Magmatic Telescoping as a Reflection of the Shift in Geodynamic Circumstances and Patterns of Formation of Gold Ore Manifestations in the Example of the Uskalin Granitoid Massif (Russia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Petrographic Features of the Uskalin Massif
3.2. Age of Granitoids of the Uskalin Massif
3.3. Geochemical Characteristics of Granitoids of the Uskalin Massif
4. Discussion
5. Conclusions
- The structure of the Uskalin massif includes rocks that accompany all geodynamic stages of the evolution of the EF MOOB, namely the initial stage of subduction, the main stage of subduction, and the collisional stage. The massif is a product of telescoped magmatic events that occurred in the framing of the EF MOOB in the Late Mesozoic.
- Analysis of the distribution of geochemical gold fields within the EF MOOB framework indicates an increased concentration of this element within the areas of telescoping of the rocks of complexes formed in supra-subduction and collisional settings.
- The intrusion of rocks of the bimodal complex at the end of the Early Cretaceous (119–97 Ma) in a collisional setting contributed to the redistribution of metals that were present in a dispersed or diffuse state in supra-subduction formations. This contributed to their further increased concentration.
- Such a sequence is noted within those objects where the rocks of the bimodal complex are marked by the “adakite signature”. This fact can be considered one of the search criteria for the discovery of epithermal gold ore objects.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouysse, P. Geological Map of the World, Scale 1:50,000,000. 2009. Available online: http://www.ccgm.org (accessed on 16 April 2025).
- Sokolov, S.V. Structures of Anomalous Geochemical Fields and Mineralization Forecast; Nauka: St. Petersburg, Russia, 1998; p. 131. [Google Scholar]
- Derbeko, I.M.; Vyunov, D.L. Distribution of gold and silver mineralization in the territory of the Amur region (Russia) according to geochemical prospecting data and its role in geodynamic reconstructions. In Book Gold of Siberia and the Far East; Buryat Scientific Center SB RAS: Ulan-Ude, Russia, 2004; pp. 69–71. [Google Scholar]
- Derbeko, I.M.; Vyunov, D.L.; Bortnikov, N.S. The role of interaction of plume and plate tectonics mechanisms in the formation of gold-silver mineralization of the Upper Amur region (Russia) in the Late Mesozoic. Geol. Miner. Resour. Sib. 2014, 3, 14–17. [Google Scholar]
- Poletika, I.A. General properties of gold deposits. Min. J. 1866, 1–10. (In Russian) [Google Scholar]
- Kravchinsky, V.A.; Cogné, J.-P.; Harbert, W.P.; Kuzmin, M.I. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys. J. Inter. 2002, 148, 34–57. [Google Scholar] [CrossRef]
- Xiao, W.J.; Kusky, T. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction. Gondwana Res. 2009, 16, 167–169. [Google Scholar] [CrossRef]
