Evaluation of Flue Gas Desulfurization (FGD) Waste Potentiality from Coal-Fired Power Plants to Obtain Alkali-Activated Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Alkali-Activated Material Preparation
2.3. Methods Applied for the Characterization of FGD and AAM
3. Results and Discussion
3.1. Waste Characterization
Oxides | FGD-D | Lei et al. [31] | Wu et al. [25] | Wang et al. [27] | Zhang et al. [32] | Zhong et al. [33] | Gypsum Lei et al. [31] |
---|---|---|---|---|---|---|---|
CaO | 38.14 | 35.94 | 30.90 | 39.50 | 31.60 | 29.40 | 34.83 |
SO3 | 22.18 | 41.54 | 41.50 | 47.80 | 42.40 | 39.60 | 38.97 |
SiO2 | 19.78 | 1.05 | 1.27 | 1.05 | 2.70 | 4.37 | 3.12 |
Al2O3 | 5.54 | 0.34 | 0.81 | 0.93 | 0.70 | 1.73 | 0.69 |
Fe2O3 | 3.15 | 0.11 | 0.08 | 0.30 | 0.50 | 0.87 | 0.18 |
K2O | 1.09 | 0.09 | - | 0.09 | - | 0.12 | 0.05 |
Na2O | - | 0.82 | - | - | - | - | 0.49 |
MgO | 0.61 | 0.17 | 2.14 | 0.17 | 1.00 | 0.64 | 1.73 |
TiO2 | 0.43 | - | - | - | - | - | - |
SrO | 0.17 | - | - | - | - | - | - |
Cr2O3 | 0.02 | - | - | - | - | - | - |
MnO | 0.01 | - | - | - | - | - | - |
ZrO2 | 0.02 | - | - | - | - | - | - |
V2O5 | 0.02 | - | - | - | - | - | - |
CuO | 0.02 | - | - | - | - | - | - |
Rb2O | 0.01 | - | - | - | - | - | - |
ZnO | 0.01 | - | - | - | - | - | - |
Y2O3 | 0.01 | - | - | - | - | - | - |
Crystal water | - | 18.17 | - | 10.08 | - | 18.10 | 16.94 |
LOI | 8.78 | - | - | - | 19.20 | - | - |
Properties | FGD-D | Lei et al. [31] | Gypsum Lei et al. [31] | Wu et al. [25] | Zhang et al. [32] | Li et al. [43] |
---|---|---|---|---|---|---|
Specific gravity (g/cm3) | 2.00 | - | - | - | - | 1.27 |
BET surface area (m2/g) | 19.41 | - | - | - | 0.39 | - |
Mean particle size (µm) | 22.82 | 32.67 | 26.55 | 37.13 | - | - |
3.2. Environmental Assessment of FGD-D (NBR 10004)
3.3. AAM from FGD-D
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Y.; Li, Y.; Cui, L. Critical Review of Condensable Particulate Matter. Fuel 2018, 224, 801–813. [Google Scholar] [CrossRef]
- Song, J.; Lu, S.; Wu, Y.; Zhou, C.; Li, X.; Li, J. Migration and Distribution Characteristics of Organic and Inorganic Fractions in Condensable Particulate Matter Emitted from an Ultralow Emission Coal-Fired Power Plant. Chemosphere 2020, 243, 125346. [Google Scholar] [CrossRef]
- Cruz, M.d.A.; Araújo, O.d.Q.F.; de Medeiros, J.L.; de Castro, R.d.P.V.; Ribeiro, G.T.; de Oliveira, V.R. Impact of Solid Waste Treatment from Spray Dryer Absorber on the Levelized Cost of Energy of a Coal-Fired Power Plant. J. Clean. Prod. 2017, 164, 1623–1634. [Google Scholar] [CrossRef]
- Rodrigues, I.N.; de Medeiros, J.L.; de Queiroz F. Araújo, O. Sulfite Removal from Flue-Gas Desulfurization Residues of Coal-Fired Power Plants: Oxidation Experiments and Kinetic Parameters Estimation. Energy Rep. 2021, 7, 8142–8151. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhu, T.; Jing, P.; Wang, J. Simulation of the Heterogeneous Semi-Dry Flue Gas Desulfurization in a Pilot CFB Riser Using the Two-Fluid Model. Chem. Eng. J. 2015, 264, 479–486. [Google Scholar] [CrossRef]
- Ma, X.; Kaneko, T.; Tashimo, T.; Yoshida, T.; Kato, K. Use of Limestone for SO2 Removal from Flue Gas in the Semidry FGD Process with a Powder-Particle Spouted Bed. Chem. Eng. Sci. 2000, 55, 4643–4652. [Google Scholar] [CrossRef]
