Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East)
Abstract
:1. Introduction
2. Geologic and Petrologic Background
3. Materials and Methods
4. Results
4.1. Sulfide Microinclusions
4.2. Microinclusions of Au and Au-Bearing Alloys
4.3. Microinclusions of Ag-Bearing Minerals
4.4. Microinclusions of REE-Bearing Minerals
5. Discussion
5.1. Base Metal Sulfides
5.2. Gold-Bearing Minerals
5.3. Silver-Bearing Minerals
5.4. REE-Bearing Minerals
5.5. Relationship Between Microminerals and Ore Mineralization
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dilles, J.H. Petrology of the Yerington Batholith, Nevada—Evidence for evolution of porphyry copper ore fluids. Econ. Geol. 1987, 82, 1750–1789. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Hattori, K.H.; Keith, J.D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Depos. 2001, 36, 799–806. [Google Scholar] [CrossRef]
- Williams, P.J.; Barton, M.D.; Johnson, D.A.; Fontboté, L.; Antoine, M.; Geordie, O.; Marschik, R. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Econ. Geol. 2005, 100, 371–405. [Google Scholar]
- Simon, A.C.; Ripley, E.M. The role of magmatic sulfur in the formation of ore deposits. Rev. Mineral. Geochem. 2011, 73, 513–578. [Google Scholar] [CrossRef]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef]
- Pang, K.-N.; Zhou, M.-F.; Qi, L.; Shelnutt, J.G.; Wang, C.Y.; Zhao, D. Magmatic Fe-Ti-V oxide deposits in the Emeishan large igneous province, SW China. Lithos 2010, 119, 123–136. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Bain, W.M.; Steele-MacInnis, M.; Li, K.; Mazdab, F.K.; Marsh, E.E. A fundamental role of carbonate-sulfate melts in the formation of iron oxide-apatite deposits. Nat. Geosci. 2020, 13, 751–757. [Google Scholar] [CrossRef]
- Yan, S.C.; Wan, B.; Anenburg, M.; Mavrogenes, J.A. Silicate and iron phosphate melt immiscibility promotes REE enrichment. Geochem. Perspect. Lett. 2024, 32, 14–20. [Google Scholar] [CrossRef]
- Pearce, J.A.; Gale, G.H. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geol. Soc. Lond. Spec. Publ. 1977, 7, 14–24. [Google Scholar] [CrossRef]
- Richards, J.P.; McCulloch, M.T.; Chappell, B.W.; Kerrich, R. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry. Geochim. Cosmochim. Acta 1991, 55, 565–580. [Google Scholar] [CrossRef]
- Du Bray, E.A. Geochemical characteristics of igneous rocks associated with epithermal mineral deposits—A review. Ore Geol. Rev. 2017, 80, 767–783. [Google Scholar] [CrossRef]
- Wang, P.; Dong, G.; Santosh, M.; Liu, K.; Li, X. Copper isotopes trace the evolution of skarn ores: A case study from the Hongshan-Hongniu Cu deposit, southwest China. Ore Geol. Rev. 2017, 88, 822–831. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiao, R.; Zhang, D.; Wang, J.; Zhang, Y.; Li, P. Petrogenesis and tectonic setting of ore-associated intrusive rocks in the Baiyinnuoer Zn-Pb deposit, Southern Great Xing’an (NE China): Constraints from zircon U-Pb dating, geochemistry, and Sr-Nd-Pb isotopes. Minerals 2020, 10, 19. [Google Scholar] [CrossRef]
- Chen, X.; Brzozowski, M.J.; Zou, S.; Qi, L.; Li, K.; Leng, C.-B. Platinum-group element geochemistry of igneous rocks in the Chongjiang Cu-Mo_Au deposit, southern Tibet: Implications for the formation of post-collision porphyry Cu deposits. J. Petrol. 2024, 65, egae025. [Google Scholar] [CrossRef]
- Streck, M.J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Williamson, B.J.; Herrington, R.J.; Morris, A. Porphyry copper enrichment linked to excess aluminium in plagioclase. Nat. Geosci. 2016, 9, 237–241. [Google Scholar] [CrossRef]
- Chelle-Michou, C.; Chiaradia, M. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contrib. Mineral. Petrol. 2017, 172, 105. [Google Scholar] [CrossRef]
- Vigneresse, J.-L. Addressing ore formation and exploration. Geosci. Front. 2019, 10, 1613–1622. [Google Scholar] [CrossRef]
- Li, J.-X.; Fan, W.-M.; Zhang, L.-Y.; Ding, L.; Yue, Y.-H.; Xie, J.; Cai, F.-L.; Quan, Q.-Y.; Sein, K. Biotite geochemistry deciphers magma evolution of Sn-bearing granite, southern Myanmar. Ore Geol. Rev. 2020, 121, 103565. [Google Scholar] [CrossRef]
