Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Bulk-Rock Major and Trace Elements
3.2. X-Ray Diffraction
3.3. Optical Microscopy
3.4. Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry
3.5. LA-ICP-MS
3.6. Carbon and Oxygen Isotopes
4. Results
4.1. Petrography and Mineralogy
4.2. Whole-Rock Geochemistry
4.3. Carbonate Carbon and Oxygen Isotopes
4.4. Geochemistry of Carbonate Fluorapatite from BLT Using LA-ICP-MS
5. Discussion
5.1. Effects of Detrital Inputs and Diagenesis
5.2. Paleoenvironment Conditions
5.3. Rare Earth Element Enrichment Revealled by LA-ICP-MS Analysis of Francolite
5.4. REE-Rich Phosphorites Deposition Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Skinner, L.; Sadekov, A.; Brandon, M.; Greaves, M.; Plancherel, Y.; de la Fuente, M.; Gottschalk, J.; Souanef-Ureta, S.; Sevilgen, D.; Scrivner, A. Rare Earth Elements in early-diagenetic foraminifer ‘coatings’: Pore-water controls and potential palaeoceanographic applications. Geochim. Cosmochim. 2019, 245, 118–132. [Google Scholar] [CrossRef]
- Wang, G.; Xu, J.; Ran, L.; Zhu, R.; Ling, B.; Liang, X.; Kang, S.; Wang, Y.; Wei, J.; Ma, L.; et al. A green and efficient technology to recover rare earth elements from weathering crusts. Nat. Sustain. 2023, 6, 81–92. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, J.; Liang, X.; Ling, B.; Xu, J.; Yang, Y.; Kang, S.; Tan, W.; Xu, Y.; Zou, X.; et al. Industrial-scale sustainable rare earth mining enabled by electrokinetics. Nat. Sustain. 2025, 8, 182–189. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 2011, 4, 535–539. [Google Scholar] [CrossRef]
- Liu, S.-L.; Fan, H.-R.; Liu, X.; Meng, J.; Butcher, A.R.; Yann, L.; Yang, K.-F.; Li, X.-C. Global rare earth elements projects: New developments and supply chains. Ore Geol. Rev. 2023, 157, 105428. [Google Scholar] [CrossRef]
- Ilankoon, I.; Dushyantha, N.; Mancheri, N.; Edirisinghe, P.; Neethling, S.; Ratnayake, N.; Rohitha, L.; Dissanayake, D.; Premasiri, H.; Abeysinghe, A.; et al. Constraints to rare earth elements supply diversification: Evidence from an industry survey. J. Clean. Prod. 2022, 331, 129932. [Google Scholar] [CrossRef]
- Emsbo, P.; McLaughlin, P.I.; Breit, G.N.; du Bray, E.A.; Koenig, A.E. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Res. 2015, 27, 776–785. [Google Scholar] [CrossRef]
- Xing, J.Q.; Jiang, Y.H.; Xian, H.Y.; Yang, W.B.; Yang, Y.P.; Niu, H.C.; He, H.P.; Zhu, J.X. Rare earth element enrichment in sedimentary phosphorites formed during the Precambrian-Cambrian transition, Southwest China. Geosci. Front. 2024, 15, 101766. [Google Scholar] [CrossRef]
- Gläser, L.; Grosche, A.; Voudouris, P.C.; Haase, K.M. The high-K calc-alkaline to shoshonitic volcanism of Limnos, Greece: Implications for the geodynamic evolution of the northern Aegean. Contrib. Miner. Pet. 2022, 177, 73. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Y.; Niu, H.; Xing, J.; Yan, S.; Li, A.; Weng, Q.; Zhao, X. Enrichment of rare earth elements in the early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micro-petrography and geochemistry. Ore Geol. Rev. 2021, 138, 104342. [Google Scholar] [CrossRef]
- Zhang, K.; Shields, G.A. Early diagenetic mobilization of rare earth elements and implications for the Ce anomaly as a redox proxy. Chem. Geol. 2023, 635, 121619. [Google Scholar] [CrossRef]
