Advancements in Anode Slime Treatment: Effects of pH, Temperature, and Concentration of ClO−/OH− on Selenium Dissolution from Decopperized Anode Slimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Decopperized Anode Slimes
2.2. Leaching Experiments
3. Results
3.1. Mineralogical Characterization
3.2. Selenium Leaching
3.3. Characterization of Leaching Residue Using SEM/EDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayes, S.M.; McCullough, E.A. Critical Minerals: A Review of Elemental Trends in Comprehensive Criticality Studies. Resour. Policy 2018, 59, 192–199. [Google Scholar] [CrossRef]
- Müller, D.; Groves, D.I.; Santosh, M.; Yang, C.-X. Critical Metals: Their Applications with Emphasis on the Clean Energy Transition. Geosystems Geoenviron. 2025, 4, 100310. [Google Scholar] [CrossRef]
- Li, Y.; Baker, J.; Fang, Y.; Cao, H.; Pleydell-Pearce, C.; Watson, T.; Chen, S.; Zhao, G. Comparative Environmental Impacts Analysis of Technologies for Recovering Critical Metals from Copper Anode Slime: Insights from LCA. Environ. Chem. Ecotoxicol. 2025, 7, 275–285. [Google Scholar] [CrossRef]
- Rao, S.; Liu, Y.; Wang, D.; Cao, H.; Zhu, W.; Yang, R.; Duan, L.; Liu, Z. Pressure Leaching of Selenium and Tellurium from Scrap Copper Anode Slimes in Sulfuric Acid-Oxygen Media. J. Clean. Prod. 2021, 278, 123989. [Google Scholar] [CrossRef]
- Zeng, Y.; Zou, J.; Liao, C.; Liu, F.; Zhou, X. Selective Separation and Recovery of Selenium from Copper Anode Slime by Compound Leaching Followed by Sulfate Roasting. Miner. Eng. 2022, 186, 107749. [Google Scholar] [CrossRef]
- Khakmardan, S.; Rezai, B.; Abdollahzadeh, A.; Ghorbani, Y. From Waste to Wealth: Unlocking the Value of Copper Anode Slimes through Systematic Characterization and Pretreatment. Miner. Eng. 2023, 200, 108141. [Google Scholar] [CrossRef]
- Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; King, S.A.; Liebezeit, V.; Slattery, A.D. Detailed Characterisation of Precious Metals and Critical Elements in Anode Slimes from the Olympic Dam Copper Refinery, South Australia. Miner. Eng. 2024, 206, 108539. [Google Scholar] [CrossRef]
- Melo, E.; Hernández, M.-C.; Benavente, O.; Quezada, V. Selenium Dissolution from Decopperized Anode Slimes in ClO−/OH− Media. Minerals 2022, 12, 1228. [Google Scholar] [CrossRef]
- Li, B.; Deng, J.; Jiang, W.; Zha, G.; Yang, B. Removal of Arsenic, Lead and Bismuth from Copper Anode Slime by a One-Step Sustainable Vacuum Carbothermal Reduction Process. Sep. Purif. Technol. 2023, 310, 123059. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, G.; Xu, W.; Wang, X.; Song, J.; Zhu, T. Study on Oxidative Leaching of Multi-Component in Copper Anode Slime Enhanced by Hydrogen Peroxide. Sep. Purif. Technol. 2025, 361, 131635. [Google Scholar] [CrossRef]
- Melo Aguilera, E.; Hernández Vera, M.C.; Viñals, J.; Graber Seguel, T. Characterization of Raw and Decopperized Anode Slimes from a Chilean Refinery. Metall. Mater. Trans. B 2016, 47, 1315–1324. [Google Scholar] [CrossRef]
- Chen, A.; Peng, Z.; Hwang, J.-Y.; Ma, Y.; Liu, X.; Chen, X. Recovery of Silver and Gold from Copper Anode Slimes. JOM 2015, 67, 493–502. [Google Scholar] [CrossRef]