- Taghavi, A.; Maanijou, M.; Lentz, D.R.; Sepahi-Gerow, A.A.; Maruoka, T.; Fujisaki, W.; Suzuki, K. Biotite compositions and geochemistry of porphyry-related systems from the central Urumieh Dokhtar Magmatic Belt, western Yazd, Iran: Insights into mineralization potential. Lithos 2022, 412–413, 106593. [Google Scholar] [CrossRef]
- Lee, W.-S.; Kontak, D.J.; Petts, D.C.; Jackson, S.E. Mineral chemistry-driven protocol to unravel the complex paragenesis of the Klaza (Yukon, Canada) superimposed porphyry-epithermal system. Ore Geol. Rev. 2022, 143, 104761. [Google Scholar] [CrossRef]
- Tatnell, L.; Anenburg, M.; Loucks, R. Porphyry copper deposit formation: Identifying garnet and amphibole fractionation with REE apttern curvature modeling. Geophys. Res. Lett. 2023, 50, e2023GL103525. [Google Scholar] [CrossRef]
- Fan, Y.; Deng, Y.; Xia, Z.; Ren, M.; Huang, J. Petrogenesis of the Dalaku’an mafic-ultramafic intrusion in the East Kunlun, Xinjiang: Constraints from the mineralogy of amphiboles. Minerals 2024, 14, 651. [Google Scholar] [CrossRef]
- Simpson, B.; Ubide, T.; Spandler, C. Drivers of critical metal enrichment in peralkaline magmas recorded by clinopyroxene zoning. Commun. Earth Environ. 2025, 6, 89. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.-J.; Beaudoin, G.; Méric, J.; Boutroy, E.; Potvin-Doucet, C. Trace elements in magnetite as petrogenetic indicators. Mineral. Depos. 2014, 49, 785–796. [Google Scholar] [CrossRef]
- Mao, M.; Rukhlov, A.S.; Rowins, S.M.; Spence, J.; Coogan, L.A. Apatite trace element compositions: A robust new tool for mineral exploration. Econ. Geol. 2016, 111, 1187–1222. [Google Scholar] [CrossRef]
- Nathwani, C.; Blundy, J.; Wilkinson, J.J.; Buret, Y.; Loader, M.A.; Tavazzani, L.; Chelle-Michou, C. A zircon case for super-wet arc magmas. Nat. Commun. 2024, 15, 8982. [Google Scholar] [CrossRef]
- Wen, Z.-H.; Kirkland, C.L.; Li, S.-R.; Sun, X.-J.; Lei, J.-L.; Xu, B.; Hou, Z.-O. A machine learning approach to discrimination of igneous rocks and ore deposits by zircon trace elements. Am. Mineral. 2024, 109, 1129–1142. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Student, J.J.; Bodnar, R.J. Silicate melt inclusions in porphyry copper deposits: Identification and homogenization behavior. Can. Mineral. 2004, 42, 1583–1599. [Google Scholar] [CrossRef]
- Audétat, A.; Pettke, T.; Heinrich, C.; Bodnar, R.J. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 2008, 103, 877–908. [Google Scholar] [CrossRef]
- Pettke, T.; Oberli, F.; Heinrich, C.A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett. 2010, 296, 267–277. [Google Scholar] [CrossRef]
- Halter, W.; Heinrich, C.A.; Pettke, T. Magma evolution and the formation of porphyry Cu-Au ore fluids: Evidence from silicate and sulfide melt inclusions. Miner. Depos. 2005, 39, 845–863. [Google Scholar] [CrossRef]
- Candela, P. A review of shallow, ore-related granites: Textures, volatiles, and ore metals. J. Petrol. 1997, 38, 1619–1633. [Google Scholar] [CrossRef]
- Arndt, N.T.; Lesher, C.M.; Czamanske, G.K. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. Econ. Geol. 2005, 100, 5–24. [Google Scholar]
- Cerny, P.; Blevin, P.L.; Cuney, M.; London, D. Granite-related ore deposits. Econ. Geol. 2005, 100, 337–370. [Google Scholar]
- Peck, D.C.; Huminicki, M.A.E. Value of mineral deposits associated with mafic and ultramafic magmatism. Ore Geol. Rev. 2016, 72, 269–298. [Google Scholar] [CrossRef]
- Sajona, F.G.; Maury, R. Association of adakites with gold and copper mineralization in the Phillippines. C. R. Acad. Sci. Ser. IIA Earth Planet. Sci. 1988, 326, 27–34. [Google Scholar]
- Defant, M.J.; Kepezhinskas, P. Evidence suggests slab melting in arc magmas. EOS Trans. Am. Geophys. Union 2001, 82, 65–69. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N. Adakites, high-Nb basalts and copper-gold deposits in magmatic arcs and collisional orogens: An overview. Geosciences 2022, 12, 29. [Google Scholar] [CrossRef]