- Aubineau, J.; Parat, F.; Fru, E.C.; El Bamiki, R.; Mauguin, O.; Baron, F.; Poujol, M.; Séranne, M. Geodynamic seawater-sediment porewater evolution of the east central Atlantic Paleogene ocean margin revealed by U-Pb dating of sedimentary phosphates. Front. Earth Sci. 2022, 10, 997008. [Google Scholar] [CrossRef]
- Zivak, D.; Spandler, C.; Valetich, M. Origin of REE enrichment in the Cambrian Georgina Basin Phosphorites. Geochem. Geophys. Geosystems 2024, 25, 487. [Google Scholar] [CrossRef]
- Hill, R.C.; Wang, Z.; Williams, G.D.; Polyak, V.; Singh, A.; Kipp, M.A.; Asmerom, Y.; Vengosh, A. Reconstructing the depositional environment and diagenetic modification of global phosphate deposits through integration of uranium and strontium isotopes. Chem. Geol. 2024, 662, 122214. [Google Scholar] [CrossRef]
- Lécuyer, C.; Reynard, B.; Grandjean, P. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chem. Geol. 2004, 204, 63–102. [Google Scholar] [CrossRef]
- Fan, H.; Wen, H.; Zhu, X.; Hu, R.; Tian, S. Hydrothermal activity during Ediacaran–Cambrian transition: Silicon isotopic evidence. Precambrian Res. 2013, 224, 23–35. [Google Scholar] [CrossRef]
- Xing, J.; Jiang, Y.; Xian, H.; Yang, W.; Yang, Y.; Tan, W.; Niu, H.; He, H.; Zhu, J. Hydrothermal alteration and the remobilization of rare earth elements during reprecipitation of nano-scale apatite in phosphorites. Lithos 2023, 444, 107113. [Google Scholar] [CrossRef]
- Xing, J.; Jiang, Y.; Xian, H.; Zhang, Z.; Yang, Y.; Tan, W.; Liang, X.; Niu, H.; He, H.; Zhu, J. Hydrothermal activity during the formation of REY-rich phosphorites in the early Cambrian Gezhongwu Formation, Zhijin, South China: A micro- and nano-scale mineralogical study. Ore Geol. Rev. 2021, 136, 104224. [Google Scholar] [CrossRef]
- McArthur, J.; Walsh, J. Rare earth geochemistry of phosphorites. Chem. Geol. 1985, 47, 191–220. [Google Scholar] [CrossRef]
- Francovschi, I.; Gradinaru, E.; Roban, R.D.; Ducea, M.N.; Ciobotaru, V.; Shumlyanskyy, L. Rare earth element (REE) enrichment of the late Ediacaran Kalyus Beds (East European Platform) through diagenetic uptake. Geochemistry 2020, 80, 125612. [Google Scholar] [CrossRef]
- Tlig, S.; Sassi, A.; Belayouni, H.; Michel, D. Uranium, thorium, zirconium, hafnium and rare-earth element (REE) distributions in size fractions of sedimentary phosphates. Chem. Geol. 1987, 62, 209–221. [Google Scholar] [CrossRef]
- Deng, Y.; Guo, Q.; Liu, C.; He, G.; Cao, J.; Liao, J.; Liu, C.; Wang, H.; Zhou, J.; Liu, Y.; et al. Early diagenetic control on the enrichment and fractionation of rare earth elements in deep-sea sediments. Sci. Adv. 2022, 8, eabn5466. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-M.; Liu, M.-X.; Dan, Y.; Said, N.; Wu, J.-H.; Hou, M.-C.; Zou, H. The origin of Ediacaran phosphogenesis event: New insights from Doushantuo Formation in the Danzhai phosphorite deposit, South China. Ore Geol. Rev. 2023, 152, 105230. [Google Scholar] [CrossRef]
- Yao, C.; Ma, D.; Ding, H.; Zhang, X.; Huang, H. Trace elements and stable isotopic geochemistry of an Early Cambrian chert-phosphorite unit from the lower Yurtus Formation of the Sugetbrak section in the Tarim Basin. Sci. China Earth Sci. 2014, 57, 454–464. [Google Scholar] [CrossRef]
- Da, L.; Ling, H.-F.; Shields-Zhou, G.A.; Chen, X.; Cremonese, L.; Och, L.; Thirlwall, M.; Manning, C.J. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Res. 2013, 225, 128–147. [Google Scholar]
