The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift
Abstract
:1. Introduction
2. Geological Setting
3. Dataset and Methodology
4. Results
4.1. Sedimentary Facies Description and Interpretation
4.1.1. Delta Plain
Distributary Channel (FA1)
Interdistributary Bay (FA2)
4.1.2. Delta Front
Subaqueous Distributary Channel (FA3)
Mouth Bars (FA4)
Subaqueous Interdistributary Bay (FA5)
4.1.3. Saline Lake
Sand Bar (FA6)
Shallow Littoral Lake (FA7)
4.2. The Occurrence Characteristics of Gypsum
4.2.1. Layered Gypsum
4.2.2. Gypsum Clasts
4.2.3. Spotted Gypsum
4.2.4. Gypsum Nodule
4.2.5. Mixed Deposition of Clastic Rocks and Gypsum
5. Discussion
5.1. Genesis of Gypsum with Different Occurrences
5.1.1. Layered Gypsum
5.1.2. Gypsum Clasts
5.1.3. Spotted Gypsum
5.1.4. Gypsum Nodule
5.1.5. Mixed Deposition of Clastic Rocks and Gypsum
5.2. Control of Seasonal Variations on the Occurrence Characteristics of Gypsum
5.3. Control of Aridity Intensity Variations on Lithological Distribution
6. Conclusions
- (1)
- The western part of the Tabei Uplift developed a salt lake–delta sedimentary system under the influence of the Tethys Ocean transgression and persistent arid conditions.
- (2)
- Five types of gypsum occurrence are identified in the study area: layered gypsum, gypsum clasts, spotty gypsum, gypsum nodules, and a mixed deposition of clastic rocks and gypsum. These can be grouped into two genetic categories: in situ precipitation and allochthonous transport. In situ gypsum forms via chemical precipitation during evaporation. Gypsum formed through allochthonous transportation is primarily in the form of gypsum clasts. As the transport distance increases, gypsum exhibits an evolutionary sequence from tear-shaped, cloud-like, and conglomeratic-textured to flat-elliptical gypsum.
- (3)
- Seasonal variations control the development characteristics of gypsum. During the dry period, gypsum primarily forms through chemical precipitation. Evaporation in the saline lake leads to the formation of layered gypsum deposits, while gypsum precipitated from the pore water of clastic sediments can form spotty and nodular gypsum. During flood periods, enhanced surface runoff transports terrigenous clastic material into the lake, leading to a decrease in water salinity. Stronger hydrodynamics during the flood period erode previously formed gypsum layers, transporting and depositing them together with clastic materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omidpour, A.; Rahimpour-Bonab, H.; Moussavi-Harami, R.; Mahboubi, A. Anhydrite fabrics as an indicator for relative sea-level signatures in the sequence stratigraphic framework of a carbonate ramp. Mar. Pet. Geol. 2023, 155, 106400. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Z.; Maselli, V.; Fan, T. Tectono-sedimentary characteristics and controlling factors of the lower-middle Cambrian gypsum-salt rocks in the Tarim Basin, Northwest China. Mar. Pet. Geol. 2023, 151, 106189. [Google Scholar] [CrossRef]
- Buck, B.J.; Van Hoesen, J.G. Assessing the applicability of isotopic analysis of pedogenic gypsum as a paleoclimate indicator, Southern New Mexico. J. Arid Environ. 2005, 60, 99–114. [Google Scholar] [CrossRef]
- Kasprzyk, A. Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland. Sediment. Geol. 2003, 158, 167–194. [Google Scholar] [CrossRef]
- Aleali, M.; Rahimpour-Bonab, H.; Moussavi-Harami, R.; Jahani, D. Environmental and sequence stratigraphic implications of anhydrite textures: A case Omidpour from the Lower Triassic of the Central Persian Gulf. J. Asian Earth Sci. 2013, 75, 110–125. [Google Scholar] [CrossRef]
- Makhnach, A.; Shimanovich, V.; Streltsova, G.; Mikhajlov, N. Anhydrite and gypsum in the Devonian and Permian evaporite lithofacies of Belarus: A review. Geol. Q. 2014, 3, 58. [Google Scholar] [CrossRef]
