Technology Development and Industrial Practice of Distinct Low-Cost Heap Bioleaching at Monywa Copper Mine
Abstract
1. Introduction
2. Mineralogy and Leaching Tests
3. Process Description
4. Critical Technology Development of Monywa Heap Bioleaching
4.1. Acidification and Start-Up of Heap Bioleaching Without Acid Addition
4.2. Ore Classification and Operational Optimization
4.3. Select Inhibition of Pyrite Oxidation for Acid/Iron Balance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vera, M.; Schippers, A.; Hedrich, S.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of microbial metal sulfide oxidation—Part A. Appl. Microbiol. Biotechnol. 2022, 106, 6933–6952, Correction in Appl. Microbiol. Biotechnol. 2022, 106, 7375. [Google Scholar] [CrossRef]
- Saim, A.K.; Darteh, F.K. A Comprehensive Review on Cobalt Bioleaching from Primary and Tailings Sources. Miner. Process. Extr. Metall. Rev. 2023, 45, 426–452. [Google Scholar] [CrossRef]
- Yuan, J.M.; Zhou, Z.K.; Ge, Y.B.; Guo, J.P.; Sun, Z.X.; Ke, P.C.; Xu, L.L.; Yang, Z.H.; Zhai, W. Bioleaching of uranium from low-grade uranium ore with a high fluorine content by indigenous microorganisms and their community structure analysis. J. Radioanal. Nucl. Chem. 2023, 332, 387–398. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.J.; Tan, N.J.; Zhu, M.L.; Tan, W.S.; Daramola, D.; Gu, T.Y. Advances in bioleaching of waste lithium batteries under metal ion stress. Bioresour. Bioprocess. 2023, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Yang, H.Y.; Tong, L.L.; Sand, W. Some Aspects of Industrial Heap Bioleaching Technology: From Basics to Practice. Miner. Process. Extr. Metall. Rev. 2022, 43, 510–528. [Google Scholar] [CrossRef]
- Mokmeli, M.; Parizi, M.T. Low-grade chalcopyrite ore, heap leaching or smelting recovery route? Hydrometallurgy 2022, 211, 105885. [Google Scholar] [CrossRef]
- Jia, Y.; Tan, Q.Y.; Sun, H.Y.; Zhang, Y.P.; Gao, H.S.; Ruan, R. Sulfide mineral dissolution microbes: Community structure and function in industrial bioleaching heaps. Green Energy Environ. 2019, 4, 29–37. [Google Scholar] [CrossRef]
- Petersen, J. From understanding the rate limitations of bioleaching mechanisms to improved bioleach process design. Hydrometallurgy 2023, 221, 106148. [Google Scholar] [CrossRef]
- Chetty, D. Acid-Gangue Interactions in Heap Leach Operations: A Review of the Role of Mineralogy for Predicting Ore Behaviour. Minerals 2018, 8, 47. [Google Scholar] [CrossRef]
- Toro, N.; Ghorbani, Y.; Turan, M.D.; Robles, P.; Galvez, E. Gangues and Clays Minerals as Rate-Limiting Factors in Copper Heap Leaching: A Review. Metals 2021, 11, 1539. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, H.Y.; Chen, D.F.; Gao, H.S.; Ruan, R.M. Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar. Hydrometallurgy 2016, 164, 355–361. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, H.Y.; Tan, Q.Y.; Xu, J.Y.; Feng, X.L.; Ruan, R.M. Industrial Heap Bioleaching of Copper Sulfide Ore Started with Only Water Irrigation. Minerals 2021, 11, 1299. [Google Scholar] [CrossRef]
- Soe, K.M.; Ruan, R.; Jia, Y.; Tan, Q.; Wang, Z.; Shi, J.; Zhong, C.; Sun, H. Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa copper mine. J. Min. Inst. 2021, 247, 102–113. [Google Scholar] [CrossRef]
- Ruan, R.M.; Liu, X.Y.; Zou, G.; Chen, J.H.; Wen, J.K.; Wang, D.Z. Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy 2011, 108, 130–135. [Google Scholar] [CrossRef]
- Liao, R.; Yang, B.; Huang, X.; Hong, M.; Yu, S.; Liu, S.; Wang, J.; Qiu, G. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution. Chemosphere 2021, 279, 130516. [Google Scholar] [CrossRef]
- Sun, H.Y.; Tan, Q.Y.; Jia, Y.; Shu, R.B.; Zhong, S.P.; Ruan, R.M. Pyrite oxidation in column at controlled redox potential of 900 mV with and without bacteria. Rare Met. 2022, 41, 4279–4288. [Google Scholar] [CrossRef]