- Zhao, K.; Zhu, G.; Li, T.; Chen, Z.; Li, S. Fluctuations of continental chemical weathering control primary productivity and redox conditions during the Earliest Cambrian. Geol. J. 2023, 58, 3659–3672. [Google Scholar] [CrossRef]
- Ishikawa, T.; Ueno, Y.; Shu, D.; Li, Y.; Han, J.; Guo, J.; Yoshida, N.; Komiya, T. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res. 2013, 225, 190–208. [Google Scholar] [CrossRef]
- Rothman, D.H.; Hayes, J.M.; Summons, R.E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. USA 2003, 100, 8124–8129. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Jacobsen, S.B.; Knoll, A.H. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth Planet. Sci. Lett. 1993, 120, 409–430. [Google Scholar] [CrossRef]
- Garnit, H.; Bouhlel, S.; Barca, D.; Chtara, C. Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: Insights from trace elements and REE into paleo-depositional environments. Chem. Erde-Geochem. 2012, 72, 127–139. [Google Scholar] [CrossRef]
- Kim, M.G.; Hyeong, K.; Yoo, C.M. Distribution of rare earth elements and yttrium in sediments from the Clarion-Clipperton Fracture Zone, Northeastern Pacific Ocean. Geochem. Geophys. Geosystems 2022, 23, e2022GC010454. [Google Scholar] [CrossRef]
- Liu, Z.R.R.; Zhou, M.F. Early Cambrian ocean mixing recorded by phosphorite successions in the Nanhua Basin, South China. Precambrian Res. 2020, 349, 105414. [Google Scholar] [CrossRef]
- Xin, H.; Jiang, S.-Y.; Yang, J.-H.; Wu, H.-P.; Pi, D.-H. Rare earth element and Sr-Nd isotope geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping section from western Hubei Province, South China. Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 440, 712–724. [Google Scholar] [CrossRef]
- Shields, G.; Stille, P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem. Geol. 2001, 175, 29–48. [Google Scholar] [CrossRef]
- Lumiste, K.; Mänd, K.; Bailey, J.; Paiste, P.; Lang, L.; Lepland, A.; Kirsimäe, K. REE plus Y uptake and diagenesis in Recent sedimentary apatites. Chem. Geol. 2019, 525, 268–281. [Google Scholar] [CrossRef]
- Yang, H.Y.; Xiao, J.F.; Xia, Y.; Zhao, Z.F.; Xie, Z.J.; He, S.; Wu, S.W. Diagenesis of Ediacaran-early Cambrian phosphorite: Comparisons with recent phosphate sediments based on, LA-ICP-MS and EMPA. Ore Geol. Rev. 2022, 144, 104813. [Google Scholar] [CrossRef]
- Wu, S.; Fan, H.; Xia, Y.; Meng, Q.; Gong, X.; He, S.; Liu, X.; Yang, H.; Wen, H. Sources of rare earth elements and yttrium in the early Cambrian phosphorites in Zhijin, southwest China. Ore Geol. Rev. 2022, 150, 105146. [Google Scholar] [CrossRef]
- Wu, S.; Yang, H.; Fan, H.; Xia, Y.; Meng, Q.; He, S.; Gong, X. Assessment of the effect of organic matter on rare earth elements and yttrium using the Zhijin Early Cambrian phosphorite as an example. Minerals 2022, 12, 876. [Google Scholar] [CrossRef]
- Pi, D.-H.; Liu, C.-Q.; Shields-Zhou, G.A.; Jiang, S.-Y. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Res. 2013, 225, 218–229. [Google Scholar] [CrossRef]
- Fan, H.F.; Wen, H.J.; Zhu, X.K. Marine redox conditions in the Early Cambrian ocean: Insights from the Lower Cambrian phosphorite deposits, South China. J. Earth Sci. 2016, 27, 282–296. [Google Scholar] [CrossRef]