- Metelkin, D.V.; Vernikovsky, V.A.; Kazansky, A.Y.; Wingate, M.T.D. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Res. 2010, 18, 400–419. [Google Scholar] [CrossRef]
- Derbeko, I.M. Bimodal volcano-plutonic complexes in the frames of Eastern member of Mongol-Okhotsk orogenic belt, as a proof of the time of final closure of Mongol-Okhotsk basin. In Book Up-Dates in Volcanology—A Comprehensive Approach to Volcanological Problems, Francesco Stoppa; InTech: Rijeka, Croatia, 2012; Chapter 5; pp. 99–124. [Google Scholar]
- Shevchenko, B.F.; Popeko, L.I.; Didenko, A.N. Tectonics and evolution of the lithosphere of the eastern fragment of the MongolOkhotsk orogenic belt. Geodyn. End Tectonoph. 2014, 5, 667–682. [Google Scholar] [CrossRef]
- Van der Voo, R.; van Hinsbergen, D.J.J.; Domeier, M.; Spakman, W.; Torsvik, T.H. Latest Jurassic–earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis. Geol. Soc. Am. Spec. Pap. 2015, 513, 589–606. [Google Scholar] [CrossRef]
- Ren, Q.; Wu, H.; Zhao, H. Further paleomagnetic results from the ~155 Ma Tiaojishan Formation, Yanshan Belt, North China, and their implications for the tectonic evolution of the Mongol-Okhotsk suture. Gondwana Res. 2016, 35, 180–191. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, S.; Wu, Y.; Yang, T.; Gao, Y.; Turbold, S.; Zhao, H.; Wu, H.; Li, H.; Fu, H.; et al. New late Jurassic to early Cretaceous paleomagnetic results from North China and southern Mongolia and their implications for the evolution of the Mongol-Okhotsk suture. J. Geophys. Res. Solid Earth 2018, 123, 10370–10398. [Google Scholar] [CrossRef]
- Derbeko, I.; Kichanova, V. Post-Mesozoic Evolution of the Eastern Flank of the Mongol–Okhotsk Orogenic Belt. In Advances in Geophysics, Tectonics and Petroleum Geosciences; CAJG 2019; Springer: Cham, Switzerland, 2021; Volume 4, pp. 577–581. [Google Scholar] [CrossRef]
- Melnikov, V.D.; Melnikov, A.V.; Kovtanyuk, G.P. Gold Placers of the Amur Region; Dementienko, A.I., Ed.; Pabl. Hause Amur State Univer: Blagoveshchensk, Russia, 2006; p. 295. [Google Scholar]
- Vetluzhskikh, V.G. Regularities of Placement, Conditions of Formation and Prospects for Discovery of Gold Placers in the South of the Aldan Shield and in the Stanovoy Folded Region. Ph.D. Thesis, Far Eastern Scientific Center of the USSR Academy of Sciences, Vladivostok, Russia, 1972. [Google Scholar]
- Derbeko, I.M.; Chugaev, A.V. Late Mesozoic adakite granites of the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt: Material composition and geodynamic conditions of formation. Geodyn. End Tectonoph. 2020, 11, 474–490. [Google Scholar] [CrossRef]
- Derbeko, I.M. Late Mesozoic Granitoid Magmatism in the Evolution of the Eastern Flank of the Mongol-Okhotsk Orogenic Belt (Russia). Minerals 2022, 12, 1374. [Google Scholar] [CrossRef]