- Leong, T.S.J.; Mavrogenes, J.A.; Arculus, R.J. Water-sulfur-rich, oxidized adakite magmas are likely porphyry copper progenitors. Sci. Rep. 2023, 13, 5078. [Google Scholar] [CrossRef]
- Naldrett, A.J. Nickel sulfide deposits: Classification, composition, and genesis. Econ. Geol. 1981, 75, 628–685. [Google Scholar]
- Lesher, C.M. Komatiite-associated nickel sulfide deposits. Rev. Econ. Geol. 1989, 4, 45–101. [Google Scholar]
- Keays, R.R. The role of komatiitic and picritic magmas and S-saturation. Lithos 1995, 34, 1–18. [Google Scholar] [CrossRef]
- Barnes, S.-J.; Lightfoot, P.C. Formation of magmatic nickel sulfide ores and processes affecting their copper and platinum group element contents. Econ. Geol. 2005, 100, 179–214. [Google Scholar]
- Barnes, S.J.; Fiorentini, M.L. Komatiite magmas and sulfide nickel deposits: A comparison of variably endowed Archean terranes. Econ. Geol. 2012, 107, 755–780. [Google Scholar] [CrossRef]
- Müller, D.; Groves, D.I. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geol. Rev. 1993, 8, 383–406. [Google Scholar] [CrossRef]
- Soloviev, S.G.; Kryazhev, S.G.; Semenova, D.V.; Kalinin, Y.A.; Dvurechenskaya, S.S.; Sidorova, N.V. Geology, mineralization, igneous geochemistry, and zircon U-Pb geochronology of the Early Paleozoic shoshonite-related Julia skarn deposit, SW Siberia, Russia: Toward a diversity of Cu-Au-Mo skarn to porphyry mineralization in the Altai-Sayan orogenic system. Ore Geol. Rev. 2022, 142, 104706. [Google Scholar] [CrossRef]
- Schaarschmidt, A.; Klemd, R.; Regelous, M.; Voudouris, P.C.; Melfos, V.; Haase, K.M. The formation of shoshonitic magma and its relationship to porphyry-type mineralization: The Maronia pluton in NE Greece. Lithos 2021, 380–381, 105911. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N.; Krutikova, V.; Astapov, I. Nature of Paleozoic basement of the Catalan Coastal Ranges (Spain) and tectonic setting of the Priorat DOQ wine terroir: Evidence from volcanic and sedimentary rocks. Geosciences 2023, 13, 31. [Google Scholar] [CrossRef]
- Guiliani, A.; Pearson, D.G. Kimberlites: From deep Earth to diamond mines. Elements 2019, 15, 377–380. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A.; de Wit, M.; Heaman, L.M.; Pearson, D.G.; Stiefenhofer, J.; Janusczcak, N.; Shirey, S.B. A review of the geology of global diamond mines and deposits. Rev. Mineral. Geochem. 2022, 88, 1–117. [Google Scholar] [CrossRef]
- Kepezhinskas, N.; Kjarsgaard, B.A.; Sarkar, C.; Luo, Y.; Locock, A.J.; Pearson, D.G. Petrology, geochemistry, and geochronology of the Mel kimberlites, Nunavut, Canada and their relationship to Neoproterozoic to Cambrian magmatism in North America. In Mineralogy and Petrology; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Jones, A.P.; Genge, M.; Carmody, L. Carbonate melts and carbonatites. Rev. Mineral. Geochem. 2013, 75, 289–322. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Fan, H.-R.; Zhou, L.; Yang, K.-F.; She, H.-D. Carbonatite-realted REE deposits: An overview. Minerals 2020, 10, 965. [Google Scholar] [CrossRef]
- Anenburg, M.; Broom-Fendley, S.; Chen, W. Formation of rare earth deposits in carbonatites. Elements 2021, 17, 327–332. [Google Scholar] [CrossRef]
- Simandl, G.J.; Paradis, S. Carbonatites: Related ore deposits, resources, footprint, and exploration methods. Appl. Earth Sci. 2018, 127, 123–152. [Google Scholar] [CrossRef]
- Bowden, P.; Kinnaird, J.A. The petrology and geochemistry of alkaline granites from Nigeria. Phys. Earth Planet. Inter. 1984, 35, 199–211. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Williams, C.T.; Wooley, A.R. Chemical evolution and petrogenetic implications of loparite in the layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Mineral. Petrol. 2002, 74, 1–24. [Google Scholar]
- Chakhmouradian, A.R.; Zaitsev, A.N. Rare earth mineralization in igneous rocks: Sources and processes. Elements 2012, 8, 347–353. [Google Scholar] [CrossRef]
- Sheard, E.R.; Williams-Jones, A.E.; Helligmann, M.; Pederson, C.; Trueman, D.L. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104. [Google Scholar] [CrossRef]