- Fan, H.F.; Wen, H.J.; Xiao, C.Y.; Zhou, T.; Cloquet, C.; Zhu, X.K. Zinc geochemical cycling in a phosphorus-rich ocean during the Early Ediacaran. J. Geophys. Res. Ocean. 2018, 123, 5248–5260. [Google Scholar] [CrossRef]
- Gao, L.; Yang, R.; Gao, J.; Luo, C.; Liu, L.; Ni, X.; Li, X.; Mo, H.; Peng, R. The paleoecological environment during the Ediacaran–Cambrian transition in central Guizhou Province, China: Evidence from Zn isotopes. Minerals 2024, 14, 224. [Google Scholar] [CrossRef]
- Liu, Z.R.R.; Zhou, M.F. Meishucun phosphorite succession (SW China) records redox changes of the early Cambrian ocean. Geol. Soc. Am. Bull. 2017, 129, 1554–1567. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, J.; Xia, Y.; Xie, Z.; Tan, Q.; Xu, J.; He, S.; Wu, S.; Liu, X.; Gong, X. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions. Geosci. Front. 2021, 12, 101187. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, H.; Wang, X.; Zhai, L.; Wu, C.; Zhang, S. Elemental geochemistry of lower Cambrian phosphate nodules in Guizhou Province, South China: An integrated study by LA-ICP-MS mapping and solution ICP-MS. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 538, 109459. [Google Scholar] [CrossRef]
- Steiner, M.; Wallis, E.; Erdtmann, B.-D.; Zhao, Y.; Yang, R. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—Insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 169, 165–191. [Google Scholar] [CrossRef]
- Li, Y.; Fan, T.; Zhang, J.; Zhang, J.; Wei, X.; Hu, X.; Zeng, W.; Fu, W. Geochemical changes in the Early Cambrian interval of the Yangtze Platform, South China: Implications for hydrothermal influences and paleocean redox conditions. J. Asian Earth Sci. 2015, 109, 100–123. [Google Scholar] [CrossRef]
- Li, D.; Ling, H.-F.; Jiang, S.-Y.; Pan, J.-Y.; Chen, Y.-Q.; Cai, Y.-F.; Feng, H.-Z. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: Implications for global correlation. Geol. Mag. 2009, 146, 465–484. [Google Scholar] [CrossRef]
- Shen, Y.; Schidlowski, M. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology 2000, 29, 871–872. [Google Scholar]
- Zhang, G.; Chen, D.; Ding, Y.; Huang, T. Controls on organic matter accumulation from an upper slope section on the Early Cambrian Yangtze Platform, South China. Minerals 2023, 13, 260. [Google Scholar] [CrossRef]
- Gu, L.; Hu, S.; Anand, M.; Tang, X.; Ji, J.; Zhang, B.; Wang, N.; Lin, Y. Occurrence of tuite and ahrensite in Zagami and their significance for shock-histories recorded in martian meteorites. Am. Mineral 2022, 107, 1018–1029. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Greig, A.; Collerson, K.D.; Kamber, B.S. Rare earth element and yttrium variability in south East Queensland waterways. Aquat. Geochem. 2006, 12, 39–72. [Google Scholar] [CrossRef]
- Fazio, A.M.; Scasso, R.A.; Castro, L.N.; Carey, S. Geochemistry of rare earth elements in early-diagenetic miocene phosphatic concretions of Patagonia, Argentina: Phosphogenetic implications. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 1414–1432. [Google Scholar] [CrossRef]
- Schuffert, J.; Kastner, M.; Emanuele, G.; Jahnke, R. Carbonate-ion substitution in francolite: A new equation. Geochimica Cosmochimica Acta 1990, 54, 2323–2328. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Dini, S.M.; Qin, M.; Banakhar, A.S.; Li, Z.; Yi, L.; Memesh, A.M.; Shammari, A.M.; Li, G. Origin and evolution of the late cretaceous reworked phosphorite in the Sirhan-Turayf Basin, Northern Saudi Arabia. Minerals 2021, 11, 350. [Google Scholar] [CrossRef]