- Derbeko, I.M.; Vyunov, D.L.; Kozyrev, S.K.; Ponomarchuk, V.A. Conditions for the formation of a bimodal volcano-plutonic complex, within the southern margin on the eastern flank of the Mongol-Okhotsk orogenic belt. In Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny; Siberian Research Institute of Geology, Geophysics and Mineral Resources: Novosibirsk, Russia, 2009; pp. 73–75. [Google Scholar]
- Zhang, K.-J.; Yan, L.-L.; Ji, C. Switch of NE Asia from extension to contraction at the mid-Cretaceous: A tale of the Okhotsk oceanic plateau from initiation by the Perm Anomaly to extrusion in the Mongol–Okhotsk ocean? Earth-Sci. Rev. 2019, 198, 102941. [Google Scholar] [CrossRef]
- Stricha, V.E. U-PB isotope age (shrimp-ii) of granitoids of a magdagachinsky complex of the Umlekano-Ogodzhinsky vulkano-plutonic zone. Bull. Amur State Univer. Russ. 2016, 75, 73–74. [Google Scholar]
- Kozyrev, S.K.; Volkova, Y.R.; Ignatenko, N.N. State Map of the Russian Federation-Scale 1:200,000; Chepygin, V.E., Ed.; Series Zeya; Sheet N-51-XXIII; Explanatory Note; Moscow Branch of FSBI “VSEGEI”: Moscow, Russia, 2016. [Google Scholar]
- Khubanov, V.B.; Buyantuev, M.D.; Tsygankov, A.A. U-Pb isotope dating of zircons from PZ-MZ igneous complexes of Transbaikalia by magnetic sector mass spectrometry with laser sampling: Procedure for determination and comparison with SHRIMP data. Geol. Geoph. 2016, 57, 241–258. [Google Scholar]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Mineralogical Association of Canada short course series; Sylvester, P.J., Ed.; Mineralogical Association of Canada: Quebec, QC, Canada, 2008; Volume 40, pp. 204–207. [Google Scholar]
- Ludwig, K.R. Isoplot 3.6: Berkeley Geochronology Center. Spec. Publ. 2008, 4, 77. [Google Scholar]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Public. Lond. Engl. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivations of some modern are magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Ma, Q.; Zheng, J.P.; Xu, Y.G.; Griffin, W.L.; Zhang, R.S. Are continental “adakites” derived from thickened or foundered lower crust? Earth. Planet. Sci. Lett. 2015, 419, 125–133. [Google Scholar] [CrossRef]
- Martin, H. The mechanisms of petrogenesis of the Archaean continental crust—Comparison with modern processes. Lithos 1993, 46, 373–388. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Barbarian, B. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geol. J. 1990, 25, 227–238. [Google Scholar] [CrossRef]
- Pearce, J. Sources and settings of granitic rocks. Episodes 1996, 24, 956–983. [Google Scholar] [CrossRef]
- Velicoslavinsky, S.D. Geochemical typification of acid magmatic rocks of leading geodynamical situations. Petrology 2003, 26, 363–380. [Google Scholar]
- Eirish, I.V. Metallogeny of Golg of Priamurye (Amur Region, Russia); Stepanov, V.A., Ed.; Dalnauka: Vladiostok, Russia, 2002; pp. 97–121. [Google Scholar]