- Yeşilova, G.P.; Gökmen, D. The paleodepositional environment, diagenetic and depositional conditions of the Middle-Late Miocene Koluz gypsum member (NE Van, Eastern Turkey). Carbonates Evaporites 2020, 35, 76. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, Z.; Jia, H.; Wu, X.; Yu, J.; Zhao, B.; Wei, S. Controlling factors of the gypsum-salt strata differences within two adjacent Eocene sags in the eastern Jiyang Depression, NE China and its hydrocarbon significance. Geoenergy Sci. Eng. 2023, 231, 212352. [Google Scholar] [CrossRef]
- Bain, R.J. Diagenetic, nonevaporative origin for gypsum. Geology 1990, 18, 447–450. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci. Rev. 2010, 98, 217–268. [Google Scholar] [CrossRef]
- Murray, R.C. Origin and diagenesis of gypsum and anhydrite. J. Sediment. Res. 1964, 34, 512–523. [Google Scholar]
- Ortí, F.; Rosell, L.; Anadón, P. Diagenetic gypsum related to sulfur deposits in evaporites (Libros Gypsum, Miocene, NE Spain). Sediment. Geol. 2010, 228, 304–318. [Google Scholar] [CrossRef]
- Tang, M.; Ehreiser, A.; Li, Y.L. Gypsum in modern Kamchatka volcanic hot springs and the Lower Cambrian black shale: Applied to the microbial-mediated precipitation of sulfates on Mars. Am. Mineral. 2014, 99, 2126–2137. [Google Scholar] [CrossRef]
- Babel, M. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol. Pol. 2004, 54, 219–249. [Google Scholar]
- Allwood, A.C.; Burch, I.W.; Rouchy, J.M.; Coleman, M. Morphological Biosignatures in Gypsum: Diverse Formation Processes of Messinian (∼6.0 Ma) Gypsum Stromatolites. Astrobiology 2013, 13, 870–886. [Google Scholar] [CrossRef]
- Buck, B.J.; Van Hoesen, J.G. Snowball morphology and SEM analysis of pedogenic gypsum, southern New Mexico, U.S.A. J. Arid Environ. 2002, 51, 469–487. [Google Scholar] [CrossRef]
- Taimeh, A.Y. Formation of Gypsic Horizons in Some Arid Regions Soils of Jordan. Soil Sci. 1992, 153, 486–498. [Google Scholar] [CrossRef]
- Olson, K.J.; Demicco, R.V.; Lowenstein, T.K. Seasonal dynamics of evaporite mineral precipitation, dissolution, and back-reactions in shallow and deep hypersaline lakes. Geochim. Cosmochim. Acta 2023, 351, 51–65. [Google Scholar] [CrossRef]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.; Bohaty, S.M.; De Vleeschouwer, D.; Florindo, F.; et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 2020, 36, 1383–1387. [Google Scholar] [CrossRef]
- O’Brien, C.L.; Robinson, S.A.; Pancost, R.D.; Damsté, S.J.S.; Schouten, S.; Lunt, D.J.; Alsenz, H.; Bornemann, A.; Bottini, C.; Brassell, S.C.; et al. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Sci. Rev. 2017, 172, 224–247. [Google Scholar] [CrossRef]
- Zachos, J.; Dickens, G.; Zeebe, R. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 2008, 451, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hu, X.; Han, Z.; Li, J.; Garzanti, E. Climatic and tectonic controls on Cretaceous-Palaeogene sea-level changes recorded in the Tarim epicontinental sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 501, 92–110. [Google Scholar]
- Yue, Y.; Jiang, S.; Tian, J.; Lin, X. Late Cretaceous to Early Paleocene sedimentary environment evolution: Geochemical evidences of Well PBX1 in the southwestern Tarim Basin. Geol. China 2024, 51, 592–605. [Google Scholar]
- Kaya, M.Y.; Dupont-Nivet, G.; Proust, J.N.; Bougeois, L.; Meijer, N.; Frieling, J.; Fioroni, C.; Roperch, P.; Mamtimin, M.; Aminov, J.; et al. The Cretaceous–Paleogene paleogeography of Central Asia recorded in depositional environments of the Proto-Paratethys Sea in the Tarim Basin (Western China). Eur. Geosci. Union Gen. Assem. 2017, 19, EGU2017-9973. [Google Scholar]
- Zhang, Z.; Lin, C.; Liu, Y.; Liu, J.; Zhou, H.; Li, H.; Sun, Q.; Xia, H.; Ma, M.; Liang, Y. Lacustrine to fluvial depositional systems: The depositional evolution of an intracontinental depression and controlling factors, Lower Cretaceous, northern Tarim Basin, northwest China. Mar. Pet. Geol. 2021, 126, 104904. [Google Scholar]
- Yang, Y.; Tian, J.; Zhang, X.; Li, Y.; Zhang, Y.; Xia, Q. Characteristics and Geological Significance of High-Frequency Cycles in Salinized Lake Basins: The Paleogene Kumugeliemu Group in the Xinhe Area, Northern Tarim Basin. Minerals 2023, 13, 824. [Google Scholar] [CrossRef]