- El Bamiki, R.; Séranne, M.; Parat, F.; Aubineau, J.; Chellaï, E.H.; Marzoqi, M.; Bodinier, J.-L. Post-phosphogenesis processes and the natural beneficiation of phosphates: Geochemical evidence from the Moroccan High Atlas phosphate-rich sediments. Chem. Geol. 2023, 631, 121523. [Google Scholar] [CrossRef]
- He, S.; Xia, Y.; Xiao, J.; Gregory, D.; Xie, Z.; Tan, Q.; Yang, H.; Guo, H.; Wu, S.; Gong, X. Geochemistry of REY-Enriched Phosphorites in Zhijin Region, Guizhou Province, SW China: Insight into the Origin of REY. Minerals 2022, 12, 408. [Google Scholar] [CrossRef]
- Kechiched, R.; Laouar, R.; Bruguier, O.; Kocsis, L.; Salmi-Laouar, S.; Bosch, D.; Ameur-Zaimeche, O.; Foufou, A.; Larit, H. Comprehensive REE plus Y and sensitive redox trace elements of Algerian phosphorites (Tebessa, eastern Algeria): A geochemical study and depositional environments tracking. J. Geochem. Explor. 2020, 208, 106396. [Google Scholar] [CrossRef]
- Elderfield, H.; Pagett, R. Rare earth elements in ichthyoliths: Variations with redox conditions and depositional environment. Sci. Total Environ. 1986, 49, 175–197. [Google Scholar] [CrossRef]
- Compton, J.S.; Bergh, E.W. Phosphorite deposits on the Namibian shelf. Mar. Geol. 2016, 380, 290–314. [Google Scholar] [CrossRef]
- Föellmi, K.B. Sedimentary condensation. Earth Sci. Rev. 2016, 152, 143–180. [Google Scholar] [CrossRef]
- Knauth, L.P.; Kennedy, M.J. The late Precambrian greening of the Earth. Nature 2009, 460, 728–732. [Google Scholar] [CrossRef]
- Wei, T.; Cai, C.; Xiong, Y.; Bowyer, F.T.; Poulton, S.W. Environmental controls on Early Cambrian macroevolution: Insights from the Tarim Basin, Northwest China. GSA Bull. 2025. [Google Scholar] [CrossRef]
- Yang, X.; Chang, C.; Chen, Y.; Topper, T.; Liu, F.; Liang, Y.; Fang, R.; Zhang, Z. Geochemical records and environmental analysis of the Ediacaran-Cambrian boundary in Eastern Yunnan, South China. Front. Earth Sci. 2023, 11, 1173846. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, X.; Shi, X.; Xiao, S.; Zhang, S.; Dong, J. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca 542–520 Ma) Yangtze platform. Earth Planet. Sci. Lett. 2012, 317, 96–110. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Knoll, A.H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res. 1995, 73, 27–49. [Google Scholar] [CrossRef]
- Felitsyn, S.; Morad, S. REE patterns in latest Neoproterozoic–Early Cambrian phosphate concretions and associated organic matter. Chem. Geol. 2002, 187, 257–265. [Google Scholar] [CrossRef]
- Canfield, D.E.; Poulton, S.W.; Narbonne, G.M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 2007, 315, 92–95. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Zhang, T.; Tuo, J.; Song, D.; Liu, Y.; Zhang, M.; Xing, L. Reconstruction of paleoceanic redox conditions of the lower Cambrian Niutitang shales in northern Guizhou, Upper Yangtze region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 538, 109457. [Google Scholar] [CrossRef]
- Zhang, H.J.; Fan, H.F.; Wen, H.J.; Han, T.; Zhou, T.; Xia, Y. Controls of REY enrichment in the early Cambrian phosphorites. Geochim. Cosmochim. Acta 2022, 324, 117–139. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Reynard, B.; Lécuyer, C.; Grandjean, P. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol. 1999, 155, 233–241. [Google Scholar] [CrossRef]