- Staszak, K.; Wieszczycka, K. Energy Industry. Phys. Sci. Rev. 2018, 3, 20180023. [Google Scholar] [CrossRef]
- Yao, X.; Wang, W.; Liu, M.; Yao, Y.; Wu, S. Synergistic Use of Industrial Solid Waste Mixtures to Prepare Ready-to-Use Lightweight Porous Concrete. J. Clean. Prod. 2019, 211, 1034–1043. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of Geopolymerization and Factors Influencing Its Development: A Review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Eleutério, R.V.; Simão, L.; Hotza, D. Alkali-Activated Materials for Catalytic Applications: A State-of-the-Art Review. Mater. Sci. Eng. B 2024, 299, 117007. [Google Scholar] [CrossRef]
- Tochetto, G.A.; Simão, L.; de Oliveira, D.; Hotza, D.; Immich, A.P.S. Porous Geopolymers as Dye Adsorbents: Review and Perspectives. J. Clean. Prod. 2022, 374, 133982. [Google Scholar] [CrossRef]
- Kuenzel, C.; Cisneros, J.F.; Neville, T.P.; Vandeperre, L.J.; Simons, S.J.R.; Bensted, J.; Cheeseman, C.R. Encapsulation of Cs/Sr Contaminated Clinoptilolite in Geopolymers Produced from Metakaolin. J. Nucl. Mater. 2015, 466, 94–99. [Google Scholar] [CrossRef]
- Davidovits, J. Global Warming Impact on the Cement and Aggregates Industries. World Resour. Rev. 1994, 6, 263–278. [Google Scholar]
- de Oliveira, L.B.; de Azevedo, A.R.G.; Marvila, M.T.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of Geopolymers with Industrial Waste. Case Stud. Constr. Mater. 2022, 16, e00839. [Google Scholar] [CrossRef]
- Oliveira, L.B.; Marvila, M.T.; Fediuk, R.; Vieira, C.M.F.; Azevedo, A.R.G. Development of a Complementary Precursor Based on Flue Gas Desulfurization (FGD) for Geopolymeric Pastes Produced with Metakaolin. J. Mater. Res. Technol. 2023, 22, 3489–3501. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Injorhor, B.; Phoo-ngernkham, T.; Damrongwiriyanupap, N.; Li, L.-Y.; Sukontasukkul, P.; Chindaprasirt, P. Drying Shrinkage, Strength and Microstructure of Alkali-Activated High-Calcium Fly Ash Using FGD-Gypsum and Dolomite as Expansive Additive. Cem. Concr. Compos. 2020, 114, 103760. [Google Scholar] [CrossRef]
- Zhang, M.; He, M.; Zhang, J. Mitigation of Efflorescence for Multi-Componential Geopolymer: Influence of Steel Slag, Flue Gas Desulfurization Gypsum and Pre-Curing Periods. J. Clean. Prod. 2023, 403, 136835. [Google Scholar] [CrossRef]
- Simão, L.; De Rossi, A.; Hotza, D.; Ribeiro, M.J.; Novais, R.M.; Klegues Montedo, O.R.; Raupp-Pereira, F. Zeolites-containing Geopolymers Obtained from Biomass Fly Ash: Influence of Temperature, Composition, and Porosity. J. Am. Ceram. Soc. 2021, 104, 803–815. [Google Scholar] [CrossRef]
- De La Torre, A.G.; Bruque, S.; Aranda, M.A.G. Rietveld Quantitative Amorphous Content Analysis. J. Appl. Crystallogr. 2001, 34, 196–202. [Google Scholar] [CrossRef]
- ABNT NBR 10004; Resíduos Sólidos—Classificação. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- Simão, L.; Hotza, D.; Raupp-Pereira, F.; Labrincha, J.A.; Montedo, O.R.K. Characterization of Pulp and Paper Mill Waste for the Production of Waste-Based Cement. Rev. Int. Contam. Ambient. 2019, 35, 237–246. [Google Scholar] [CrossRef]
- USEPA. Hazardous Waste Test Methods; United States Environmental Protecion Agency: Washington, DC, USA, 2016; p. 295.