- Kordi, M. Sedimentary basin analysis of the Neo-Tethys and its hydrocarbon systems in the southern Zagros fold-thrust belt and foreland basin. Earth-Sci. Rev. 2019, 19l, 1–11. [Google Scholar]
- Xi, D.; Tang, Z.; Wang, X.; Qin, Z.; Cao, W.; Jiang, T.; Wu, B.; Li, Y.; Zhang, Y.; Jiang, W.; et al. The Cretaceous- Paleogene marine stratigraphic framework that records significant geological events in the western Tarim Basin. Earth Sci. Front. 2020, 27, 165–198. [Google Scholar]
- Xu, Y.; Cao, Y.; Liu, C. Brine Temperature of Early Eocene Salt Formation Period in Kuqa Basin and Its Significance. Earth Sci. 2021, 46, 4188–4196. [Google Scholar]
- Chen, L.; Lin, C.; Li, H.; Xiang, S. Sedimentary characteristics of the lower sandstone part of Kumugeliemu group in the western Tabei uplift. J. Northeast Pet. Univ. 2017, 41, 23–32. [Google Scholar]
- Liu, J.; Lin, C.; Lai, X.; Yang, Y.; Yang, X.; Si, B. Depositional paleogeography and source rock analysis of the lower sandstone part of Eogene Kumugeliemu Group in Kuga depression. Acta Petrol. Mineral. 2008, 27, 538–546. [Google Scholar]
- Wang, Q.; Xu, Z.; Zhang, R.; Yang, H.; Yang, X. New fields, new types of hydrocarbon explorations and their resource potentials in Tarim Basin. Acta Pet. Sin. 2024, 45, 15–32. [Google Scholar]
- Huang, S.; Yang, W.; Lu, Y.; Zhang, K.; Zhao, Q.; Fan, S. Geological conditions, resource potential and exploration direction of natural gas in Tarim Basin. Nat. Gas Geosci. 2018, 29, 1497–1505. [Google Scholar]
- An, H.; Li, H.; Wang, J.; Du, X. Tectonic Evolution and lts Controlling on Oil and Gas Accumulation in the Northern Tarim Basin. Geotecton. Metallog. 2009, 33, 142–147. [Google Scholar]
- Xu, G.; Liu, S.; Li, G.; Wu, H.; Yan, X. Comparison of tectonic evolutions and petroleum geological conditions in Tazhong and Tabei palaeohighs in Tarim Basin. Oil Gas Geol. 2005, 26, 114–119. [Google Scholar]
- Wu, G.; Li, Q.; Xiao, Z.; Li, H.; Zhang, L.; Zhang, X. The Evolution Characteristics of Palaeo-Uplifts in Tarim Basin and lts Exploration Directions for Oil and Gas. Geotecton. Metallog. 2009, 33, 124–130. [Google Scholar]
- Liu, C. Geochemistry Characteristic and Origin of Paleogene Dolomite in Kuqa Depression, Tarim Basin. Acta Sedimentol. Sin. 2010, 28, 518–524. [Google Scholar]
- Cao, Y. Marine transgressive–regressive cycles and evolution on ancient salt lake in the northwestern Tarim Basin in the Paleocene, Xinjiang Province, China. Carbonates Evaporites 2022, 37, 21. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, Z.; Feng, J.; Li, X.; Guo, M. Triassic-Neogene Heavy Minerals’ Assemblages Characteristics and Basin-Orogen Tectonic Evolution Relationship in the Kuqa Foreland Basin. Acta Sedimentol. Sin. 2014, 32, 68–77. [Google Scholar]
- Wu, J.; Zhu, C.; Yang, G.; Zhang, J.; Gong, Q.; Song, Y. High-resolution sequence stratigraphy characteristics and sedimentary facies evolution of thin sands under high-frequency lake level change: A case study of lower sand Member of Paleogene Kumugeliemu Group in margin of Wensu Uplift-Yingmaili Uplift area. Pet. Geol. Recovery Effic. 2020, 27, 38–46. [Google Scholar]
- Miall, A.D. Architectural elements and bounding surfaces in fluvial deposits: Anatomy of the Kayenta Formation (lower Jurassic), Southwest Colorado. Sediment. Geol. 1988, 55, 233–262. [Google Scholar] [CrossRef]
- Andrews, P.B. Deltaic sediments, Upper Triassic Torlesse Supergroup, Broken River, North Canterbury. N. Zeal. J. Geol. Geophys. 1974, 17, 881–905. [Google Scholar] [CrossRef]
- Strohmenger, C.J.; Al-Mansoori, A.; Al-Jeelani, O.; Al-Shamry, A.; Al-Hosani, I.; Al-Mehsin, K.; Shebl, H. The sabkha sequence at Mussafah Channel (Abu Dhabi, United Arab Emirates): Facies stacking patterns, microbial-mediated dolomite and evaporite overprint. GeoArabia 2010, 15, 49–90. [Google Scholar] [CrossRef]