- Föllmi, K.B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev. 1996, 40, 55–124. [Google Scholar] [CrossRef]
- Abou El-Anwar, E.A.; Rahim, S.H.A.E. Mineralogy, geochemistry and origin of the phosphorites at Um El-Huwtat mine, Quseir, Central Eastern Desert, Egypt. Carbonate Evaporite 2022, 37, 16. [Google Scholar] [CrossRef]
- Awadalla, G.S. Geochemistry and microprobe investigations of Abu Tartur REE-bearing phosphorite, Western Desert, Egypt. J. Afr. Earth Sci. 2010, 57, 431–443. [Google Scholar] [CrossRef]
- Burnett, W.C. Geochemistry and Origin of Phosphorite Deposits from Off Peru and Chile. Geol. Soc. Am. Bull. 1977, 88, 813–823. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Kamitani, M. Rare earth minerals and resources in the world. J. Alloys Compd. 2006, 408, 1339–1343. [Google Scholar] [CrossRef]
- Ilyin, A.V. Rare-earth geochemistry of ‘old’ phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chem. Geol. 1998, 144, 243–256. [Google Scholar] [CrossRef]
- Abed, A.M. The eastern Mediterranean phosphorite giants: An interplay between tectonics and upwelling. Geoarabia 2013, 18, 67–94. [Google Scholar] [CrossRef]
- Xu, L.; Frank, A.; Frei, R.; Wang, G.; Yuan, P.; Fu, X.; Lehmann, B. Oxidative weathering on the continent and seawater upwelling along the passive continental margin promoted widespread phosphorite formation at the Neoproterozoic-Cambrian boundary in South China. Chem. Geol. 2024, 670, 122418. [Google Scholar] [CrossRef]
- Glenn, C.R.; Föllmi, K.B.; Riggs, S.R.; Baturin, G.N.; Grimm, K.A.; Trappe, J.; Abed, A.M.; Galli-Oliver, C.; Garrison, R.E.; Ilyan, A.V.; et al. Phosphorus and phosphorites: Sedimentology and environments of formation. Eclogae Geol. Helv. 1994, 87, 747–788. [Google Scholar]
- Planavsky, N.J.; Rouxel, O.J.; Bekker, A.; Lalonde, S.V.; Konhauser, K.O.; Reinhard, C.T.; Lyons, T.W. The evolution of the marine phosphate reservoir. Nature 2010, 467, 1088–1090. [Google Scholar] [CrossRef]
- Kholodov, V.N. Geochemistry of phosphorus and origin of phosphorites: Communication 2. Sources of phosphorus in continents and genesis of marine phosphorites. Lithol Miner. Resour. 2003, 38, 477–494. [Google Scholar] [CrossRef]
- Föllmi, K.B.; Hosein, R.; Arn, K.; Steinmann, P. Weathering and the mobility of phosphorus in the catchments and forefields of the Rhône and Oberaar glaciers, central Switzerland: Implications for the global phosphorus cycle on glacial–interglacial timescales. Geochim. Cosmochim. Acta 2009, 73, 2252–2282. [Google Scholar] [CrossRef]
- Barale, L.; D’Atri, A.; Martire, L. The role of microbial activity in the generation of lower Cretaceous mixed Fe-oxide-phosphate ooids from the proven?al domain, French Maritime Alps. J. Sediment. Res. 2013, 83, 168–178. [Google Scholar] [CrossRef]
- Baturin, G.N. Issue of the relationship between primary productivity of organic carbon in ocean and phosphate accumulation (Holocene-Late Jurassic). Lithol Miner. Resour. 2007, 42, 318–348. [Google Scholar] [CrossRef]
- Arthur, M.A.; Jenkyns, H.C. Phosphorites and Paleoceanography. Oceanol. Acta 1981, 1980, 1–51. [Google Scholar]
- Fleet, M.E.; Pan, Y. Site preference of rare earth elements in fluorapatite: Binary (LREE + HREE)-substituted crystals. Am. Mineral. 1997, 82, 870–877. [Google Scholar] [CrossRef]