- Sorokin, A.A.; Kadashnikova, A.Y.; Ponomarchuk, A.V.; Travin, A.V.; Ponomarchuk, V.A. Age and genesis of the Pokrovskoye gold-silver deposit (Russian Far East). Geol. Geoph. 2021, 62, 165–176. [Google Scholar]
- Fersman, A.E. Izbrannye—Trudy; Publ. House of the USSR Academy of Sciences: Moscow, Russia, 1959; Volume 5, p. 858. [Google Scholar]
- Shpount, B.R. Tectonic settings of magmatism occurrence in the east of the Siberian platform in the Neogene. Geotectonics 1992, 3, 45–63. [Google Scholar]
- Arevalo, A.; Charles, R.S.; Skewes, M.A.; Zuhiga, P.H.; Floody, R. The El Teniente Megabreccia Deposit, the World’s Largest Cop-Per Deposit; Super popularly Copper and Gold Deposits. A Global Perspectives; PGS Publishing: Burnside, Australia, 2005; Volume 1, pp. 83–113. [Google Scholar]
- Vila`a, M.; Pin, T.C.; Enriquec, P.; Liesac, M. Telescoping of three distinct magmatic suites in an orogenic setting: Generation of Hercynian igneous rocks of the Albera Massif (Eastern Pyrenees). Lithos 2005, 83, 97–127. [Google Scholar] [CrossRef]
- Charles, R.; Stern, M.; Skewes, A.; Arévalo, A. Magmatic Evolution of the Giant El Teniente Cu–Mo Deposit, Central Chile Get ac-cess Arrow. J. Petrol. 2011, 52, 1591–1617. [Google Scholar] [CrossRef]
- Vezzoni, S.; Dini, A.; Rocchi, S. Reverse telescoping in a distal skarn system (Campiglia Marittima, Italy). Ore Geol. Rev. 2016, 77, 176–193. [Google Scholar] [CrossRef]
- Scaillet, B. The role of gas flushing on magma reservoir crystallization and its consequences for the growth of planetary crust. Lithos 2022, 428–429, 106811. [Google Scholar] [CrossRef]
- Mitchell, A.H.G.; Garson, M.S. Mineralization of plate boundaries. Minerals. Sci. Engng. 1976, 8, 129–169. [Google Scholar]
- Mitchell, A.H.G.; Garson, M.S. Mineral Deposits and Global Tectonic Settings (Academic Press Geology Series); Academic Press Inc.: London, UK, 1981. [Google Scholar]
- Browne, P.R.L.; Hedenquist, J.W.; Allis, R.G. Epitherminal Gold Mineralization; Belousov, V.I., Ed.; Geothermal Research Centre: Wellington, New Zealand, 1988; p. 169. [Google Scholar]
- Qiu, K.-F.; Deng, J.; Laflamme, C.; Long, Z.-Y.; Wana, R.-Q.; Moynier, F.; Yu, H.-C.; Zhang, J.-Y.; Ding, Z.-J.; Goldfarb, R. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments. Geoch. Cosmoch. Acta 2023, 343, 133–141. [Google Scholar] [CrossRef]
- Yeap, E.B. Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development. J. Southeast. Asian Earth Scienc. 1993, 8, 329–348. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, B.; McKinley, J.M.; Cooper, M.R.; Wang, L. Geology and geochemistry-based metallogenic exploration model for the eastern Tethys Himalayan metallogenic belt, Tibet. J. Geoch. Explor. 2021, 224, 106743. [Google Scholar] [CrossRef]
