.org/10.3390/min15090988
APA StyleTarnawczyk, M., Uzarowicz, Ł., Kwasowski, W., Pędziwiatr, A., & Martín-Peinado, F. J. (2025). Geochemical Features and Mobility of Trace Elements in Technosols from Historical Mining and Metallurgical Sites, Tatra Mountains, Poland. Minerals, 15(9), 988. https://doi.org/10.3390/min15090988