- Benson, T.R.; Coble, M.A.; Rytuba, J.J.; Mahood, G.A. Lithium enrichment in intracontinental rhyolitic magmas leads to Li deposits in caldera basins. Nat. Commun. 2017, 8, 270. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Medlin, C.C.; Cas, R.A.F. The rare earth element (REE) mineralization potential of highly fractionated rhyolites: A potential low-grade, bulk tonnage source of critical metals. Ore Geol. Rev. 2017, 86, 548–562. [Google Scholar] [CrossRef]
- Farrow, C.E.G.; Watkinson, D. Diversity of precious-metal mineralization in footwall Cu-Ni-PGE deposits, Sudbury, Ontario: Implications for hydrothermal models of formation. Can. Mineral. 1997, 35, 817–839. [Google Scholar]
- Jennings, E.S.; Marschall, H.R.; Hawkesworth, C.J.; Storey, C.D. Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. Geology 2011, 39, 863–866. [Google Scholar] [CrossRef]
- Anenburg, M.; Mavrogenes, J.A. Experimental observations on noble metal nanonuggets and Fe-Ti oxides, and the transport of platinum group elements in silicate melts. Geochim. Cosmochim. Acta 2016, 192, 258–278. [Google Scholar] [CrossRef]
- Bell, E.A.; Kirkpatrick, H.M.; Harrison, T.M. Crystallization order effect on inclusion assemblages in magmatic accessory mineral and implications for the detrital record. Chem. Geol. 2022, 613, 121143. [Google Scholar] [CrossRef]
- Schneider, P.; Balen, D. Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): Anatase, kumdykolite and kokchetavite and implications for the magmatic evolution. Eur. J. Mineral. 2024, 36, 209–223. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Mochalov, A.G.; Yakubovich, O.V. PGE mineralization in andesite explosive breccias associated with the Poperechny iron-manganese deposit (Lesser Khingan, Far East Russia): Whole-rock geochemical, 190Pt/4He isotopic, and mineralogical evidence. Ore Geol. Rev. 2020, 118, 103352. [Google Scholar] [CrossRef]
- Berdnikov, N.; Nevstruev, V.; Kepezhinskas, P.; Astapov, I.; Konovalova, N. Gold in mineralized volcanic systems from the Lesser Khingan Range (Russian Far East): Textural types, composition and possible origins. Geosciences 2021, 11, 103. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Krutikova, V.O.; Konovalova, N.S.; Astapov, I.A. Silicate, Fe-oxide, and Au-Cu-Ag microspherules in ores and pyroclastic rocks of the Kostenga iron deposit, in the Far East of Russia. Russ. J. Pac. Geol. 2021, 15, 236–251. [Google Scholar] [CrossRef]
- Mochalov, A.G.; Berdnikov, N.V.; Galankina, O.L.; Kepezhinskas, P.K.; Liu, J.; Krutikova, V.O. PGE mineralogy in explosive breccias of the Poperechnoe Deposit (the Lesser Khingan Range, Russia). Russ. J. Pac. Geol. 2022, 16, 544–559. [Google Scholar] [CrossRef]
- Berdnikov, N.; Kepezhinskas, P.; Nevstruev, V.; Krutikova, V.; Konovalova, N.; Savatenkov, V. Magmatic-hydrothermal origin of Fe-Mn deposits in the Lesser Khingan Range (Russian Far East). Minerals 2023, 13, 1366. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Krutikova, V.O.; Kozhemyako, N. Iron-titanium oxide-apatite-sulfide-sulfate microinclusions in gabbro and adakite from the Russian Far East indicate possible magmagtic links to iron oxide-apatite and iron oxide-copper-gold deposits. Minerals 2024, 14, 188. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Berdnikov, N.V.; Krutikova, V.O.; Kozhemiako, N.V. Assemblages of microinclisions of Fe-Ti oxides, apatite, sulfates and sulfides in pyroxenites, gabbroids, and adakitic granitoids from the Gabbrovy Massif as precursors of iron oxide-copper-gold and iron oxide-apatite mineralization in the Stanovoy superterrane (Russian Far East). Russ. J. Pac. Geol. 2024, 18, 621–636. [Google Scholar]
