Delineating Geochemical Anomalies Based on the Methods of Principal Component Analysis, Multifractal Model, and Singularity Model: A Case Study of Soil Geochemical Survey in the Hongyahuo Area, Qinghai Province
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geological Background
2.2. Geological Characteristics of the Study Area
3. Materials and Methods
3.1. Sampling and Chemical Analysis
3.2. Data Analysis
3.2.1. Principal Component Analysis (PCA) of Compositional Data
3.2.2. Multifractal Analysis
3.2.3. Local Singularities
4. Results and Discussion
4.1. Statistical Characteristics of Geochemical Data
4.2. PCA
4.3. S-A Multifractal Extraction of Geochemical Anomalies
4.4. Delineation and Verification of Prospecting Target Areas
4.4.1. Delineation of Prospecting Target Areas
4.4.2. Anomaly Verification
5. Conclusions
- (1)
- Comparative analysis using histograms and Q-Q plots was conducted on three data types (raw, logarithmic, and ilr). Among them, only the ilr-transformed dataset successfully addressed the closure issue inherent in raw data and exhibited a symmetrical distribution of elemental values. This outcome suggests that ilr transformation provides a more accurate depiction of the spatial structural features of geochemical elements.
- (2)
- PCA was applied to the compositional dataset to extract principal component eigenvalues and cumulative variance contribution rates for all three data types. Biplot representations demonstrated that, following ilr transformation, the positive loadings of PC1 revealed a Cu-Fe-Mn-Ni-Pb-Zn association, indicative of medium- to high-temperature hydrothermal mineralization processes. This component accounted for the highest variance and eigenvalue among all components, illustrating the superimposed influences of multiple geochemical processes in the copper polymetallic mineralization system. This association reflects the integrated signature of key ore-forming elements within the study region.
- (3)
- The S-A model was utilized to differentiate geochemical anomalies and background values in the study area, generating maps of PC1 anomaly and background distributions. The spatial patterns of the delineated anomalies corresponded well with regional geological features. Additionally, the singularity model was employed to identify subtle anomalies arising from complex geological processes. The resulting singularity index distribution map revealed that areas where the PC1 element assemblage displayed a singularity index α < 2 were associated with relatively constrained anomaly zones, offering valuable insight for guiding mineral exploration efforts.
- (4)
- Drawing upon the geological context of the region, combined with the PC1 element associations derived from both the S-A and singularity models, three target zones for exploration prediction were defined. Validation work conducted within these areas led to the discovery of two copper ore bodies in the No. III target area, with Cu content reaching industrial-grade levels. The integrated use of the S-A model and singularity analysis has thus been demonstrated to be an effective methodological framework for the identification of geochemical anomalies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, X.; Mu, X.; Ren, T. Geochemical mapping in China. J. Geochem. Explor. 1997, 60, 99–113. [Google Scholar]
- Wu, S.Y. Analysis of the tension and mode of action of United States regional strategies: A case study of the impact of the Middle East strategy on the “Indo-Pacific strategy”. Northeast. Asia Forum 2024, 33, 61–77. [Google Scholar]
- Zuo, R.G. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. J. Geochem. Explor. 2014, 139, 170–176. [Google Scholar] [CrossRef]
- Zhao, J.N.; Chen, S.Y.; Zuo, R.G. Identifying geochemical anomalies associated with Au-Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. J. Geochem. Explor. 2016, 164, 54–64. [Google Scholar] [CrossRef]
- Cheng, Q.M. Ideas and methods for Mineral resources integrated prediction in coverage areas. Earth Sci. J. China Univ. Geosci. 2012, 37, 1109–1125, (In Chinese with English Abstract). [Google Scholar]
- Zuo, R.G.; Xiong, Y.H. Geodata science and geochemical mapping. J. Geochem. Explor. 2020, 209, 106431. [Google Scholar] [CrossRef]