- Zheng, Y.; Mao, J.; Chen, Y.; Sun, W.N.P.; Yang, X. Hydrothermal ore deposits in collisional orogens. Sci. Bull. 2019, 64, 205–212. Available online: https://www.elsevier.com/locate//scib (accessed on 16 April 2025). [CrossRef] [PubMed]
№ Grains | Pb | Th | U | Th/U | 238U/ 206Pb | lσ abs | 207Pb/ 206Pb | lσ abs | Rho2 | 207Pb/ 235U | lσ abs | 207Pb/ 238U | lσ abs | Rho1 | 208Pb/ 232Th | lσ abs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
in ppm | ||||||||||||||||
Sample 2010-2 | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
04 | 10 | 177 | 530 | 0.30 | 57.5 | 0.6613 | 0.0475 | 0.0015 | 0.3 | 0.1139 | 0.0034 | 0.0174 | 0.0002 | 0.1 | 0.0049 | 0.0001 |
15 | 15 | 313 | 803 | 0.36 | 57.6 | 0.6644 | 0.0480 | 0.0013 | 0.3 | 0.1148 | 0.0031 | 0.0174 | 0.0002 | 0.2 | 0.0055 | 0.0001 |
10 | 11 | 168 | 578 | 0.27 | 56.1 | 0.6598 | 0.0482 | 0.0016 | 0.2 | 0.1185 | 0.0037 | 0.0178 | 0.0002 | 0.1 | 0.0051 | 0.0002 |
12 | 16 | 678 | 843 | 0.74 | 56.5 | 0.6391 | 0.0483 | 0.0013 | 0.3 | 0.1177 | 0.0032 | 0.0177 | 0.0002 | 0.1 | 0.0055 | 0.0001 |
14 | 8 | 159 | 458 | 0.32 | 56.5 | 0.7661 | 0.0496 | 0.0022 | 0.2 | 0.1210 | 0.0051 | 0.0177 | 0.0002 | 0.1 | 0.0053 | 0.0002 |
16 | 10 | 178 | 557 | 0.29 | 57.7 | 0.6992 | 0.0497 | 0.0016 | 0.3 | 0.1186 | 0.0037 | 0.0173 | 0.0002 | 0.1 | 0.0057 | 0.0002 |
09 | 10 | 166 | 539 | 0.28 | 56.8 | 0.6764 | 0.0498 | 0.0016 | 0.3 | 0.1209 | 0.0037 | 0.0176 | 0.0002 | 0.1 | 0.0052 | 0.0002 |
33 | 13 | 322 | 721 | 0.41 | 56.8 | 0.7408 | 0.0498 | 0.0017 | 0.2 | 0.1208 | 0.0041 | 0.0176 | 0.0002 | 0.1 | 0.0060 | 0.0002 |
11 | 8 | 319 | 454 | 0.65 | 57.0 | 0.7151 | 0.0499 | 0.0018 | 0.2 | 0.1206 | 0.0043 | 0.0175 | 0.0002 | 0.1 | 0.0056 | 0.0001 |
13 | 9 | 135 | 455 | 0.27 | 56.0 | 0.6897 | 0.0503 | 0.0017 | 0.3 | 0.1237 | 0.0040 | 0.0179 | 0.0002 | 0.1 | 0.0051 | 0.0002 |
23 | 11 | 179 | 616 | 0.26 | 56.3 | 0.6983 | 0.0503 | 0.0016 | 0.3 | 0.1230 | 0.0038 | 0.0178 | 0.0002 | 0.1 | 0.0060 | 0.0002 |
34 | 12 | 298 | 665 | 0.42 | 56.6 | 0.7678 | 0.0505 | 0.0020 | 0.2 | 0.1230 | 0.0048 | 0.0177 | 0.0002 | 0.1 | 0.0060 | 0.0002 |
29 | 6 | 98 | 325 | 0.28 | 58.0 | 0.8084 | 0.0512 | 0.0023 | 0.2 | 0.1214 | 0.0052 | 0.0172 | 0.0002 | 0.1 | 0.0056 | 0.0002 |
17 | 11 | 216 | 609 | 0.32 | 56.5 | 0.7022 | 0.0518 | 0.0018 | 0.3 | 0.1262 | 0.0043 | 0.0177 | 0.0002 | 0.1 | 0.0059 | 0.0002 |
26 | 9 | 141 | 497 | 0.26 | 56.7 | 0.7391 | 0.0519 | 0.0018 | 0.3 | 0.1261 | 0.0043 | 0.0176 | 0.0002 | 0.1 | 0.0059 | 0.0002 |
27 | 10 | 161 | 584 | 0.25 | 59.5 | 0.7795 | 0.0519 | 0.0020 | 0.2 | 0.1200 | 0.0045 | 0.0168 | 0.0002 | 0.1 | 0.0058 | 0.0002 |
05 | 9 | 210 | 502 | 0.38 | 56.5 | 0.6703 | 0.0525 | 0.0016 | 0.3 | 0.1280 | 0.0037 | 0.0177 | 0.0002 | 0.1 | 0.0056 | 0.0001 |
18 | 10 | 157 | 528 | 0.27 | 56.4 | 0.6688 | 0.0527 | 0.0016 | 0.3 | 0.1286 | 0.0039 | 0.0177 | 0.0002 | 0.1 | 0.0065 | 0.0002 |
Sampl 2010-1 | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