- Glebovitsky, V.A.; Kotov, A.B.; Sal’nikova, E.B.; Larin, A.M.; Velikoslavinsky, S.D. Granulite complexes of the Dzhugdzhur-Stanovoi fold region and the Peristanovoi belt: Age, formation conditions, and geodynamic settings of metamorphism. Geotectonics 2009, 43, 253–263. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Khanchuk, A.I.; Berdnikov, N.V.; Krutikova, V.O. Rare-earth minerals in ultrabasites of the Ildeus massif (Stanovoy cratonic terrane): Influence of post-collision processes on deep ore-magmatic systems of convergent plate boundaries. Russ. J. Pac. Geol. 2024, 18, 601–620. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Berdnikov, N.V.; Krutikova, V.O.; Kepezhinskas, P.K.; Astapov, I.A.; Kirichenko, E.A. Silver mineralization in deep magmatogenic systems of ancient island arcs: The Ildeus ultrabasic massif, Stanovoy mobile belt (Russian Far East). Russ. J. Pac. Geol. 2023, 17, 322–349. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Krutikova, V.; Astapov, I. Magmatic-hydrothermal transport of metals at arc plutonic roots: Insights from the Ildeus mafic-ultramafic complex, Stanovoy Suture Zone (Russian Far East). Minerals 2023, 13, 878. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Berdnikov, N.V.; Krutikova, V.O. Metal and mineral microinclusions in adakites from the framing of the Utanak massif (Stanovoy superterrane, Russian Far East) as evidence for metal enrichment in adakitic magmas. Russ. Geol. Geophys. 2025, 66, 127–141. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Kepezhinskas, N.P.; Berdnikov, N.V.; Krutikova, V.O. Native metals and intermetallic compounds in subduction-related ultramafic rocks from the Stanovoy mobile belt (Russian Far East): Implications for redox heterogeneity in subduction zones. Ore Geol. Rev. 2020, 127, 103800. [Google Scholar] [CrossRef]
- Berdnikov, N.; Kepezhinskas, P.; Konovalova, N.; Kepezhinskas, N. Formation of gold alloys during crustal differentiation of convergent zone magmas: Constraints from an Au-rich websterite in the Stanovoy suture zone (Russian Far East). Geosciences 2022, 12, 126. [Google Scholar] [CrossRef]
- Tassara, S.; Ague, J.J.; Keller, D.S.; Rooney, A.D.; Wostbrock, J.A.G.; Axler, J.A.; Tardani, D. Osmium and oxygen isotope constraints on magma-crust interactions and the transport of copper at the roots of arcs. Chem. Geol. 2024, 664, 122301. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock—Forming minerals. Amer. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Gamble, J.A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 1991, 102, 358–374. [Google Scholar] [CrossRef]
- Krutikova, V.O.; Berdnikov, N.V.; Kepezhinskas, P.K. Metal and mineral microinclusions in rocks: Research finding interpretation and application to the study of magmatic systems of Kamchatka and Stanovoi fold belt. Russ. J. Pac. Geol. 2024, 18, 37–49. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Kepezhinskas, P.K.; Nevstruev, V.G.; Krutikova, V.O.; Konovalova, N.S. Magmatic native gold: Composition, texture, genesis, and evolution in the Earth’s crust. Russ. Geol. Geophys. 2024, 65, 388–403. [Google Scholar] [CrossRef]
- Huber, C.; Bachmann, O.; Vigneresse, J.-L.; Dufek, J.; Parmigianim, A. A physical model for metal extraction and transport in shallow magmatic systems. Geochem. Geophys. Geosyst. 2012, 13, 1–18. [Google Scholar] [CrossRef]
- Costa, S.; Fulignati, P.; Gioncada, A.; Pistolesi, M.; Bosch, D.; Bruguier, O. Tracking metal evolution in arc magmas: Insights from the active volcano of La Fossa, Italy. Lithos 2021, 180–181, 105851. [Google Scholar] [CrossRef]
- Brandl, P.A.; Portnyagin, M.; Zeppenfeld, H.; Tepley, F.J., III; de Ronde, C.E.J.; Timm, C.; Hauff, F.; Garbe-Schönberg, D.; Bousquet, R. The origin of magmas and metals at the submarine Brothers volcano, Kermadec arc, New Zealand. Econ. Geol. 2023, 118, 1577–1604. [Google Scholar] [CrossRef]
- Kogarko, L.N. Ore-forming potential of alkaline magmas. Lithos 1990, 26, 167–175. [Google Scholar] [CrossRef]