- Filippelli, G.M. The global phosphorus cycle: Past, present, and future. Elements 2008, 4, 89–95. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, J.; Yuan, P.; Zhang, H.; Wang, F.; Liu, D.; Dong, Y. Identifying the roles of major phosphorus fractions in REY enrichment of Pacific deep-sea sediments using sequential extraction and mineralogical analysis. Ore Geol. Rev. 2023, 157, 105430. [Google Scholar] [CrossRef]
Sample No. | Quartz | Dolomite | Fluorapatite | Pyrite | Illite | Barite | Goethite | Δ2θ(004–410) | CO32− (wt%) |
---|---|---|---|---|---|---|---|---|---|
ZK26-4-4 | 26 | − | 41.2 | 3.7 | 29.1 | − | − | 1.46 | 2.92 |
ZK26-4-8 | 43.1 | 5.7 | 21.4 | − | 28.5 | − | 1.3 | 1.57 | 0.87 |
ZK26-4-10 | 68.5 | 11.8 | − | 5.6 | 15.2 | − | − | − | − |
ZK26-4-12 | 19.7 | 11.9 | − | 17 | 44 | 7.4 | − | − | − |
ZK26-4-14 | 52.4 | 24.2 | 13.8 | 1.8 | 7.8 | − | − | 1.54 | 1.46 |
ZK26-4-17 | 45.2 | 36.6 | 11.7 | 1.1 | 5.4 | − | − | 1.54 | 1.36 |
ZK26-4-22 | 15 | 55.6 | 16.6 | − | 12.7 | − | − | 1.49 | 2.43 |
ZK26-4-27 | 32.5 | 26.2 | 19 | 4.9 | 17.6 | − | − | 1.48 | 2.64 |
ZK26-4-31 | 17.5 | 54.8 | 21 | − | 6.7 | − | − | 1.50 | 2.14 |
ZK26-4-41 | 37.5 | 34 | 18.6 | − | 9.8 | − | − | 1.41 | 4.04 |
ZK26-4-42 | 51.2 | 26.4 | 16.4 | − | 7.8 | − | − | 1.53 | 1.58 |
ZK26-4-45 | 58.1 | 8.1 | 16.9 | 5.7 | 11.3 | − | − | 1.50 | 2.12 |
ZK26-4-50 | 4.4 | 26.3 | 52.8 | 4.6 | 11.8 | − | − | 1.49 | 2.43 |
ZK26-4-51 | 12.8 | 24.7 | 62.5 | − | − | − | − | 1.46 | 3.01 |
ZK26-4-53 | 6.1 | 16 | 69.9 | 2.9 | 5.1 | − | − | 1.48 | 2.62 |
LP(ZK26-4) (n = 3) | LPB(ZK26-4) (n = 10) | UPB(ZK26-4) (n = 12) | UP(ZK26-4) (n = 5) | UP(BLT) (n = 5) | UP(LC) (n = 5) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Av. | Std. | Max | Min | Av. | Std. | Max | Min | Av. | Std. | Max | Min | Av. | Std. | Max | Min | Av. | Std. | Max | Min | Av. | Std. | |
La | 143.0 | 48.3 | 110.4 | 53.8 | 85.1 | 16.4 | 38.1 | 20.5 | 40.3 | 18.6 | 26.7 | 7.0 | 60.7 | 23.1 | 41.7 | 18.0 | 72.7 | 34.7 | 48.0 | 15.4 | 99.1 | 30.3 | 52.5 | 27.8 |
Ce | 145.5 | 37.3 | 103.8 | 58.2 | 88.6 | 17.0 | 45.0 | 24.0 | 40.2 | 12.8 | 26.7 | 8.8 | 43.6 | 18.8 | 28.1 | 10.5 | 52.7 | 24.5 | 31.8 | 12.0 | 63.6 | 23.1 | 36.9 | 15.9 |
Pr | 34.9 | 8.6 | 25.4 | 14.5 | 16.6 | 3.1 | 7.9 | 4.3 | 6.6 | 3.0 | 4.4 | 1.3 | 9.3 | 3.3 | 6.1 | 2.9 | 12.2 | 4.6 | 7.0 | 3.1 | 17.6 | 4.5 | 8.1 | 5.4 |
Nd | 152.5 | 34.4 | 108.1 | 64.3 | 66.0 | 11.1 | 32.0 | 17.7 | 27.3 | 11.7 | 17.8 | 5.2 | 40.7 | 13.8 | 26.1 | 13.2 | 52.0 | 18.0 | 28.6 | 13.7 | 73.7 | 18.2 | 32.5 | 23.3 |
Sm | 29.6 | 6.4 | 20.6 | 12.5 | 12.0 | 2.1 | 6.2 | 3.4 | 4.8 | 2.0 | 3.3 | 0.9 | 7.4 | 2.4 | 4.7 | 2.4 | 9.8 | 3.1 | 5.1 | 2.7 | 14.4 | 3.2 | 6.0 | 4.7 |
Eu | 7.5 | 1.5 | 5.0 | 3.1 | 2.4 | 0.4 | 1.2 | 0.6 | 1.0 | 0.3 | 0.6 | 0.2 | 1.5 | 0.4 | 0.9 | 0.5 | 2.1 | 0.8 | 1.2 | 0.5 | 3.1 | 0.7 | 1.4 | 1.0 |
Gd | 36.0 | 8.6 | 24.3 | 14.1 | 11.8 | 2.2 | 6.8 | 3.4 | 6.0 | 2.5 | 3.8 | 1.2 | 10.3 | 3.1 | 6.3 | 3.4 | 14.4 | 4.4 | 7.7 | 3.9 | 22.8 | 4.5 | 9.4 | 7.6 |
Tb | 5.0 | 1.3 | 3.5 | 1.9 | 1.8 | 0.4 | 1.0 | 0.5 | 0.9 | 0.4 | 0.6 | 0.2 | 1.5 | 0.4 | 0.9 | 0.5 | 1.9 | 0.6 | 1.0 | 0.5 | 3.1 | 0.6 | 1.2 | 1.0 |
Dy | 31.5 | 9.5 | 21.6 | 11.2 | 10.2 | 2.3 | 6.6 | 3.0 | 6.4 | 2.4 | 3.7 | 1.3 | 10.6 | 3.0 | 6.3 | 3.4 | 12.7 | 3.9 | 6.9 | 3.4 | 20.9 | 3.9 | 8.5 | 7.1 |