- Mary, J.; Stephen, K.; Hasiotis, T. Significance of Different Modes of Rhizolith Preservation to Interpreting Paleoenvironmental and Paleohydrologic Settings: Examples from Paleogene Paleosols, Bighorn Basin, Wyoming, U.S.A. J. Sediment. Res. 2006, 76, 633–646. [Google Scholar]
- Mahmoud, A.M.A. Classification and depositional environments of Quaternary pedogenic gypsum crusts (gypcrete) from east of the Fayum Depression, Egypt. Sediment. Geol. 2003, 155, 87–108. [Google Scholar]
- Jopling, A.V. Hydraulic studies on the origin of bedding. Sedimentology 1963, 2, 115–121. [Google Scholar] [CrossRef]
- Jain, S. Fundamentals of Sedimentology; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Wang, J.; Hu, Z.; Li, S.; Cai, Q.; Guo, Y.; Zuo, Y.; Pang, Y. Distribution characteristics and sedimentary model of gypsum-bearing evaporite of the Middle Cambrian Gaotai Formation in the eastern Sichuan Basin. Arab. J. Geosci. 2022, 15, 1056. [Google Scholar] [CrossRef]
- Cai, Q.; Hu, M.; Liu, Y.; Kane, O.; Deng, Q.; Hu, Z.; Li, H.; Ngia, N. Sedimentary characteristics and implications for hydrocarbon exploration in a retrograding shallow-water delta: An example from the fourth Member of the Cretaceous Quantou Formation in the Sanzhao depression, Songliao Basin, NE China. Pet. Sci. 2022, 19, 929–948. [Google Scholar] [CrossRef]
- Fan, Q.; Fan, T.L.; Li, Q.P.; Du, Y.; Zhang, Y.; Yuan, Y. Sedimentary characteristics and development model of Cambrian gypsum-salt rocks in Tarim Basin. Pet. Geol. Exp. 2021, 43, 217–226. [Google Scholar]
- Brian, G.J.; Brian, R.R. Massive sandstone facies in the Hawkesbury Sandstone, a Triassic fluvial deposit near Sydney, Australia. J. Sediment. Res. 1983, 53, 1249–1259. [Google Scholar]
- Alonso-Zarza, A.M.; Zhao, Z.; Song, C.H.; Li, J.J.; Zhang, J.; Martín-Pérez, A.; Martín-García, R.; Wang, X.X.; Zhang, Y.; Zhang, M.H. Mudflat/distal fan and shallow lake sedimentation (upper Vallesian–Turolian) in the Tianshui Basin, Central China: Evidence against the late Miocene eolian loess. Sediment. Geol. 2009, 222, 42–51. [Google Scholar] [CrossRef]
- Dolores, A.V.D.K.; Peter, P.F.; Stephen, T.H. Paleoenvironmental Reconstruction of A Late Cretaceous, Muddy, River-Dominated Polar Deltaic System: Schrader Bluff–Prince Creek Formation Transition, Shivugak Bluffs, North Slope of Alaska, U.S.A. J. Sediment. Res. 2015, 85, 903–936. [Google Scholar]
- Allen, J.R.L. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 1965, 5, 89–191. [Google Scholar]
- Buatois, L.A.; Santiago, N.; Herrera, M.; Plink-Björklund, P.; Steel, R.; Espin, M.; Parra, K. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentology 2012, 59, 1568–1612. [Google Scholar] [CrossRef]
- Greenwood, B. Bimodal Cross-Lamination in Wave-Ripple Form Sets: A Possible Origin. J. Coast. Res. 2006, 225, 1220–1229. [Google Scholar]
- Niu, T.; Hu, G.; Fan, T.; Wang, H.; Hu, X. The Mixed Clastic-Carbonate Sedimentation Model in Shujiutuo Area, Bohai Bay Basin. Adv. Geosci. 2019, 9, 9. [Google Scholar] [CrossRef]
- Mu, C.; Zhou, H.; Chen, A.; Hou, M. Mixed siliciclastic—Carbonate: Progress and new idea of classification. Acta Sedimentol. Sin. 2025, 1–17. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Z.D.; Dou, L.; Zang, D.; Mao, D.; Song, J.; Zhao, J.; Wang, Z. Sedimentary characteristics and pattern of distributary channels in shallow water deltaic red bed succession: A case from the Late Cretaceous Yaojia Formation, southern Songliao Basin, NE China. J. Pet. Sci. Eng. 2018, 171, 1171–1190. [Google Scholar]
- Gugliotta, M.; Flint, S.S.; Hodgson, D.M.; Veiga, G.D. Stratigraphic Record of River-Dominated Crevasse Subdeltas with Tidal Influence (Lajas Formation, Argentina). J. Sediment. Res. 2015, 85, 265–284. [Google Scholar] [CrossRef]
- Yannick, C.; André, L. The transformation of ferrihydrite into goethite or hematite, revisited. J. Solid State Chem. 2006, 179, 716–722. [Google Scholar]