- Naumov, V.B.; Dorofeeva, V.A.; Girnis, A.V.; Kovalenker, V.A. Volatile, trace, and ore elements in magmatic melts and natural fluids: Evidence from mineral-hosted inclusions. I. Mean concentrations of 45 elements in the main geodynamic settings of the Earth. Geochem. Int. 2022, 60, 325–344. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Konovalova, N.; Kepezhinskas, N.; Krutikova, V.; Kirichenko, E. Native metals and alloys in trachytes and shoshonite from the continental United States and high-K dacite from the Bolivian Andes: Magmatic origins of ore metals in convergent and within-plate tectonic settings. Russ. J. Pac. Geol. 2022, 16, 405–426. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Z.; Breiter, K.; Mao, J.; Romer, R.L.; Cook, N.J.; Holtz, F. Magmatic-hydrothermal fluid evolution of the tin-polymetallic metallogenic systems from the Weilasituo ore district, Northeast China. Sci. Rep. 2024, 14, 3006. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, J.; Chai, F.; Yan, S.; Chen, B.; Pirajno, F. Geochemistry of the Permian Kalatongke mafic intrusions, Northern Xinjiang, Northwest China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Econ. Geol. 2009, 104, 185–203. [Google Scholar] [CrossRef]
- Su, B.-X.; Qin, K.-Z.; Tang, D.-M.; Sakyi, P.A.; Liu, P.-P.; Sun, H.; Xiao, Q.-H. Late Paleozoic mafic-ultramafic intrusions in southern Central Asian Orogenic Belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geol. Rev. 2013, 51, 57–73. [Google Scholar] [CrossRef]
- Gao, J.-F.; Wang, H.H. Permian mafic-ultramafic magmatism and sulfide mineralization in the Central Asian Orogenic Belt: A review. J. Asian Earth Sci. 2024, 264, 106071. [Google Scholar] [CrossRef]
- Evans, D.M.; Boadi, I.; Byemelwa, L.; Gilligan, J.; Kabete, J.; Marcet, P. Kabanga magmatic sulfide deposits, Tanzania: Morphology and geochemistry of associated intrusions. J. Afr. Earth Sci. 2000, 30, 651–674. [Google Scholar] [CrossRef]
- Maier, W.D.; Barnes, S.-J.; Sarkar, A.; Ripley, E.; Li, C.; Livesey, T. The Kabanga Ni sulfide deposit, Tanzania: I. Geology, petrography, silicate rock geochemistry, and sulfur and oxygen isotopes. Miner. Depos. 2010, 45, 419–441. [Google Scholar] [CrossRef]
- Tornos, F.; Galindo, C.; Casquet, C.; Pevida, L.R.; Martínez, C.; Martínez, E.; Velasco, F.; Iriondo, A. The Aguablanca Ni-(Cu) sulfide deposit, SW Spain: Geologic and geochemical controls and the relationship with a midcrustal layered mafic complex. Miner. Depos. 2006, 41, 737–769. [Google Scholar] [CrossRef]
- Piña, R.; Romeo, I.; Ortega, L.; Lunar, R.; Capote, R.; Gervilla, F.; Tejero, R.; Quesada, C. Origin and emplacement of the Aguablanca magmatic Ni-Cu-(PGE) sulfide deposit, SW Iberia: A multidisciplinary approach. Geol. Soc. Am. Bull. 2010, 122, 915–925. [Google Scholar] [CrossRef]
- Buchko, I.V.; Izokh, A.E.; Nosyrev, M.Y. Sulfide mineralization of ultramafic-mafic rocks of the Stanovoy megablock. Pac. Geol. 2002, 21, 56–68. [Google Scholar]
- Ryabov, V.V.; Smirnov, O.N.; Snisar, S.G.; Borovikova, A.A. The source of sulfur deposits in the Siberian Platfrom traps (from isotope data). Russ. Geol. Geophys. 2018, 59, 945–961. [Google Scholar] [CrossRef]
- Ripley, E.M.; Park, Y.-R.; Li, C.; Naldrett, A.J. Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey’s Bay Ni-Cu-Co deposit, Labrador, Canada. Lithos 1999, 47, 53–68. [Google Scholar] [CrossRef]
- Ripley, E.M.; Wernette, B.W.; Ayre, A.; Li, C.; Smith, J.M.; Underwood, B.S.; Keyas, R.R. Multiple S isotope studies of the Stillwater complex and country rocks. Geochim. Cosmochim. Acta 2017, 214, 226–245. [Google Scholar] [CrossRef]
- Rezeau, H.; Jagoutz, O.; Beaudry, P.; Izon, G.; Kelemen, P.; Ono, S. The role of immiscible sulfides for sulfur isotope fractionation in arc magmas: Insights from the Talkeetna island arc crustal section, south-central Alaska. Chem. Geol. 2023, 619, 121325. [Google Scholar] [CrossRef]
- Scheel, J.E. Age and Origin of the Turnagain Alaskan-Type Intrusion and Associated Ni-Sulphide Mineralization, North-Central British Columbia, Canada. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2007. [Google Scholar]
- Pollock, T. Sulfur Isotope Composition of Sulfides in Mafic Cumulates, Lesser Antilles Arc. Master’s Thesis, University of Maine, Orono, ME, USA, 2021. [Google Scholar]
- Ueda, A.; Sakai, H. Sulfur isotope study of Quaternary volcanic rocks from the Japanese Island Arc. Geochim. Cosmochim. Acta 1984, 48, 1837–1848. [Google Scholar] [CrossRef]