- Xie, X.J.; Wang, X.Q.; Zhang, Q.; Zhou, G.H.; Cheng, H.X.; Liu, D.W.; Cheng, Z.Z.; Xu, S.F. Multi-scale geochemical mapping in China. Geochem. Explor. Environ. Anal. 2008, 8, 333–341. [Google Scholar] [CrossRef]
- Cheng, Q.M. Modeling local scaling properties for multiscale mapping. Vadose Zone J. 2007, 7, 525–532. [Google Scholar] [CrossRef]
- Zuo, R.G. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J. Geochem. Explor. 2011, 111, 13–22. [Google Scholar] [CrossRef]
- Pérez-Fernández, R.; Gagolewski, M.; De-Baets, B. On the aggregation of compositional data. Inf. Fusion 2021, 73, 103–110. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, H.; Wang, S.; Saporta, G. Incremental modelling for compositional data streams. Commun. Stat.-Simul. Comput. 2019, 48, 2229–2243. [Google Scholar] [CrossRef]
- Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B (Stat. Methodol.) 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986; pp. 1–416. [Google Scholar]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Gloor, G.B. Linear association in compositional data analysis. Austrian J. Stat. 2018, 47, 3–31. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Egozcue, J.J. Compositional data and their analysis: An introduction. Geol. Soc. Lond. Spec. Publ. 2006, 264, 1–10. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Egozcue, J.J. The closure problem: One hundred years of debate. In Proceedings of the Mining Príbram Symposium. Section: Mathematical Methods in Geology, Prague, Czech Republic, 10–14 October 2011; pp. 10–14. [Google Scholar]
- Cheng, Q.M. Multifractal theory and geochemical element distribution pattern. Earth Sci. J. China Univ. Geosci. 2000, 3, 311–318, (In Chinese with English Abstract). [Google Scholar]
- Xiao, F.; Chen, J.G.; Zhang, Z.Y.; Wang, C.B.; Wu, G.M.; Agterberg, F.P. Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. J. Geochem. Explor. 2012, 122, 90–100. [Google Scholar] [CrossRef]
- Zuo, R.G.; Carranza, E.J.M.; Wang, J. Spatial analysis and visualization of exploration geochemical data. Earth-Sci. Rev. 2016, 158, 9–18. [Google Scholar] [CrossRef]
- Zuo, R.G. Exploring the effects of cell size in geochemical mapping. J. Geochem. Explor. 2012, 112, 357–367. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.Z.; Xiao, F. Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag-Pb-Zn deposits in north-western Zhejiang, China. Appl. Geochem. 2020, 120, 104679. [Google Scholar] [CrossRef]
- Xie, S.Y.; Bao, Z.Y. Fractal and multifractal properties of geochemical fields. Math. Geol. 2004, 36, 847–864. [Google Scholar] [CrossRef]
- Wang, W.L.; Zhao, J.; Cheng, Q.M. Mapping of Fe mineralization associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China. J. Geochem. Explor. 2014, 141, 6–14. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, R.G. A MATLAB-based program for processing geochemical data using fractal/multifractal modeling. Earth Sci. India 2015, 8, 937–947. [Google Scholar] [CrossRef]
- Cheng, Q.M.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochem. Explor. Environ. Anal. 2010, 10, 171–187. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J. Geochem. Explor. 2011, 110, 167–185. [Google Scholar] [CrossRef]
- Cheng, Q.M. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor. 1999, 65, 175–194. [Google Scholar] [CrossRef]
- Cheng, Q.M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Cheng, Q.M. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55–70. [Google Scholar] [CrossRef]
- Xie, S.Y.; Cheng, Q.M.; Chen, G.; Chen, Z.J.; Bao, Z.Y. Application of local singularity in prospecting potential oil/gas targets. Nonlinear Process. Geophys. 2007, 14, 285–292. [Google Scholar]
- Cheng, Q.M. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Math. Geol. 2004, 36, 345–360. [Google Scholar] [CrossRef]
- Cheng, Q.M. Measurement of the singularity of geological anomalies and identification of mineral-causing anomalies from hidden sources. Earth Sci. J. China Univ. Geosci. 2011, 36, 307–316, (In Chinese with English Abstract). [Google Scholar]
- Jiang, X.J.; Chen, X.; Gao, S.B.; Zheng, Y.Y.; Ren, H.; Han, D.H.; Yan, C.C.; Jiang, J.S. A new discovery of Ag-Pb-Zn mineralization via modern portable analytical technology and stream sediment data processing methods in Dajiacuo Area, Western Tibet (China). J. Earth Sci. 2020, 31, 668–682. [Google Scholar] [CrossRef]