- Zhang, L.; Bao, Z.; Lin, Y.; Chen, Y.; Lin, X.; Dou, L.; Kong, B. Genetic types and sedimentary model of sandbodies in a shallow-water delta: A case study of the first Member of Cretaceous Yaojia Formation in Qian’an area, south of Songliao Basin, NE China. Pet. Explor. Dev. 2017, 44, 770–779. [Google Scholar] [CrossRef]
- Deng, Q.; Hu, M.; Wu, Y.; Huang, M.; Lu, K.; Cai, Q. Lacustrine to deltaic depositional systems: Sedimentary evolution and controlling factors of an Upper Cretaceous continental depression and implications for petroleum exploration. Mar. Pet. Geol. 2025, 173, 107234. [Google Scholar] [CrossRef]
- Weinberger, R. Initiation and growth of cracks during desiccation of stratified muddy sediments. J. Struct. Geol. 1999, 21, 379–386. [Google Scholar] [CrossRef]
- Wei, Z.; Li, S.; Zhang, T.; Liu, Y.; Yao, Z.; Xu, W.; Li, H. The delta-fluvial evolution of a lacustrine basin with gentle slope and low sedimentation rate: A case study of the Fudong Slope, Junggar Basin, Northwest China. Sediment. Geol. 2023, 453, 106441. [Google Scholar] [CrossRef]
- Niu, X.; Yang, T.; Cao, Y.; Li, S.; Zhou, X.; Xi, K.; Dodd, T.J.H. Characteristics and formation mechanisms of gravity-flow deposits in a lacustrine depression basin: Examples from the Late Triassic Chang 7 oil member of the Yanchang Formation, Ordos Basin, Central China. Mar. Pet. Geol. 2023, 148, 106048. [Google Scholar] [CrossRef]
- Miall, A.D. The Geology of Fluvial Deposits; Springer: Berlin, Germany, 1996. [Google Scholar]
- Soma, B.; Luca, C.; Mountney, N.P. Quantitative characterization of the sedimentary architecture of Gilbert-type deltas. Sediment. Geol. 2021, 426, 106022. [Google Scholar]
- Li, Y.; Bhattacharya, J. Facies architecture of asymmetrical branching distributary channels: Cretaceous Ferron Sandstone, Utah, USA. Sedimentology 2014, 61, 1452–1483. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Liu, C.; Feng, Z.; Niu, Y.; Wang, G.; Liu, H.; Liu, W.; Liu, J. Sedimentary and ichonology characteristics of continental shelf-edge delta of Zhuiang Formation in Baiyun Sag, Pearl River Mouth Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2020, 44, 152–162. [Google Scholar]
- Tesi, T.; Miserocchi, S.; Goñi, M.A.; Turchetto, M.; Langone, L.; Lazzari, A.D.; Albertazzi, S.; Correggiari, A. Influence of distributary channels on sediment and organic matter supply in event-dominated coastal margins: The Po prodelta as a study case. Biogeosciences 2011, 8, 365–385. [Google Scholar] [CrossRef]
- Cappelle, M.V.; Ravnås, R.; Hampson, G.J.; Johnson, H.D. Depositional evolution of a progradational to aggradational, mixed-influenced deltaic succession: Jurassic Tofte and Ile Formations, southern Halten Terrace, offshore Norway. Mar. Pet. Geol. 2017, 80, 1–22. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Slingerland, R.L. Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Ponce, J.J.; Carmona, N.; Jait, D.; Cevallos, M.; Rojas, C. Sedimentological and ichnological characterization of delta front mouth bars in a river-dominated delta (Upper Cretaceous) from the La Anita Formation, Austral Basin. Argentina. Sedimentology 2024, 71, 27–53. [Google Scholar] [CrossRef]
- Van, Y.A.E.; Poyatos-Moré, M.; Holbrook, J.M.; Midtkandal, I. Internal mouth-bar variability and preservation of subordinate coastal processes in low-accommodation proximal deltaic settings (Cretaceous Dakota Group, New Mexico, USA). Depos. Rec. 2020, 6, 431–458. [Google Scholar]
- Xi, D.; Wan, X.; Jansa, L.; Zhang, Y. Late Cretaceous paleoenvironment and lake level fluctuation in the Songliao Basin, northeastern China. Isl. Arc 2015, 20, 6–22. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Shan, X.; Gong, C.; Yu, X. Classification, formation, and transport mechanisms of mud clasts. Int. Geol. Rev. 2017, 59, 1609–1620. [Google Scholar] [CrossRef]
