Recovery of Tetrahedrite from Mining Waste in Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Tetrahedrite in Representative Locations
2.2. Description of the Ores Selected for the Study
2.2.1. Delfina Mine
2.2.2. El Coriellu Mine
2.2.3. Santísima Trinidad Mine
2.2.4. El Vagón Mine (Lanteira Group)
2.2.5. La Profunda Mine
2.3. Sample Preparation: Grinding and Sieving
3. Results
3.1. Laboratory-Scale Concentration Tests of Tetrahedrite
3.2. Characterisation of the Obtained Tetrahedrite
- Delfina 1: (Cu5.87Ag0.13)Σ6.00 [Cu4.00(Fe1.04Cu0.78Zn0.24)Σ2.06] (Sb2.29As1.68)Σ3.97S13. It corresponds to tetrahedrite-(Fe).
- Delfina 2: (Cu5.73Ag0.27)Σ6.00 [Cu4.00(Cu0.92Fe0.85Zn0.52)Σ2.29] (Sb3.55As0.55)Σ4.10S13. It corresponds to tetrahedrite-(Cu).
- El Coriellu: (Cu5.99Ag0.01)Σ6.00 [Cu4.00(Cu0.83Zn0.81Fe0.62)Σ2.26] (Sb3.44As0.66)Σ4.10S13. It corresponds to tetrahedrite-(Cu).
- Santísima Trinidad (S.T.): (Cu5.67Ag0.33)Σ6.00 [Cu4.00(Fe1.37Zn0.67Cu0.03)Σ2.07] (Sb3.59As0.53)Σ4.12S13. It corresponds to tetrahedrite-(Fe).
- La Profunda: Cu6[Cu4.00(Fe0.83Cu0.72Zn0.64)Σ2.19] As3.84S13. It corresponds to tennantite-(Fe).
4. Discussion on the Recommended Separation Treatment
- Dry route—using a belt-type magnetic separator with a rare-earth permanent magnet, as employed in laboratory experiments.
- Wet route—using a WHIMS (wet high-intensity magnetic separator), which operates with an electromagnet. While the wet route offers substantial energy savings by eliminating the need for drying the ground sample prior to magnetic separation, one must also consider the energy cost of the electromagnet, which requires an electric current to generate the magnetic field.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebhan, E. Challenges for Future Energy Usage. Eur. Phys. J.-Spec. Top. 2009, 176, 53–80. [Google Scholar] [CrossRef]
- Jackson, R.B.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Korsbakken, J.I.; Liu, Z.; Liu, Z.; Peters, G.P.; Zheng, B. Global Energy Growth Is Outpacing Decarbonization. Environ. Res. Lett. 2018, 13, 120401. [Google Scholar] [CrossRef]
- Lourenço, N.; Colmenar, J.M.; Hidalgo, J.I.; Salcedo-Sanz, S. Evolving Energy Demand Estimation Models over Macroeconomic Indicators. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, Cancún, Mexico, 8–12 July 2020; pp. 1143–1149. [Google Scholar] [CrossRef]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the Global Waste Heat Potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Chetty, R.; Bali, A.; Mallik, R.C. Tetrahedrites as Thermoelectric Materials: An Overview. J. Mater. Chem. C 2015, 3, 12364–12378. [Google Scholar] [CrossRef]
- Weller, D.P.; Morelli, D.T. Tetrahedrite Thermoelectrics: From Fundamental Science to Facile Synthesis. Front. Electron. Mater. 2022, 2, 913280. [Google Scholar] [CrossRef]
- Santos, B.A.; Esperto, L.; Figueira, I.; Mascarenhas, J.; Lopes, E.B.; Salgueiro, R.; Silva, T.P.; Correia, J.B.; de Oliveira, D.; Gonçalves, A.P.; et al. Thermoelectric Properties of Tetrahedrites Produced from Mixtures of Natural and Synthetic Materials. Materials 2025, 18, 1375. [Google Scholar] [CrossRef] [PubMed]
- Candolfi, C.; Bouyrie, Y.; Sassi, S.; Dauscher, A.; Lenoir, B. Tetrahedrites: Prospective Novel Thermoelectric Materials. In Thermoelectrics for Power Generation; Skipidarov, S., Nikitin, M., Eds.; IntechOpen: Rijeka, Croatia, 2016; Chapter 4; pp. 71–89. [Google Scholar] [CrossRef]
- EC-European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; EC-European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Regulation (EU) 2024/1252 of The European Parliament and of the Council of 11 April 2024 Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020. Official Journal of the European Union, 3 May 2024.
- Spanish Database on Mineral Resources (BDMIN). Available online: https://info.igme.es/BDMin/ (accessed on 25 April 2025).
- Spanish Inventory of Mining Waste Facilities. Available online: https://info.igme.es/balsas/ (accessed on 25 April 2025).