- Alt, J.C.; Shanks, W.C., III; Jackson, M.C. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana island arc and back-arc trough. Earth Planet. Sci. Lett. 1993, 119, 477–494. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Taylor, B.E.; van Bergen, M.J. Sulfur isotope systematics of basaltic lavas from Indonesia: Implications for the sulfur cycle in subduction zones. Earth Planet. Sci. Lett. 2001, 189, 237–252. [Google Scholar] [CrossRef]
- Labidi, J.; Cartigny, P.; Birck, J.L.; Assayag, N.; Bourrand, J.J. Determination of multiple sulfur isotopes in glass: A reapprasisal of the MORB δ34S. Chem. Geol. 2012, 334, 189–198. [Google Scholar] [CrossRef]
- De Moor, J.M.; Fisher, T.P.; Plank, T. Constraints on the sulfur subduction cycle in Central America from sulfur isotope compositions of volcanic gases. Chem. Geol. 2022, 588, 120627. [Google Scholar] [CrossRef]
- Rielli, A.; Tomkins, A.G.; Nebel, O.; Raveggi, M.; Jeon, H.; Martin, L.; Àvila, J.N. Sulfur isotope and PGE systematics of metasomatized mantle wedge. Earth Planet. Sci. Lett. 2018, 497, 181–192. [Google Scholar] [CrossRef]
- Arndt, N.T.; Czamanske, G.K.; Walker, R.J.; Chauvel, C.; Fedorenko, V.A. Geochemistry and origin of the intrusive hosts of the Norilsk-Talnakh Cu-Ni-PGE sulfide deposits. Econ. Geol. 2003, 98, 495–515. [Google Scholar]
- Pang, K.-N.; Arndt, N.; Svensen, E.; Planke, S.; Polozov, A.; Polteau, S.; Iizuka, Y.; Chung, S.-L. A petrologic, geochemical and Sr-Md isotopic study on contact metamorphism and degassing of Devonian evaporates in the Norilsk aureoles, Siberia. Contrib. Mineral. Petrol. 2013, 165, 683–704. [Google Scholar] [CrossRef]
- Muth, M.J.; Wallace, P.J. Sulfur recycling in subduction zones and the oxygen fugacity of mafic arc magmas. Earth Planet. Sci. Lett. 2022, 599, 117836. [Google Scholar] [CrossRef]
- Milidragovic, D.; Nott, J.A.; Spence, D.W.; Schumann, D.; Scoates, J.S.; Nixon, G.T.; Stern, R.A. Sulfate recycling at subduction zones indicated by sulfur isotope systematics of Mesozoic ultramafic island arc cumulates in the North America Cordillera. Earth Planet. Sci. Lett. 2023, 620, 118337. [Google Scholar] [CrossRef]
- Graybeal, F.T.; Vikre, P.G. A review of silver-rich mineral deposits and their metallogeny. In The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries; Goldfarb, R.J., Marsh, E.E., Monecke, T., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2010; Volume 15, pp. 85–117. [Google Scholar] [CrossRef]
- Arribas, A.; Mathur, R.; Megaw, P.; Arribas, I. The isotopic composition of silver in ore minerals. Geochim. Geophys. Geosyst. 2020, 21, e2020GC009097. [Google Scholar] [CrossRef]
- Kozhemyako, N.; Kepezhinskas, P.; Berdnikov, N.; Krutikova, V. Fingerprints of S-Cl-rich fluids in Kamchatka lavas: Evidence from mineral microinclusions and ore metal geochemistry. In Proceedings of the Goldschmidt 2024 Conference Abstracts, Chicago, IL, USA, 18–23 August 2024. [Google Scholar] [CrossRef]
- Dostal, J. Rare earth element deposits of alkaline igneous rocks. Resources 2017, 6, 34. [Google Scholar] [CrossRef]
- Gao, L.-G.; Hu, R.-Z.; Chen, Y.-W.; Bi, X.-W.; Gao, J.-F.; Dong, S.-H.; Luo, J.-C. Formation of Huayangchuan (Central China) carbonatite-associated REE-Nb-U polymetallic deposit constrained from monazite mineral chemistry and isotope systematics: HREE enrichment in late-stage monazite. Ore Geol. Rev. 2023, 157, 105450. [Google Scholar] [CrossRef]
- Benson, E.K.; Watts, K.E. Apatite and monazite geochemistry record magmatic and metasomatic processes in rare earth element mineralization at Mountain Pass, California. Econ. Geol. 2024, 119, 1611–1642. [Google Scholar] [CrossRef]
- Beland, C.M.J.; Williams-Jones, A.E. The genesis of the Ashram REE deposit, Quebec: Insights from bulk-rock geochemistry, apatite-monazite-bastnäsite replacement reactions and mineral chemistry. Chem. Geol. 2021, 578, 120298. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, Z.; Mayanovic, R.A.; Hou, Z. Experimental evidence reveals the mobilization and mineralization processes of rare earth elements in carbonatites. Sci. Adv. 2024, 10, eadm9118. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Santosh, M.; Yan, G.-Y.; Shen, J.-F.; Yuan, M.-W.; Alam, M.; Li, R.-S. Multistage ore formation in the world’s largest REE-Nb-Fe deposit of Bayan Obo, North China Craton: New insights and implications. Ore Geol. Rev. 2024, 164, 105817. [Google Scholar] [CrossRef]