- Lei, C.; Song, X.; Gao, X.; Wang, R.; Zhai, G.; Xu, Q.; Feng, W.; Yin, Y. Formation process and internal architecture of wave dominated beach-bar along the lake shore: Insights from a flume experiment. Arab. J. Geosci. 2021, 14, 2043. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, J.; Huang, H.; Peng, W.; Liu, Z.; Chen, J. Beach bar genesis of the lower member of Xingouzui Formation in the southern slope zone of Jiangling sag, Jianghan Basin, and its controlling factors. China Pet. Explor. 2016, 21, 92–98. [Google Scholar]
- Zhang, C.; Han, J.; Ji, Y.; Zhou, Y.; Su, R.; Wang, S.; Yin, J.; Zhang, S.; Tang, L.; Liu, J. Distribution characteristics and stacking patterns of sandbodies in the continental lacustrine fan delta-beach dam system: A case study from submember 3 upper of Paleogene Shahejie Formation in Liuxi area, Raoyang Sag, Bohai Bay Basin. Nat. Gas Geosci. 2020, 31, 518–531. [Google Scholar]
- Bruckner, W.D. Cyclic Calcareous Sedimentation as an Index of Climatic Variations in the Past. SEPM J. Sediment. Res. 1953, 23, 235–237. [Google Scholar]
- Zhang, H.; Liu, C.; Cao, Y.; Sun, H.; Wang, L. A Tentative Discussion on the Time and the Way of Marine Regression from Tarim Bay during the Cenozoic. Acta Geosci. Sin. 2013, 34, 577–584. [Google Scholar]
- Luo, L.; Guo, J.; Hu, C.; Lin, H.; Quaye, J.A.; Zhou, X.; Han, B. Sedimentary characteristics and development model of the bedded evaporites in the Paleogene Kumugeliemu formation, Kuqa depression, Northwestern China. Carbonates Evaporites 2024, 39, 68. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, H.; Guo, J.; Yao, W.; Zhang, T.; Zhou, X.; Luo, L. Depositional model and petroleum significance of the Cretaceous Yageliemu Formation in Xinhe area on the southern slope of Kuqa Depression, Tarim Basin. Pet. Geol. Exp. 2023, 45, 266–279. [Google Scholar]
- Hardie, L.A.; Smoot, J.P.; Eugster, H.P. Saline Lakes and their Deposits: A Sedimentological Approach. In Modern & Ancient Lake Sediments; John Wiley & Sons: Hoboken, NJ, USA, 1978; pp. 7–41. [Google Scholar]
- Mohammadi, A.; Lak, R.; Schwamborn, G.; Firouz, A.K.; Çiner, A.; Khatouni, J.D. Depositional Environments and Salt-thickness Variations in Urmia Lake (NW IRAN): Insight from Sediment-core Studies. J. Sediment. Res. 2021, 91, 296–316. [Google Scholar] [CrossRef]
- Warren, J.K.; Kendall, C.G.S.T.C. Comparison of Sequences Formed in Marine Sabkha (Subaerial) and Salina (Subaqueous) Settings—Modern and Ancient. AAPG Bull. 1985, 69, 1013–1023. [Google Scholar]
- Hardie, L.A.; Eugster, H.P. The depositional environment of marine evaporites: A case for shallow, clastic accumulation. Sedimentology 2010, 16, 187–220. [Google Scholar] [CrossRef]
- Baria, L.R. Desiccation features and the reconstruction of paleosalinities. J. Sediment. Res. 1977, 47, 908–914. [Google Scholar]
- Kadkhodaie, R.; Sohrabi, A.; Jodeyri-Agaii, R. A syngenetic classification of anhydrite textures in carbonate reservoirs and its relationship with reservoir quality: A case study from the Permo-Triassic Dalan and Kangan formations. Carbonates Evaporites 2022, 37, 44. [Google Scholar] [CrossRef]
- Hussain, M.; Warren, J.K. Nodular and enterolithic gypsum: The “sabkha-tization” of Salt Flat playa, west Texas. Sediment. Geol. 1989, 64, 13–24. [Google Scholar] [CrossRef]
- Elorza, M.G.; Santolalla, F.G. Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain). Geoderma 1998, 87, 1–29. [Google Scholar] [CrossRef]
- Deng, W.; Tan, X.; Zhang, D.; Zhong, S. Occurrence types and genesis of anhydrite from the Ma5 submember of Ordovician Majiagou Formation in central and eastern Ordos Basin. J. Palaeogeogr. (Chin. Ed.) 2022, 24, 226–244. [Google Scholar]
- Machel, H.G.; Burton, E.A. Burial-diagenetic sabkha-like gypsum and anhydrite nodules. J. Sediment. Res. 1991, 61, 394–405. [Google Scholar]
- Warren, J.K. Evaporites: Sediments, Resources and Hydrocarbons; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Smoot, J.P.; Lowenstein, T.K. Depositional environments of non-marine evaporites. In Developments in Sedimentology; Melvin, J.L., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 50, pp. 189–347. [Google Scholar]