- Chen, X.; Xu, R.K.; Zheng, Y.Y.; Jiang, X.J.; Du, W.Y. Identifying potential Au-Pb-Ag mineralization in SE Shuangkoushan, North Qaidam, Western China: Combined log-ratio approach and singularity mapping. J. Geochem. Explor. 2018, 189, 109–121. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Q.M.; Carranza, E.J.M.; Zhou, K.F. Assessment of Geochemical Anomaly Uncertainty Through Geostatistical Simulation and Singularity Analysis. Nat. Resour. Res. 2019, 8, 199–212. [Google Scholar] [CrossRef]
- Xu, S.; Hu, X.Y.; Carranza, E.J.M.; Wang, G.W. Multi-parameter Analysis of Local Singularity Mapping and Its Application to Identify Geochemical Anomalies in the Xishan Gold Deposit, North China. Nat. Resour. Res. 2020, 29, 3425–3442. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Mao, J.W.; Yang, J.M.; Wu, M.B.; Zuo, G.C. Geology and Geochemistry of Volcanic Rocks of the Early Ordovician Yingou Group in the Western Part of North Qilian Mountain and Their Tectonic Setting. J. Petromineral. 1997, 16, 2–10, (In Chinese with English Abstract). [Google Scholar]
- Huang, X.F. Study on Crustal-Scale Deformation in Tectonic the Tectonic Transition Zone in Qilian Shan, the Northern Margin of the Qinghai-Tibetan Plateau. Ph.D. Thesis, Beijing Chinese Academy of Geological Sciences, Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Fu, D.; Kusky, T.; Wilde, S.A.; Polat, A.; Huang, B.; Zhou, Z. Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis. Bulletin 2019, 131, 1031–1056. [Google Scholar] [CrossRef]
- Song, S.G.; Niu, Y.L.; Su, L.; Xia, X.H. Tectonics of the north Qilian orogen, NW China. Gondwana Res. 2013, 23, 1378–1401. [Google Scholar] [CrossRef]
- Fu, D. Early Paleozoic Accretionary Orogenesis and Crustal Evolution of the Eastern North Qilian Orogenic Belt. Ph.D. Thesis, Wuhan China University of Geosciences, Wuhan, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Cong, Z.C. Study on the Metallogenic Law of Copper Polymetallic Deposits in North Qilian, Qinghai. Ph.D. Thesis, Jilin University, Changchun, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.L.; Long, X.P.; Luo, J.; Dong, Y.P.; Lan, C.Y.; Huang, Z.Y.; Zhao, J. Provenance and Hf isotopic variation of Precambrian detrital zircons from the Qilian Orogenic Belt, NW China: Evidence to the transition from breakup of Columbia to the assembly of Rodinia. Precambrian Res. 2021, 357, 106153. [Google Scholar] [CrossRef]
- Chen, S.; Niu, Y.L.; Xue, Q.Q. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau. Lithos 2018, 308, 53–64. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Templ, M. Applied Compositional Data Analysis; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–5. [Google Scholar]
- Egozcue, J.J.; Lovell, D.; Pawlowsky-Glahn, V. Testing compositional association. In Proceedings of the 5th International Workshop on Compositional Data Analysis, Vorau, Austria, 3–7 June 2013; pp. 28–36. [Google Scholar]
- Zuo, R.G.; Xia, Q.L.; Wang, H.C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl. Geochem. 2013, 28, 202–211. [Google Scholar] [CrossRef]
- Zuo, R.G. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas. J. Geochem. Explor. 2014, 136, 93–101. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Q.M.; Xia, Q.L.; Wang, X.Q. Application of singularity analysis for mineral potential identification using geochemical data—A case study: Nanling W-Sn-Mo polymetallic metallogenic belt, South China. J. Geochem. Explor. 2013, 134, 61–72. [Google Scholar] [CrossRef]
- Zuo, R.G.; Xia, Q.L.; Zhang, D.J. A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas. Appl. Geochem. 2013, 33, 165–172. [Google Scholar] [CrossRef]
- Pesenson, M.Z.; Suram, S.K.; Gregoire, J.M. Statistical Analysis and Interpolation of Compositional Data in Materials Science. Acs Comb. Sci. 2015, 17, 130–136. [Google Scholar] [CrossRef]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figureas, G.; Barcelo-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Tang, R.; Sun, L.; Ouyang, F.; Xiao, K.; Li, C.; Kong, Y.; Xie, M.; Wu, Y.; Gao, Y. CoDA-Based Geo-Electrochemical Prospecting Prediction of Uranium Orebodies in Changjiang Area, Guangdong Province, China. Minerals 2024, 14, 15. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C.; Garrett, R. Robust factor analysis for compositional data. Comput. Geosci. 2009, 35, 1854–1861. [Google Scholar] [CrossRef]