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry, Exploration; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–743. [Google Scholar]
- Barnes, S.J.; Holwell, D.A.; Vaillant, M. Magmatic sulfide ore deposits. Elements 2017, 13, 89–95. [Google Scholar] [CrossRef]
- Smith, J.W.; Holwell, D.A.; McDonald, I. Precious and base metal geochemistry and mineralogy of thee Grasvally norite-pyroxenite-anorthosite (GNPA) member, northern Bushveld Complex, South Africa: Implications for a multistage emplacement. Miner. Depos. 2014, 49, 667–692. [Google Scholar] [CrossRef]
- Cabri, L.J.; LaFlammer, J.H.G. Rhodium, platinum, and gold alloys from the Stillwater Complex. Can. Mineral. 1974, 12, 399–403. [Google Scholar]
- Gupta, A.R.; Boudreau, A.E. The role of hydrothermal processes and the formation of the J-M reef and associated rocks of olivine-bearing zone I of the Stillwater Complex, Montana. Miner. Depos. 2025, 60, 351–374. [Google Scholar] [CrossRef]
- Sullivan, N.A.; Zajacz, Z.; Brenan, J.M.; Hinder, J.C.; Tsay, A.; Yin, Y. The solubility of gold and palladium in magmatic brines: Implications for PGE enrichment in mafic-ultramafic and porphyry environments. Geochim. Cosmochim. Acta 2022, 316, 230–252. [Google Scholar] [CrossRef]
- Kesler, S.E. Ore-forming fluids. Elements 2005, 1, 13–18. [Google Scholar] [CrossRef]
Mineral Associations | Microminerals | Known Disseminated Mineralization | Metal Grades (1) |
---|---|---|---|
Sulfides | Pentlandite, Co-enriched pentlandite, pyrrhotite, Ni-pyrrhotite, chalcopyrite, chalcocite, Co-Ni-Fe-Zn sulfide | Pentlandite, Co-enriched pentlandite, pyrrhotite, chalcopyrite, bornite with minor sphalerite and galena | Up to 0.55% Ni, 0.1% Co and 0.34% Cu in individual grab samples; typically, 0.05–0.2% Ni, 0.01–0.02% Co, and 0.005–0.08% Cu in the drill core |
Au and Au alloys | Native Au, Ag-Au and Cu-Ag-Au alloys | Mostly Cu-Ag-Au (±Ni and Zn) alloys | Up to 596 g/t Au in individual grab samples; typically, 0.01–2.5 g/t in the drill core |
Ag-bearing minerals | Cupriferous silver, acanthite, silver halides | Currently unknown | Up to 163 g/t in select drill core samples; typically, 0.1–1 g/t over widths of several m in the core |
REE-bearing minerals | Monazite, xenotyme, REE oxides and carbonates | Currently unknown | Total REE content of 330–890 g/t in individual samples; one sample has a total REE content of 1938 g/t |
Principal Intrusive Lithologies | Base Metal Sulfides | Au-Bearing Microinclusions | Ag-Bearing Microinclusions | REE-Bearing Microinclusions |
---|---|---|---|---|
Dunite, plagioclase-bearing dunite | Abundant | Present | Present | Present |
Harzburgite, lherzolite | Abundant | Present | Present | Absent |
Wehrlite, websterite | Abundant | Abundant | Abundant | Present |
Pyroxenite dikes and veins | Present | Abundant | Abundant | Absent |
Gabbro-norite and gabbro-anorthosite | Present * | Absent | Present | Absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krutikova, V.; Berdnikov, N.; Kepezhinskas, P. Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East). Minerals 2025, 15, 504. https://doi.org/10.3390/min15050504
Krutikova V, Berdnikov N, Kepezhinskas P. Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East). Minerals. 2025; 15(5):504. https://doi.org/10.3390/min15050504
Chicago/Turabian StyleKrutikova, Valeria, Nikolai Berdnikov, and Pavel Kepezhinskas. 2025. "Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East)" Minerals 15, no. 5: 504. https://doi.org/10.3390/min15050504
APA StyleKrutikova, V., Berdnikov, N., & Kepezhinskas, P. (2025). Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East). Minerals, 15(5), 504. https://doi.org/10.3390/min15050504