- Sanz-Rubio, E.; Hoyos, M.; Calvo, J.P.; Rouchy, J.M. Nodular anhydrite growth controlled by pedogenic structures in evaporite lake formations. Sediment. Geol. 1999, 125, 195–203. [Google Scholar] [CrossRef]
- Hu, G.; Li, G.; Wei, X.; Li, Y. Lithofacies Paleogeography Research on Ordovician Majiagou 54 Sub-member in the West Jingbian Platform. Acta Sedimentol. Sin. 2017, 35, 527–539. [Google Scholar]
- Warren, J.K. The hydrological setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia. Sedimentology 1982, 29, 609–637. [Google Scholar] [CrossRef]
- Sera1, A.S.B.; Alzughoul, K.A. The Depositional Environment: Diagenetic and Depositional Settings of Gypsum Deposits from Bi’r El Ghanem, NW Libya. J. Geol. Geophys. 2021, 10, 2455–6211. [Google Scholar]
- Ooi, D.S.M. Origin and Early Diagenesis of Evaporites in a Coastal Sab-Kha; University of Bristol: Bristol, UK, 2019. [Google Scholar]
- Calvo, J.P.; Jones, B.F.; Bustillo, M.; Fort, R.; Alonso Zarza, A.M.; Kendall, C. Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, central Spain. Chem. Geol. 1995, 123, 173–191. [Google Scholar] [CrossRef]
- Maestro, E. Sedimentary evolution of the Late Eocene Vernet lacustrine system (South-Central Pyrenees). Tectono-climatic control in an alluvial-lacustrine piggyback basin. J. Paleolimnol. 2008, 40, 1053–1078. [Google Scholar] [CrossRef]
- Vai, G.B.; Lucchi, F.R. Algal crusts, autochthonous and clastic gypsum in a cannibalistic evaporite basin: A case history from the Messinian of Northern Apennines. Sedimentology 1977, 24, 211–244. [Google Scholar] [CrossRef]
- Mees, F.; Casteñeda, C.; Herrero, J.; Ranst, E.V. The Nature and Significance of Variations In Gypsum Crystal Morphology In Dry Lake Basins. J. Sediment. Res. 2012, 82, 37–52. [Google Scholar] [CrossRef]
- Valero-Garcés, B.L.; Kelts, K.R. A sedimentary facies model for perennial and meromictic saline lakes: Holocene Medicine Lake Basin, South Dakota, USA. J. Paleolimnol. 1995, 14, 123–149. [Google Scholar] [CrossRef]
- Burne, R.V.; Ferguson, J. Contrasting marginal sediments of a seasonally flooded saline lake—Lake Eliza, South Australia: Significance for oil shale genesis. BMR J. Aust. Geol. Geophys. 1983, 8, 99–108. [Google Scholar]
- Benison, K.C.; Goldstein, R.H. Evaporites and siliciclastics of the Permian Nippewalla Group of Kansas, USA: A case for non-marine deposition in saline lakes and saline pans. Sedimentology 2001, 48, 165–188. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, X.; Luo, P.; Wang, L.; Luo, Z.; Liu, L. Shallow-lacustrine sand-rich deltaic depositional cycles and sequence stratigraphy of the Upper Triassic Yanchang Formation, Ordos Basin, China. Basin Res. 2010, 22, 108–125. [Google Scholar]
- Marcello, G.; Colleen, E.K.; Robert, W.D.; Stephen, S.F.; David, M.H. Decoupling seasonal fluctuations in fluvial discharge from the tidal signature in ancient deltaic deposits: An example from the Neuquén Basin, Argentina. J. Geol. Soc. 2015, 173, 94–107. [Google Scholar]
- Flemming, B.W. Langebaan lagoon: A mixed carbonate-siliciclastic tidal environment in a semi-arid climate. Sediment. Geol. 1977, 18, 61–95. [Google Scholar] [CrossRef]
Code | Lithology | Sedimentary Structure | Sedimentary Interpretation |
---|---|---|---|
Mm | Gray-green and brown-red mudstone, silty mudstone | Massive structure, gypsum nodules. | A stable hydrodynamic environment with relatively poor drainage conditions [42], gradually leading to the formation of gypsum nodules as evaporation proceeds [43]. |
Mmc | Brown-red mudstone, silty mudstone | Massive structure, dry cracking phenomenon. | An exposed environment with relatively poor drainage conditions, where the surface of the sediment undergoes shrinkage due to water loss during evaporation [44]. |
Mgc | Gray-green and brown-red mudstone | Developed gypsum nodules and mud clasts. | Hydrodynamic conditions are weak, but wave and flood events frequently cause gypsum fragmentation and transport, often accompanied by small mud clasts [45]. |