- ABNT NBR 10005; Procedimento Para Obtenção de Lixiviado de Resíduos Sólidos. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- ABNT NBR 10006:2004; Procedimento Para Obtenção de Extrato Solubilizado de Resíduos Sólidos. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- Wu, Q.; Ma, H.; Chen, Q.; Huang, Z.; Zhang, C.; Yang, T. Preparation of Waterproof Block by Silicate Clinker Modified FGD Gypsum. Constr. Build. Mater. 2019, 214, 318–325. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Q.; Pan, Y.; Liu, Z.; Wu, S.; Xu, Y.; Qian, G. Heavy Metals Distribution Characteristics of FGD Gypsum Samples from Shanxi Province 12 Coal-Fired Power Plants and Its Potential Environmental Impacts. Fuel 2017, 209, 238–245. [Google Scholar] [CrossRef]
- Wang, B.; Pan, Z.; Du, Z.; Cheng, H.; Cheng, F. Effect of Impure Components in Flue Gas Desulfurization (FGD) Gypsum on the Generation of Polymorph CaCO3 during Carbonation Reaction. J. Hazard. Mater. 2019, 369, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Jiang, X.; Zhang, M.; Polaczyk, P.; Huang, B. Analytical Investigation of Phase Assemblages of Alkali-Activated Materials in CaO-SiO2-Al2O3 Systems: The Management of Reaction Products and Designing of Precursors. Mater. Des. 2020, 194, 108975. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer: Chemistry & Applications; Geopolymer Institute: Saint-Quentin, France, 2008; ISBN 9782951482098. [Google Scholar]
- Guo, X.; Shi, H.; Dick, W.A. Utilization of Thermally Treated Flue Gas Desulfurization (FGD) Gypsum and Class-C Fly Ash (CFA) to Prepare CFA-Based Geopolymer. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2013, 28, 132–138. [Google Scholar] [CrossRef]
- Lei, D.-Y.; Guo, L.-P.; Sun, W.; Liu, J.; Miao, C. Study on Properties of Untreated FGD Gypsum-Based High-Strength Building Materials. Constr. Build. Mater. 2017, 153, 765–773. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, F.; Wu, R. Study on the Performance of FGD Gypsum-Metakaolin-Cement Composite Cementitious System. Constr. Build. Mater. 2016, 128, 1–11. [Google Scholar] [CrossRef]
- Zhong, S.; Ni, K.; Li, J. Properties of Mortars Made by Uncalcined FGD Gypsum-Fly Ash-Ground Granulated Blast Furnace Slag Composite Binder. Waste Manag. 2012, 32, 1468–1472. [Google Scholar] [CrossRef]
- Engbrecht, D.C.; Hirschfeld, D.A. Thermal Analysis of Calcium Sulfate Dihydrate Sources Used to Manufacture Gypsum Wallboard. Thermochim. Acta 2016, 639, 173–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, T.-C. Reactivity Activation of Waste Coal Gangue and Its Impact on the Properties of Cement-Based Materials—A Review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Acordi, J.; Simão, L.; Faraco, M.N.S.; Borgert, C.H.; Olivo, E.; Montedo, O.R.K.; Raupp-Pereira, F. Waste Valorization of Coal Mining Waste from a Circular Economy Perspective: A Brazilian Case Study Based on Environmental and Physicochemical Features. Resour. Policy 2023, 80, 103243. [Google Scholar] [CrossRef]
- Simão, L.; Souza, M.T.; Ribeiro, M.J.; Klegues Montedo, O.R.; Hotza, D.; Novais, R.M.; Raupp-Pereira, F. Assessment of the Recycling Potential of Stone Processing Plant Wastes Based on Physicochemical Features and Market Opportunities. J. Clean. Prod. 2021, 319, 128678. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, Z. Investigation the Synergistic Effects in Quaternary Binder Containing Red Mud, Blast Furnace Slag, Steel Slag and Flue Gas Desulfurization Gypsum Based on Artificial Neural Networks. J. Clean. Prod. 2020, 273, 122972. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, L.; Ren, Q.; Yang, X.; Jiang, Z.; Zhang, Z. Utilization of Low-Quality Desulfurized Ash from Semi-Dry Flue Gas Desulfurization by Mixing with Hemihydrate Gypsum. Fuel 2019, 255, 115783. [Google Scholar] [CrossRef]