30 | 13 | 109 | 491 | 0.20 | 38.9 | 0.5291 | 0.2354 | 0.0065 | 0.3 | 0.8340 | 0.0221 | 0.0257 | 0.0004 | 0.2 | 0.0625 | 0.0017 |
31 | 9 | 100 | 446 | 0.21 | 50.5 | 0.6619 | 0.0519 | 0.0018 | 0.2 | 0.1418 | 0.0048 | 0.0198 | 0.0003 | 0.2 | 0.0066 | 0.0002 |
13 | 17 | 142 | 730 | 0.18 | 45.6 | 0.6232 | 0.1284 | 0.0038 | 0.3 | 0.3881 | 0.0109 | 0.0219 | 0.0003 | 0.1 | 0.0301 | 0.0008 |
32 | 8 | 61 | 343 | 0.16 | 46.9 | 0.6392 | 0.1002 | 0.0033 | 0.3 | 0.2940 | 0.0093 | 0.0213 | 0.0003 | 0.2 | 0.0211 | 0.0007 |
29 | 27 | 295 | 1282 | 0.21 | 50.1 | 0.6263 | 0.0487 | 0.0014 | 0.2 | 0.1342 | 0.0039 | 0.0200 | 0.0003 | 0.2 | 0.0061 | 0.0002 |
33 | 18 | 260 | 862 | 0.28 | 49.8 | 0.6442 | 0.0528 | 0.0017 | 0.2 | 0.1461 | 0.0046 | 0.0201 | 0.0003 | 0.2 | 0.0062 | 0.0002 |
19 | 7 | 76 | 318 | 0.22 | 49.6 | 0.6157 | 0.0510 | 0.0023 | 0.2 | 0.1416 | 0.0063 | 0.0202 | 0.0003 | 0.1 | 0.0064 | 0.0003 |
28 | 27 | 288 | 1293 | 0.20 | 49.1 | 0.6278 | 0.0562 | 0.0017 | 0.3 | 0.1575 | 0.0048 | 0.0204 | 0.0003 | 0.2 | 0.0069 | 0.0002 |
25 | 28 | 321 | 1313 | 0.22 | 48.8 | 0.5716 | 0.0605 | 0.0015 | 0.3 | 0.1708 | 0.0041 | 0.0205 | 0.0002 | 0.2 | 0.0091 | 0.0002 |
02 | 16 | 249 | 752 | 0.30 | 49.4 | 0.5365 | 0.0483 | 0.0013 | 0.3 | 0.1348 | 0.0036 | 0.0203 | 0.0002 | 0.1 | 0.0061 | 0.0001 |
26 | 8 | 91 | 363 | 0.23 | 48.8 | 0.6418 | 0.0536 | 0.0019 | 0.2 | 0.1514 | 0.0054 | 0.0205 | 0.0003 | 0.1 | 0.0069 | 0.0003 |
05 | 14 | 147 | 660 | 0.20 | 48.9 | 0.5494 | 0.0511 | 0.0013 | 0.3 | 0.1440 | 0.0035 | 0.0205 | 0.0002 | 0.2 | 0.0073 | 0.0002 |
07 | 12 | 138 | 552 | 0.23 | 48.6 | 0.5903 | 0.0547 | 0.0017 | 0.3 | 0.1552 | 0.0048 | 0.0206 | 0.0003 | 0.1 | 0.0071 | 0.0002 |
24 | 27 | 380 | 1223 | 0.28 | 47.6 | 0.5674 | 0.0624 | 0.0017 | 0.3 | 0.1805 | 0.0049 | 0.0210 | 0.0003 | 0.2 | 0.0087 | 0.0002 |
08 | 16 | 230 | 732 | 0.29 | 48.3 | 0.5357 | 0.0481 | 0.0012 | 0.3 | 0.1374 | 0.0034 | 0.0207 | 0.0002 | 0.2 | 0.0066 | 0.0002 |
22 | 14 | 137 | 617 | 0.20 | 47.7 | 0.5924 | 0.0524 | 0.0017 | 0.2 | 0.1513 | 0.0049 | 0.0210 | 0.0003 | 0.1 | 0.0074 | 0.0003 |
№ Grains | 207Pb/ 206Pb | lσ | 206Pb/ 238U | lσ | 207Pb/ 235U | lσ | 208Pb/ 232Th | lσ | D1 | D2 | 207Pb Corr | lσ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample 2010-2 | ||||||||||||
04 | 75 | 72 | 111 | 1 | 110 | 3 | 99 | 3 | −1 | −32 | 111.2 | 1.3 |
15 | 98 | 65 | 111 | 1 | 110 | 3 | 111 | 3 | −1 | −11 | 110.9 | 1.3 |
10 | 110 | 74 | 114 | 1 | 114 | 3 | 102 | 3 | 0 | −4 | 114.0 | 1.4 |
12 | 110 | 74 | 114 | 1 | 114 | 3 | 102 | 3 | 0 | −4 | 114.0 | 1.4 |
14 | 112 | 64 | 113 | 1 | 113 | 3 | 111 | 2 | 0 | −1 | 113.0 | 1.3 |
16 | 177 | 98 | 113 | 2 | 116 | 5 | 108 | 4 | 3 | 56 | 112.9 | 1.6 |
09 | 179 | 72 | 111 | 1 | 114 | 3 | 115 | 3 | 3 | 62 | 110.6 | 1.3 |
33 | 185 | 72 | 113 | 1 | 116 | 3 | 106 | 3 | 3 | 65 | 112.4 | 1.3 |
11 | 185 | 79 | 113 | 1 | 116 | 4 | 120 | 4 | 3 | 64 | 112.4 | 1.5 |
13 | 191 | 83 | 112 | 1 | 116 | 4 | 112 | 3 | 3 | 70 | 111.9 | 1.4 |