- Zuo, R.G.; Wang, J.L. ArcFractal: An ArcGIS add-in for processing geoscience data using fractal/multifractal models. Nat. Resour. Res. 2020, 29, 3–12. [Google Scholar] [CrossRef]
- Cheng, Q.M. Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains. Nonlinear Process. Geophys. 2007, 14, 293–303. [Google Scholar] [CrossRef]
- Cheng, Q.M. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Math. Geosci. 2008, 40, 503–532. [Google Scholar] [CrossRef]
- Zuo, R.G.; Agterberg, F.P.; Cheng, Q.M.; Yao, L.Q. Fractal characterization of the spatial distribution of geological point processes. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 394–402. [Google Scholar] [CrossRef]
- Agterberg, F.P. Multifractals and geostatistics. J. Geochem. Explor. 2012, 122, 113–122. [Google Scholar] [CrossRef]
- Wu, D.; Luo, X. Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data. IEEE/CAA J. Autom. Sin. 2021, 8, 796–805. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.F.; Gao, W.; Luo, X.R.; Tao, Z.H.; Liu, P.F.; Qiu, W. Geochemical prospectivity mapping using compositional balance analysis and multifractal modeling: A case study in the Jinshuikou area, Qinghai, China. J. Geochem. Explor. 2004, 257, 107361. [Google Scholar] [CrossRef]
Parameter | Au | Cu | Fe | Mn | Ni | Pb | Zn | As | Sb | |
---|---|---|---|---|---|---|---|---|---|---|
Raw data | Maximum | 52.9 | 603.1 | 9.42 | 1922 | 123.8 | 103.6 | 387.3 | 378.2 | 46.39 |
Minimum | 0.5 | 19.3 | 2.87 | 447 | 9.5 | 2.5 | 43.1 | 5.8 | 0.4 | |
Average value | 2.3 | 43.4 | 4.6 | 876 | 39 | 19.9 | 89.3 | 31.4 | 2.01 | |
Lower quartile | 1.2 | 33.8 | 4.175 | 786 | 34.6 | 17.6 | 78.4 | 16 | 1.01 | |
Median | 1.8 | 38.8 | 4.467 | 855 | 37.4 | 19.3 | 85.4 | 21.8 | 1.29 | |
Upper quartile | 2.5 | 46.7 | 4.932 | 936 | 41.2 | 21 | 94.8 | 32.9 | 1.92 | |
Coefficient | 1.22 | 0.61 | 0.15 | 0.17 | 0.23 | 0.29 | 0.28 | 1.13 | 1.54 | |
Standard deviation | 2.8 | 26.34 | 0.7 | 152.89 | 9.01 | 5.71 | 25.14 | 35.45 | 3.1 | |
Enrichment | 1.64 | 1.81 | 1.35 | 1.46 | 1.5 | 0.87 | 1.31 | 3.14 | 2.51 | |
Kurtosis | 181.21 | 319.68 | 4.42 | 6.71 | 27.64 | 93.88 | 52.22 | 35.93 | 87.15 | |
Skewness | 11.36 | 15.39 | 1.28 | 1.56 | 4.02 | 7.61 | 5.89 | 5.23 | 8.08 | |
Log-data | Standard deviation | 0.26 | 0.13 | 0.06 | 0.07 | 0.08 | 0.09 | 0.09 | 0.27 | 0.27 |
Kurtosis | 2.33 | 10.41 | 1.35 | 2.42 | 10.92 | 24.07 | 11.93 | 2.3 | 4.83 | |
Skewness | 0.66 | 1.78 | 0.5 | 0.4 | 1.02 | 0.13 | 2.2 | 1.17 | 1.76 | |
ilr-data | Standard deviation | 0.56 | 0.3 | 0.19 | 0.21 | 0.21 | 0.23 | 0.23 | 0.55 | 0.53 |
Kurtosis | 1.22 | 6.3 | 3.83 | 6.06 | 7.96 | 14.69 | 8.81 | 1.97 | 3.51 | |
Skewness | 0.37 | 0.93 | 0.94 | 1.07 | 0.09 | 0.89 | 0.39 | 1 | 1.47 |
Project Number | Sample Number | Sample Length/m | Analyze the Results |
---|---|---|---|
Cu/% | |||
TC1 | TC1-H9 | 1 | 1.26 |
TC2 | TC2-H2 | 1 | 1.63 |
TC2-H3 | 1 | 2.30 | |
TC2-H4 | 1 | 1.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, Y.; Guo, P.; Chen, S.; Han, Z. Delineating Geochemical Anomalies Based on the Methods of Principal Component Analysis, Multifractal Model, and Singularity Model: A Case Study of Soil Geochemical Survey in the Hongyahuo Area, Qinghai Province. Minerals 2025, 15, 585. https://doi.org/10.3390/min15060585
Chen Y, Liu Y, Guo P, Chen S, Han Z. Delineating Geochemical Anomalies Based on the Methods of Principal Component Analysis, Multifractal Model, and Singularity Model: A Case Study of Soil Geochemical Survey in the Hongyahuo Area, Qinghai Province. Minerals. 2025; 15(6):585. https://doi.org/10.3390/min15060585
Chicago/Turabian StyleChen, Yingnan, Yongsheng Liu, Peng Guo, Sitong Chen, and Zhixuan Han. 2025. "Delineating Geochemical Anomalies Based on the Methods of Principal Component Analysis, Multifractal Model, and Singularity Model: A Case Study of Soil Geochemical Survey in the Hongyahuo Area, Qinghai Province" Minerals 15, no. 6: 585. https://doi.org/10.3390/min15060585
APA StyleChen, Y., Liu, Y., Guo, P., Chen, S., & Han, Z. (2025). Delineating Geochemical Anomalies Based on the Methods of Principal Component Analysis, Multifractal Model, and Singularity Model: A Case Study of Soil Geochemical Survey in the Hongyahuo Area, Qinghai Province. Minerals, 15(6), 585. https://doi.org/10.3390/min15060585