Y | 350.0 | 148.5 | 254.8 | 101.2 | 102.0 | 20.9 | 65.5 | 29.5 | 97.0 | 20.6 | 48.1 | 24.3 | 167.5 | 42.1 | 96.2 | 55.1 | 173.5 | 60.7 | 103.8 | 43.1 | 270.0 | 54.7 | 118.5 | 88.0 |
Ho | 7.0 | 2.5 | 4.9 | 2.3 | 2.3 | 0.5 | 1.5 | 0.7 | 1.6 | 0.5 | 0.9 | 0.3 | 2.6 | 0.7 | 1.6 | 0.8 | 3.1 | 1.0 | 1.7 | 0.8 | 5.0 | 1.0 | 2.0 | 1.7 |
Er | 18.5 | 7.6 | 13.4 | 5.5 | 7.3 | 1.8 | 4.5 | 2.1 | 4.9 | 1.5 | 2.6 | 1.0 | 7.6 | 2.1 | 4.5 | 2.3 | 8.5 | 2.7 | 4.8 | 2.2 | 14.4 | 2.7 | 5.9 | 4.8 |
Tm | 2.0 | 1.0 | 1.5 | 0.5 | 1.2 | 0.3 | 0.6 | 0.3 | 0.6 | 0.2 | 0.4 | 0.1 | 1.0 | 0.3 | 0.6 | 0.3 | 1.1 | 0.4 | 0.6 | 0.3 | 1.8 | 0.3 | 0.7 | 0.6 |
Yb | 9.1 | 5.7 | 7.4 | 1.7 | 8.2 | 1.3 | 3.6 | 2.0 | 3.3 | 1.2 | 1.9 | 0.6 | 4.9 | 1.4 | 3.0 | 1.4 | 5.4 | 1.8 | 3.2 | 1.4 | 9.3 | 1.8 | 3.9 | 3.1 |
Lu | 1.1 | 0.9 | 1.0 | 0.1 | 1.3 | 0.2 | 0.5 | 0.3 | 0.5 | 0.2 | 0.3 | 0.1 | 0.7 | 0.2 | 0.4 | 0.2 | 0.8 | 0.3 | 0.5 | 0.2 | 1.3 | 0.3 | 0.6 | 0.4 |
ΣREY | 953.3 | 322.2 | 705.7 | 336.7 | 410.8 | 91.1 | 221.1 | 104.6 | 224.4 | 91.9 | 141.7 | 44.2 | 358.7 | 115.3 | 227.5 | 112.0 | 422.6 | 161.6 | 148.1 | 59.6 | 619.9 | 155.4 | 169.6 | 103.8 |
Y/Ho | 60.4 | 50.3 | 53.9 | 5.6 | 50.1 | 36.5 | 43.9 | 4.7 | 70.7 | 40.4 | 52.8 | 10.2 | 69.0 | 53.1 | 60.9 | 6.1 | 64.8 | 56.9 | 62.2 | 3.2 | 65.0 | 54.2 | 59.8 | 4.3 |
Ce/Ce* | 0.6 | 0.5 | 0.5 | 0.0 | 0.9 | 0.6 | 0.7 | 0.1 | 0.9 | 0.5 | 0.7 | 0.1 | 0.8 | 0.5 | 0.6 | 0.1 | 0.6 | 0.5 | 0.6 | 0.0 | 0.7 | 0.5 | 0.6 | 0.1 |
Eu/Eu* | 1.1 | 1.0 | 1.1 | 0.1 | 1.0 | 0.7 | 1.0 | 0.1 | 1.0 | 0.6 | 0.9 | 0.1 | 0.9 | 0.7 | 0.9 | 0.1 | 1.1 | 0.8 | 1.1 | 0.1 | 1.3 | 0.8 | 1.1 | 0.3 |
Pr/Pr* | 1.3 | 1.2 | 1.2 | 0.0 | 1.2 | 1.0 | 1.1 | 0.1 | 1.3 | 1.0 | 1.1 | 0.1 | 1.2 | 1.1 | 1.2 | 0.1 | 1.3 | 1.2 | 1.2 | 0.0 | 1.3 | 1.2 | 1.2 | 0.0 |
Y/Y* | 2.3 | 1.8 | 2.0 | 0.3 | 1.8 | 1.3 | 1.6 | 0.2 | 2.7 | 1.4 | 1.9 | 0.4 | 2.6 | 1.9 | 2.3 | 0.3 | 2.4 | 2.1 | 2.3 | 0.1 | 2.4 | 2.0 | 2.2 | 0.2 |
SmN/PrN | 1.3 | 1.2 | 1.3 | 0.1 | 1.5 | 1.1 | 1.2 | 0.1 | 1.3 | 1.1 | 1.2 | 0.1 | 1.3 | 1.1 | 1.2 | 0.1 | 1.3 | 1.1 | 1.1 | 0.1 | 1.3 | 1.0 | 1.1 | 0.1 |
SmN/YbN | 1.8 | 0.6 | 1.3 | 0.7 | 1.4 | 0.4 | 0.9 | 0.3 | 1.0 | 0.7 | 0.9 | 0.1 | 1.0 | 0.6 | 0.8 | 0.1 | 0.9 | 0.6 | 0.8 | 0.1 | 0.9 | 0.6 | 0.8 | 0.1 |
DyN/SmN | 1.9 | 1.2 | 1.5 | 0.4 | 1.7 | 1.1 | 1.4 | 0.2 | 1.9 | 1.2 | 1.4 | 0.2 | 2.1 | 1.5 | 1.7 | 0.2 | 1.9 | 1.6 | 1.7 | 0.1 | 2.0 | 1.5 | 1.7 | 0.2 |
LaN/SmN | 1.1 | 0.7 | 0.9 | 0.2 | 1.6 | 0.5 | 1.0 | 0.3 | 1.6 | 1.0 | 1.2 | 0.1 | 1.8 | 1.2 | 1.4 | 0.3 | 1.7 | 1.1 | 1.5 | 0.2 | 1.9 | 1.0 | 1.4 | 0.3 |
LaN/NdN | 1.2 | 0.8 | 0.4 | 0.1 | 1.7 | 0.6 | 0.6 | 0.1 | 1.5 | 1.1 | 0.6 | 0.1 | 1.7 | 1.3 | 0.5 | 0.1 | 1.7 | 1.2 | 0.5 | 0.1 | 1.8 | 1.1 | 0.5 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, W.; Cai, C.; Ming, X.; Wang, Z.; Jiang, L. Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China. Minerals 2025, 15, 581. https://doi.org/10.3390/min15060581
Mei W, Cai C, Ming X, Wang Z, Jiang L. Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China. Minerals. 2025; 15(6):581. https://doi.org/10.3390/min15060581
Chicago/Turabian StyleMei, Wenhua, Chunfang Cai, Xinyu Ming, Zichen Wang, and Lei Jiang. 2025. "Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China" Minerals 15, no. 6: 581. https://doi.org/10.3390/min15060581
APA StyleMei, W., Cai, C., Ming, X., Wang, Z., & Jiang, L. (2025). Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China. Minerals, 15(6), 581. https://doi.org/10.3390/min15060581