- Geologia de España; Vera, J.A., Ed.; Sociedad Geológica de Espana (SGE) & Institute Geológico y Minero de España (IGME): Madrid, Spain, 2004. [Google Scholar]
- Gutiérrez Claverol, M.; Luque Cabal, C. La Minería en los Picos de Europa; Noega: Gijón, Spain, 2000; p. 303. [Google Scholar]
- de Baranda Graf, B.S. La mina “Delfina”, Ortiguero, Cabrales, Principado de Asturias. Paragénesis 2021, 3, 63–86. [Google Scholar]
- Luque, C.; Gutiérrez-Claverol, M. Riquezas Geológicas de Asturias; Eujoa Artes Gráficas, Ed.; Cervantes: Oviedo, Spain, 2010; 416p. [Google Scholar]
- IGME. Inventario Nacional de Recursos de Cobre; Tomo I. 1981, p. 111 (unpublished). Available online: https://info.igme.es/SidPDF/020000/171/Tomo%20I.%20Memoria/20171_0001.pdf (accessed on 29 June 2025).
- Molina-Molina, A.; Ruiz-Montes, M. Las mineralizaciones filonianas del Complejo Nevado-Filábride (Cordilleras Béticas, España). Boletín Geológico Min. 1993, 104, 621–639. [Google Scholar]
- Grupo Mineralogista de Madrid. Profunda. Minerales exclusivos. Bocamina 1994, 6. [Google Scholar]
- Matías Rodríguez, R. El distrito minero Profunda-Providencia. Localidad tipo de la Villamaninita (Cármenes, León). Rev. Miner. 1996, 1, 158–183. [Google Scholar]
- Paniagua, A.; Rodríguez-Pevida, L.S.; Garzón, L.; Pérez, J.M.; Quintana, A. Presencia de una paragénesis Cu-Ni-Co-U-As-S en la zona cantábrica: La Mina Profunda (Cármenes-León). Geogaceta 1987, 2, 22–24. [Google Scholar]
- Wills, B.A.; Napier-Munn, T.J. Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 6th ed.; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 1997; pp. 225–246. [Google Scholar]
- Levinsky, P.; Ventrapati, P.K.; Dauscher, A.; Hejtmanek, J.; Candolfi, C.; Lenoir, P.B. Achieving High Thermoelectric Performance in Mixed Natural-Synthetic Tetrahedrites. ChemNanoMat 2022, 8, e202200364. [Google Scholar] [CrossRef]
- Soní-Castro, I.J.; López-Oyama, A.B.; Rodríguez, E.; Del Ángel-López, D.; Aguilar-Frutis, M.; Reyes Valdez, J.J. Evaluation of Processing Parameters in the Solvothermal Synthesis of Cu-Rich Tetrahedrites for Potential Application as Thermoelectric Materials. Crystals 2024, 14, 888. [Google Scholar] [CrossRef]
- Biagioni, C.; George, L.L.; Cook, N.J.; Makovicky, E.; Moëlo, Y.; Pasero, M.; Sejkora, J.; Stanley, C.J.; Welch, M.D.; Bosi, F. The tetrahedrite group: Nomenclature and classification. Am. Mineral. 2020, 105, 109–122. [Google Scholar] [CrossRef]
Delfina 1 | Delfina 2 | El Coriellu | S. T. | La Profunda | |
---|---|---|---|---|---|
Cu | 41.50 | 38.70 | 41.45 | 37.46 | 45.68 |
Ag | 0.84 | 1.64 | 0.00 | 2.11 | 0.01 |
Fe | 3.55 | 2.72 | 2.08 | 4.50 | 3.11 |
Zn | 0.94 | 1.97 | 3.21 | 2.56 | 2.81 |
As | 7.71 | 2.38 | 3.00 | 2.33 | 19.29 |
Sb | 17.13 | 24.75 | 25.24 | 25.58 | 0.03 |
S | 15.55 | 23.84 | 25.12 | 24.51 | 27.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boixereu-Vila, E.; Adánez-Sanjuán, P.; Jiménez-Martínez, R.; Fernández-Leyva, C.; Gómez-Limón, D. Recovery of Tetrahedrite from Mining Waste in Spain. Minerals 2025, 15, 703. https://doi.org/10.3390/min15070703
Boixereu-Vila E, Adánez-Sanjuán P, Jiménez-Martínez R, Fernández-Leyva C, Gómez-Limón D. Recovery of Tetrahedrite from Mining Waste in Spain. Minerals. 2025; 15(7):703. https://doi.org/10.3390/min15070703
Chicago/Turabian StyleBoixereu-Vila, Ester, Paula Adánez-Sanjuán, Ramón Jiménez-Martínez, Concepción Fernández-Leyva, and Dulce Gómez-Limón. 2025. "Recovery of Tetrahedrite from Mining Waste in Spain" Minerals 15, no. 7: 703. https://doi.org/10.3390/min15070703
APA StyleBoixereu-Vila, E., Adánez-Sanjuán, P., Jiménez-Martínez, R., Fernández-Leyva, C., & Gómez-Limón, D. (2025). Recovery of Tetrahedrite from Mining Waste in Spain. Minerals, 15(7), 703. https://doi.org/10.3390/min15070703