- Sun, H.Y.; Chen, M.; Zou, L.C.; Shu, R.B.; Ruan, R.M. Study of the kinetics of pyrite oxidation under controlled redox potential. Hydrometallurgy 2015, 155, 13–19. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Y.; Sun, H.Y.; Tan, Q.Y.; Niu, X.P.; Leng, X.K.; Ruan, R.M. Limited role of sessile acidophiles in pyrite oxidation below redox potential of 650 mV. Sci. Rep. 2017, 7, 5032. [Google Scholar] [CrossRef] [PubMed]
- Phyo, H.A.; Jia, Y.; Tan, Q.Y.; Zhao, S.G.; Liang, X.X.; Ruan, R.M.; Niu, X.P. Effect of particle size on chalcocite dissolution kinetics in column leaching under controlled Eh and its implications. Physicochem. Probl. Miner. Process. 2020, 56, 676–692. [Google Scholar] [CrossRef]
- Niu, X.P.; Ruan, R.M.; Tan, Q.Y.; Jia, Y.; Sun, H.Y. Study on the second stage of chalcocite leaching in column with redox potential control and its implications. Hydrometallurgy 2015, 155, 141–152. [Google Scholar] [CrossRef]
- Lu, J.M.; Dreisinger, D.; West-Sells, P. Acid curing and agglomeration for heap leaching. Hydrometallurgy 2017, 167, 30–35. [Google Scholar] [CrossRef]
- Wang, L.M.; Yin, S.H.; Wu, A.X. Ore agglomeration behavior and its key controlling factors in heap leaching of low-grade copper minerals. J. Clean. Prod. 2021, 279, 123705. [Google Scholar] [CrossRef]
- Ji, G.X.; Liao, Y.L.; Wu, Y.; Xi, J.J.; Liu, Q.F. A Review on the Research of Hydrometallurgical Leaching of Low-Grade Complex Chalcopyrite. J. Sustain. Metall. 2022, 8, 964–977. [Google Scholar] [CrossRef]
- Ulrich, B.; Andrade, H.; Gardner, T. Lessons learnt from heap leaching operations in South America—An update. J. S. Afr. Inst. Min. Metall. 2003, 103, 23–28. [Google Scholar]
- Chen, J.H.; Zhong, S.P.; Tang, D.; Kuang, C. Practical Experience in Large-Scale Development of Zijinshan Low-Grade Gold-Copper Mine. Min. Metall. Explor. 2020, 37, 1339–1347. [Google Scholar] [CrossRef]
- Saari, P.; Riekkola-Vanhanen, M. Talvivaara bioheapleaching process. J. S. Afr. Inst. Min. Metall. 2012, 112, 1013–1020. [Google Scholar]
- Riekkola-Vanhanen, M. Talvivaara mining company—From a project to a mine. Miner. Eng. 2013, 48, 2–9. [Google Scholar] [CrossRef]
Mineral | Formula | Percentage (%) |
---|---|---|
Chalcocite | Cu2S | 0.52 |
Chalcopyrite | CuFeS2 | 0.10 |
Pyrite | FeS2 | 12.13 |
Quartz | SiO2 | 56.46 |
Alunite | KAl3(SO4)2(OH)6 | 12.93 |
Limonite | 2Fe2O3∙3H2O | 2.10 |
Sericite–illite–kaolinite–pyrophyllite | K2(AlFeMg)4(SiAl)8O20(OH)4∙nH2O, Al4Si8O20(OH)4∙nH2O, Al4SiO4O10(OH)8 Al2(Si4O10)(OH)2 | 9.56 |
Alkali gangue minerals | CaMg(CO3)2, CaCO3, FeCO3 | 1.2 |
Ore Type | Ore Crush Size | Leaching Time (Day) | Copper Recovery (%) | H2SO4 Production (kg/kg Cu) * |
---|---|---|---|---|
High clay | P80 = 180 mm | 186 | 85.2 | −1.11 |
P80 = 50 mm | 186 | 83.3 | −1.34 | |
Medium clay II | P80 = 180 mm | 206 | 84.2 | 1.23 |
P80 = 50 mm | 206 | 85.6 | 1.32 | |
Medium clay I | P80 = 180 mm | 206 | 80.5 | 1.86 |
P80 = 50 mm | 206 | 83.2 | 2.32 | |
Low clay | P80 = 180 mm | 206 | 72.3 | 2.98 |
P80 = 50 mm | 206 | 80.5 | 3.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yang, B.; Wang, J.; Guo, K.; Zhang, X.; Liao, R.; Qiu, G. Technology Development and Industrial Practice of Distinct Low-Cost Heap Bioleaching at Monywa Copper Mine. Minerals 2025, 15, 985. https://doi.org/10.3390/min15090985
Wang Z, Yang B, Wang J, Guo K, Zhang X, Liao R, Qiu G. Technology Development and Industrial Practice of Distinct Low-Cost Heap Bioleaching at Monywa Copper Mine. Minerals. 2025; 15(9):985. https://doi.org/10.3390/min15090985
Chicago/Turabian StyleWang, Zhentang, Baojun Yang, Jun Wang, Keqi Guo, Xin Zhang, Rui Liao, and Guanzhou Qiu. 2025. "Technology Development and Industrial Practice of Distinct Low-Cost Heap Bioleaching at Monywa Copper Mine" Minerals 15, no. 9: 985. https://doi.org/10.3390/min15090985
APA StyleWang, Z., Yang, B., Wang, J., Guo, K., Zhang, X., Liao, R., & Qiu, G. (2025). Technology Development and Industrial Practice of Distinct Low-Cost Heap Bioleaching at Monywa Copper Mine. Minerals, 15(9), 985. https://doi.org/10.3390/min15090985