Mh | Gray-green, brown-red mudstone, silty mudstone | Horizontal bedding, biogenic disturbance structures. | Fine-grained sediments result from vertical accretion in a still-water environment, with biological activity potentially disrupting the original sedimentary structures [46]. |
Mw | Gray-green, brown-red mudstone, silty mudstone | Asymmetric wavy bedding. | Formed by the forward motion of unidirectional flow [47]. |
MG | Gray-green gypsiferous mudstone, muddy gypsum | Gypsum and mudstone are mixed in the sediment, with no distinct boundary between them. | In a weak hydrodynamic environment, terrigenous fine-grained materials are transported to the depositional area, where they deposit alongside gypsum formed by salt lake evaporation [48]. |
Msb | Gray-green, brown-red mudstone, silty mudstone | Sandy bands. | Under stable hydrodynamic conditions, river and wave influence brought in small amounts of sandy sediments [49]. |
Gm | White gypsum | Massive structure with layered gypsum distribution; may also display features such as dry cracking and network patterns. | In closed or semi-closed water bodies, intense evaporation leads to calcium sulfate supersaturation and crystallization [50]. |
Mgs | Gray-green, brown-red mudstone | Spotted gypsum. | Often formed during the unconsolidated stage, gypsum crystals are formed in mud-rich sediments through evaporation and crystallization of pore water rich in Ca2+ and SO42− [6]. |
Sgs | Brown fine-grained sandstone | Spotted gypsum. | Formed through evaporation and crystallization of brine in the pores [6]. |
Sm | Brown fine-grained sandstone | Massive structure. | Sediments undergo rapid deposition in the high-flow regime of upstream fluids [51]. |
Se | Brown fine-grained sandstone | Erosional base; lag deposit, rip-up mud clast, muddy clasts, or gypsum lumps. | During flood events, mudstone or gypsum deposits undergo reworking, transforming into lag deposits at the base of the distributary channels [52]. |
Sp | Brown, grayish-green fine-grained sandstone | Parallel lamination. | Formed by flowing water under high-energy hydrodynamic conditions [53]. |
Sc | Brown, grayish-green fine-grained sandstone. | Trough cross-bedding; planar cross-bedding. | Migration of sand bar forms in distributary channels [54]. |
Sh | Brown fine sandstone | Hyperpycnal flow. | During flood events, hyperpycnal flows are triggered by turbid river water denser than ambient lake water [32]. |
Smb | Brown fine-grained sandstone | Muddy bands, bioturbation structures. | Formed by periodic changes in flow energy; during low-energy conditions, reduced sedimentation rates favor biological activity, which can disrupt the original sedimentary structures [55]. |
Sr | Brown, gray-green fine-grained sandstone. | Ripple cross-bedding. | Unidirectional ripple migration under low flow conditions [54]. |
Sw | Brown fine-grained sandstone | Wave-formed ripple cross-lamination. | It results from prolonged wave action and fluctuating hydrodynamic conditions [56]. |
Sg | Light beige sandy gypsum | Sandy clasts mixed with gypsum. | In a high-salinity water environment, under the influence of strong hydrodynamic transport, clastic materials and gypsum are deposited together [57,58]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; He, W.; Dou, L.; Yan, J.; Sun, Q.; Yi, Z.; Li, B. The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift. Minerals 2025, 15, 639. https://doi.org/10.3390/min15060639
Gao X, He W, Dou L, Yan J, Sun Q, Yi Z, Li B. The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift. Minerals. 2025; 15(6):639. https://doi.org/10.3390/min15060639
Chicago/Turabian StyleGao, Xiaoyang, Wenxiang He, Luxing Dou, Jingwen Yan, Qi Sun, Zhenli Yi, and Bin Li. 2025. "The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift" Minerals 15, no. 6: 639. https://doi.org/10.3390/min15060639
APA StyleGao, X., He, W., Dou, L., Yan, J., Sun, Q., Yi, Z., & Li, B. (2025). The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift. Minerals, 15(6), 639. https://doi.org/10.3390/min15060639