- Guan, Q.; Hu, Y.; Tang, H.; Sun, W.; Gao, Z. Preparation of α-CaSO4·½H2O with Tunable Morphology from Flue Gas Desulphurization Gypsum Using Malic Acid as Modifier: A Theoretical and Experimental Study. J. Colloid Interface Sci. 2018, 530, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dutta, P.K. Synthesis of Free-Standing Chabazite-Type Films. Microporous Mesoporous Mater. 2000, 38, 151–159. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, D.; Wu, Y.; Yu, H. Synthesis and Characterization of Calcium Aluminate Compounds from Gehlenite by High-Temperature Solid-State Reaction. Ceram. Int. 2018, 44, 13544–13550. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Leiva, C.; Cornejo, A.; Font, O.; Querol, X.; Moeno, N.; Arenas, C.; Fernández-Pereira, C. Potential Utilization of FGD Gypsum and Fly Ash from a Chinese Power Plant for Manufacturing Fire-Resistant Panels. Constr. Build. Mater. 2015, 95, 910–921. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zhu, Z.H. Solid-State Conversion of Fly Ash to Effective Adsorbents for Cu Removal from Wastewater. J. Hazard. Mater. 2007, 139, 254–259. [Google Scholar] [CrossRef]
- Bhagath Singh, G.V.P.; Subramaniam, K.V.L. Quantitative XRD Study of Amorphous Phase in Alkali Activated Low Calcium Siliceous Fly Ash. Constr. Build. Mater. 2016, 124, 139–147. [Google Scholar] [CrossRef]
- Zhao, S.; Duan, Y.; Lu, J.; Gupta, R.; Pudasainee, D.; Liu, S.; Liu, M.; Lu, J. Thermal Stability, Chemical Speciation and Leaching Characteristics of Hazardous Trace Elements in FGD Gypsum from Coal-Fired Power Plants. Fuel 2018, 231, 94–100. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, E.; Querol, X. Stabilization of FGD Gypsum for Its Disposal in Landfills Using Amorphous Aluminium Oxide as a Fluoride Retention Additive. Chemosphere 2007, 69, 295–302. [Google Scholar] [CrossRef]
- Peng, G.; Zhang, P.; Zeng, L.; Yu, L.; Li, D. Immobilization of Chromium Ore Processing Residue by Alkali-Activated Composite Binders and Leaching Characteristics. Environ. Sci. Pollut. Res. 2023, 30, 71154–71170. [Google Scholar] [CrossRef]
- Falayi, T. Sustainable Solidification of Ferrochrome Slag through Geopolymerisation: A Look at the Effect of Curing Time, Type of Activator and Liquid Solid Ratio. Sustain. Environ. Res. 2019, 29, 21. [Google Scholar] [CrossRef]
- Maqbool, Q.; Mobili, A.; Blasi, E.; Sabbatini, S.; Ruello, M.L.; Tittarelli, F. Sustainable Alkali-Activated Mortars for the Immobilization of Heavy Metals from Copper Mine Tailings. ACS Sustain. Resour. Manag. 2024, 1, 154–164. [Google Scholar] [CrossRef]
- Sasaki, K.; Kurumisawa, K.; Ibayashi, K. Effect of Retarders on Flow and Strength Development of Alkali-Activated Fly Ash/Blast Furnace Slag Composite. Constr. Build. Mater. 2019, 216, 337–346. [Google Scholar] [CrossRef]