23 | 207 | 76 | 114 | 1 | 118 | 4 | 104 | 3 | 4 | 81 | 113.8 | 1.4 |
34 | 209 | 72 | 113 | 1 | 118 | 3 | 121 | 4 | 4 | 85 | 113.1 | 1.4 |
29 | 220 | 90 | 113 | 2 | 118 | 4 | 120 | 4 | 4 | 94 | 112.7 | 1.5 |
17 | 248 | 98 | 110 | 2 | 116 | 5 | 114 | 5 | 6 | 125 | 109.7 | 1.6 |
26 | 275 | 79 | 113 | 1 | 121 | 4 | 118 | 4 | 7 | 143 | 112.6 | 1.4 |
27 | 280 | 78 | 113 | 1 | 121 | 4 | 118 | 4 | 7 | 149 | 112.2 | 1.5 |
05 | 280 | 85 | 107 | 1 | 115 | 4 | 116 | 4 | 7 | 161 | 106.9 | 1.4 |
18 | 307 | 66 | 113 | 1 | 122 | 3 | 113 | 3 | 8 | 171 | 112.5 | 1.3 |
Sample 2010-1 | ||||||||||||
30 | 3089 | 43 | 164 | 2 | 616 | 12 | 1225 | 32 | 276 | 1787 | 125.7 | 2.2 |
33 | 282 | 76 | 127 | 2 | 135 | 4 | 133 | 5 | 6 | 123 | 126.0 | 1.7 |
13 | 2076 | 51 | 140 | 2 | 333 | 8 | 599 | 15 | 138 | 1384 | 126.0 | 1.8 |
32 | 1628 | 59 | 136 | 2 | 262 | 7 | 423 | 14 | 93 | 1098 | 127.1 | 1.8 |
29 | 136 | 68 | 128 | 2 | 128 | 3 | 123 | 4 | 0 | 6 | 127.5 | 1.6 |
23 | 320 | 72 | 128 | 2 | 138 | 4 | 124 | 4 | 8 | 150 | 127.6 | 1.7 |
19 | 241 | 100 | 129 | 2 | 135 | 6 | 129 | 5 | 5 | 88 | 128.2 | 1.6 |
28 | 459 | 67 | 130 | 2 | 149 | 4 | 138 | 4 | 14 | 253 | 128.6 | 1.7 |
25 | 622 | 52 | 131 | 2 | 160 | 4 | 182 | 4 | 22 | 375 | 128.8 | 1.5 |
02 | 114 | 64 | 129 | 1 | 128 | 3 | 122 | 3 | −1 | −12 | 129.3 | 1.4 |
26 | 354 | 79 | 131 | 2 | 143 | 5 | 139 | 5 | 9 | 170 | 130.1 | 1.7 |
05 | 244 | 56 | 131 | 1 | 137 | 3 | 147 | 4 | 5 | 87 | 130.2 | 1.5 |
07 | 400 | 69 | 131 | 2 | 147 | 4 | 143 | 4 | 12 | 205 | 130.3 | 1.6 |
24 | 689 | 58 | 134 | 2 | 169 | 4 | 176 | 5 | 26 | 415 | 131.6 | 1.6 |
08 | 24,105 | 59 | 132 | 1 | 131 | 3 | 134 | 3 | −1 | −20 | 132.3 | 1.5 |
22 | 304 | 74 | 134 | 2 | 143 | 4 | 148 | 5 | 7 | 127 | 133.0 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derbeko, I.M. Magmatic Telescoping as a Reflection of the Shift in Geodynamic Circumstances and Patterns of Formation of Gold Ore Manifestations in the Example of the Uskalin Granitoid Massif (Russia). Minerals 2025, 15, 592. https://doi.org/10.3390/min15060592
Derbeko IM. Magmatic Telescoping as a Reflection of the Shift in Geodynamic Circumstances and Patterns of Formation of Gold Ore Manifestations in the Example of the Uskalin Granitoid Massif (Russia). Minerals. 2025; 15(6):592. https://doi.org/10.3390/min15060592
Chicago/Turabian StyleDerbeko, Inna M. 2025. "Magmatic Telescoping as a Reflection of the Shift in Geodynamic Circumstances and Patterns of Formation of Gold Ore Manifestations in the Example of the Uskalin Granitoid Massif (Russia)" Minerals 15, no. 6: 592. https://doi.org/10.3390/min15060592
APA StyleDerbeko, I. M. (2025). Magmatic Telescoping as a Reflection of the Shift in Geodynamic Circumstances and Patterns of Formation of Gold Ore Manifestations in the Example of the Uskalin Granitoid Massif (Russia). Minerals, 15(6), 592. https://doi.org/10.3390/min15060592