- Arnoult, M.; Perronnet, M.; Autef, A.; Rossignol, S. How to Control the Geopolymer Setting Time with the Alkaline Silicate Solution. J. Non-Cryst. Solids 2018, 495, 59–66. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Phoo-ngernkham, T.; Li, L.; Damrongwiriyanupap, N.; Chindaprasirt, P. Strength Development and Durability of Alkali-Activated Fly Ash Mortar with Calcium Carbide Residue as Additive. Constr. Build. Mater. 2018, 162, 714–723. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Phiangphimai, C.; Intarabut, D.; Hanjitsuwan, S.; Damrongwiriyanupap, N.; Li, L.; Chindaprasirt, P. Low Cost and Sustainable Repair Material Made from Alkali-Activated High-Calcium Fly Ash with Calcium Carbide Residue. Constr. Build. Mater. 2020, 247, 118543. [Google Scholar] [CrossRef]
- Eleutério, R.V.; Simão, L.; Lemes, P.; Hotza, D. Evaluation of As-Received Green Liquor Dregs and Biomass Ash Residues from a Pulp and Paper Industry as Raw Materials for Geopolymers. Minerals 2023, 13, 1158. [Google Scholar] [CrossRef]
- Hua, M.; Wang, B.; Chen, L.; Wang, Y.; Quynh, V.M.; He, B.; Li, X. Verification of Lime and Water Glass Stabilized FGD Gypsum as Road Sub-Base. Fuel 2010, 89, 1812–1817. [Google Scholar] [CrossRef]
- Yip, C.K.; van Deventer, J.S.J. Microanalysis of Calcium Silicate Hydrate Gel Formed within a Geopolymeric Binder. J. Mater. Sci. 2003, 38, 3851–3860. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; van Deventer, J.S.J. The Coexistence of Geopolymeric Gel and Calcium Silicate Hydrate at the Early Stage of Alkaline Activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- Khadka, S.D.; Jayawickrama, P.W.; Senadheera, S.; Segvic, B. Stabilization of Highly Expansive Soils Containing Sulfate Using Metakaolin and Fly Ash Based Geopolymer Modified with Lime and Gypsum. Transp. Geotech. 2020, 23, 100327. [Google Scholar] [CrossRef]
- Liu, J.; Hu, L.; Tang, L.; Zhang, E.Q.; Ren, J. Shrinkage Behaviour, Early Hydration and Hardened Properties of Sodium Silicate Activated Slag Incorporated with Gypsum and Cement. Constr. Build. Mater. 2020, 248, 118687. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, W.; Ai, T.; Huang, B.; Shu, X.; He, Q. Strength Properties of Geopolymers Derived from Original and Desulfurized Red Mud Cured at Ambient Temperature. Constr. Build. Mater. 2016, 125, 905–911. [Google Scholar] [CrossRef]
- Bergold, S.T.; Goetz-Neunhoeffer, F.; Neubauer, J. Quantitative Analysis of C–S–H in Hydrating Alite Pastes by in-Situ XRD. Cem. Concr. Res. 2013, 53, 119–126. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Kotwica, Ł.; Różycka, A.; Gołek, Ł. Incorporation of Al in C-A-S-H Gels with Various Ca/Si and Al/Si Ratio: Microstructural and Structural Characteristics with DTA/TG, XRD, FTIR and TEM Analysis. Constr. Build. Mater. 2017, 155, 643–653. [Google Scholar] [CrossRef]
Formulation (%) | F1 | F2 | F3 | F4 |
---|---|---|---|---|
Sodium Silicate | 63.2 | 57.1 | 58.8 | 55.6 |
FGD-D | 31.6 | 33.3 | 35.3 | 38.9 |
Water | 5.3 | 9.5 | 5.9 | 5.6 |
Parameters | Results | Standards Value |
---|---|---|
Total solids (wt.%) | 87.6 | - |
Color | Light gray | - |
Odor | Odorless | - |
Free liquids | Absent | - |
Moisture (42 °C, wt.%) | 7.8 | - |
Moisture (105 °C, wt.%) | 12.4 | - |
Corrosiveness | ||
pH in water (1:1) | 12.88 | 2.00–12.40 |
Reactivity | ||
HCN (mg/kg) | <0.20 | 250.00 |
H2S (mg/kg) | <40.00 | 500.00 |
Inorganic Elements | Results | Standards Value |
---|---|---|
Arsenic | <0.01 | 1.0 |
Barium | 0.38 | 70.0 |
Cadmium | <0.01 | 0.5 |
Lead | <0.01 | 1.0 |
Total chrome | 0.04 | 5.0 |
Fluoride | 3.4 | 150.0 |
Mercury | <0.001 | 0.1 |
Silver | <0.01 | 5.0 |
Selenium | <0.01 | 1.0 |
Organic compounds | ||
Aldrin + dieldrin | <0.000002 | 0.003 |
Chlordane (all isomers) | <0.000020 | 0.02 |
DDT (p, p’DDT + p,p’DDD + p,p’DDE) | <0.000003 | 0.2 |
2,4-D | <0.00015 | 3.0 |
Endrin | <0.000001 | 0.06 |
Heptachlor and its epoxides | <0.000020 | 0.003 |
Lindano | <0.00001 | 0.2 |
Methoxychlor | <0.000001 | 2.0 |
Pentachlorophenol | <0.0001 | 0.9 |
Toxafen | <0.00001 | 0.5 |
2,4,5-T | <0.001 | 0.2 |
2,4,5-TP | <0.001 | 1.0 |
Benzene | <0.001 | 0.5 |
Benzo (a) pyrene | <0.00001 | 0.07 |
Vinyl chloride | <0.001 | 0.5 |
Chlorobenzene | <0.001 | 100.0 |
Chloroform | <0.002 | 6.0 |
o-Cresol | <0.00005 | 200.0 |
m-Cresol | <0.00005 | 200.0 |
p-Cresol | <0.00005 | 200.0 |
1,4-Dichlorobenzene | <0.001 | 7.5 |
1,1-Dichloroethene | <0.001 | 3.0 |
1,2-Dichloroethane | <0.005 | 1.0 |
2,4-Dinitrotolueno | <0.00014 | 0.13 |
Hexachlorobenzene | <0.000001 | 0.1 |
Hexachlorobutadiene | <0.001 | 0.5 |
Hexachloroethane | <0.000001 | 3.0 |
Methyl ethyl ketone | <0.00058 | 200.0 |
Nitrobenzene | <0.00005 | 2.0 |
Pyridine | <0.01 | 5.0 |
Carbon tetrachloride | <0.001 | 0.2 |
Tetrachlorethylene | <0.001 | 4.0 |
Trichloroethylene | <0.001 | 7.0 |
2,4,5-Trichlorophenol | <0.0001 | 400.0 |
2,4,6-Trichlorophenol | <0.0001 | 20.0 |
Inorganic Elements | Results | Standards Value |
---|---|---|
Aluminum | 0.1 | 0.2 |
Arsenic | <0.01 | 0.01 |
Barium | 0.05 | 0.7 |
Cadmium | <0.005 | 0.005 |
Lead | <0.01 | 0.01 |
Cyanide | <0.004 | 0.07 |
Chloride | 12.6 | 250.0 |
Copper | <0.01 | 2.0 |
Total chrome | 0.08 | 0.05 |
Total Phenols | <0.005 | 0.01 |
Iron | <0.01 | 0.3 |
Fluoride | 4.4 | 1.5 |
Manganês | <0.01 | 0.1 |
Mercury | <0.001 | 0.001 |
Nitrate (expressed as N) | 4.6 | 10.0 |
Silver | <0.01 | 0.05 |
Selenium | <0.01 | 0.01 |
Sodium | 45.91 | 200.0 |
Sulphate (expressed as SO4) | 48.07 | 250.0 |
Surfactants | <0.1 | 0.5 |
Zinc | <0.01 | 5.0 |
Organic compounds | Results | Standards value |
Aldrin + dieldrin | <0.000002 | 0.00003 |
Chlordane (all isomers) | <0.00002 | 0.0002 |
2,4-D | <0.00015 | 0.03 |
DDT (p, p’DDT + p,p’DDD + p,p’DDE) | <0.000003 | 0.002 |
Endrin | <0.000001 | 0.0006 |
Heptachlor and its epoxides | <0.000020 | 0.00003 |
Hexachlorobenzene | <0.000001 | 0.001 |
Lindano | <0.000010 | 0.002 |
Methoxychlor | <0.000001 | 0.02 |
Toxafen | <0.000010 | 0.005 |
2,4,5-T | <0.001 | 0.002 |
2,4,5-TP | <0.001 | 0.03 |
Formulations | 7 Days | 28 Days |
---|---|---|
F1 | 7.7 ± 1.3 | 8.4 ± 2.2 |
F2 | 14.0 ± 2.8 | 6.9 ± 1.5 |
F3 | 12.3 ± 1.6 | 7.6 ± 1.2 |
F4 | 14.4 ± 1.8 | 11.6 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milak, P.; Simão, L.; Daleffe, A.; Bergmann, C.P. Evaluation of Flue Gas Desulfurization (FGD) Waste Potentiality from Coal-Fired Power Plants to Obtain Alkali-Activated Materials. Minerals 2025, 15, 930. https://doi.org/10.3390/min15090930
Milak P, Simão L, Daleffe A, Bergmann CP. Evaluation of Flue Gas Desulfurization (FGD) Waste Potentiality from Coal-Fired Power Plants to Obtain Alkali-Activated Materials. Minerals. 2025; 15(9):930. https://doi.org/10.3390/min15090930
Chicago/Turabian StyleMilak, Pâmela, Lisandro Simão, Anderson Daleffe, and Carlos Pérez Bergmann. 2025. "Evaluation of Flue Gas Desulfurization (FGD) Waste Potentiality from Coal-Fired Power Plants to Obtain Alkali-Activated Materials" Minerals 15, no. 9: 930. https://doi.org/10.3390/min15090930
APA StyleMilak, P., Simão, L., Daleffe, A., & Bergmann, C. P. (2025). Evaluation of Flue Gas Desulfurization (FGD) Waste Potentiality from Coal-Fired Power Plants to Obtain Alkali-Activated Materials. Minerals, 15(9), 930. https://doi.org/10.3390/min15090930