- Chen, T.T.; Dutrizac, J.E. Mineralogical Characterization of a Copper Anode and the Anode Slimes from the La Caridad Copper Refinery of Mexicana de Cobre. Metall. Mater. Trans. B 2005, 36, 229–240. [Google Scholar] [CrossRef]
- Chen, T.T.; Dutrizac, J.E. Mineralogical Characterization of Anode Slimes—9. The Reaction of Kidd Creek Anode Slimes with Various Lixiviants. Can. Metall. Q. 1993, 32, 267–279. [Google Scholar] [CrossRef]
- Chen, T.T.; Dutrizac, J.E. The Mineralogy of Copper Electrorefining. JOM 1990, 42, 39–44. [Google Scholar] [CrossRef]
- Chen, T.T.; Dutrizac, J.E. Mineralogical Characterization of Anode Slimes—II. Raw Anode Slimes from Inco’s Copper Cliff Copper Refinery. Can. Metall. Q. 1988, 27, 97–105. [Google Scholar] [CrossRef]
- Liu, J.; Hong, Y.; Lin, G.; Wang, S.; Zhang, L. Ultrasound Assisted Sodium-Chlorate Leaching of Selenium from Copper Anode Slime. Hydrometallurgy 2023, 222, 106195. [Google Scholar] [CrossRef]
- Zhou, X.; Liao, C.; Liang, J.; Liu, M.; Xiao, H.; Liu, F.; Zeng, Y. Selective Separation and Efficient Extraction of Tellurium and Gold from Complex Copper Anode Slime. Sep. Purif. Technol. 2025, 362, 131625. [Google Scholar] [CrossRef]
- Cooper, W.C. The Treatment of Copper Refinery Anode Slimes. JOM 1990, 42, 45–49. [Google Scholar] [CrossRef]
- Ludvigsson, B.M.; Larsson, S.R. Anode Slimes Treatment: The Boliden Experience. JOM 2003, 55, 41–44. [Google Scholar] [CrossRef]
- Komori, K.; Ito, S.; Okada, S.; Iwahori, S. Hydrometallurgical process of precious metal in Naoshima smelter and refinery. In Proceedings of the Copper 2010, Hamburg, Germany, 6–10 June 2010; pp. 1403–1411. [Google Scholar]
- Kim, D.; Wang, S. Developments in Copper Anode Slimes-Wet Chlorination-Processing; Copper: Hamburg, Germany, 2010. [Google Scholar]
- Dönmez, B.; Çelik, C.; Çolak, S.; Yartaşi, A. Dissolution Optimization of Copper from Anode Slime in H2 SO4 Solutions. Ind. Eng. Chem. Res. 1998, 37, 3382–3387. [Google Scholar] [CrossRef]
- Amer, A.M. Processing of Copper Anodic-Slimes for Extraction of Valuable Metals. Waste Manag. 2003, 23, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, Y.; Yu, Y.; Fu, G.; Liu, Y.; Sun, Z.; Ye, S. Enhanced Selective Recovery of Selenium from Anode Slime Using MnO2 in Dilute H2SO4 Solution as Oxidant. J. Clean. Prod. 2019, 209, 494–504. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, T.; Xu, B.; Yang, J.; Chen, Y.; Li, Q.; Yang, Y. Comprehensive Recoveries of Selenium, Copper, Gold, Silver and Lead from a Copper Anode Slime with a Clean and Economical Hydrometallurgical Process. Chem. Eng. J. 2020, 393, 124762. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Tong, L.; Jin, Z.; Yin, L.; Chen, G. Leaching Kinetics of Selenium from Copper Anode Slimes by Nitric Acid-Sulfuric Acid Mixture. Trans. Nonferrous Met. Soc. China 2018, 28, 186–192. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Y.L.; Yu, Y.; Fu, G.Y.; Han, P.W.; Sun, Z.H.I.; Ye, S.F. An Environmentally Friendly Process to Selectively Recover Silver from Copper Anode Slime. J. Clean. Prod. 2018, 187, 708–716. [Google Scholar] [CrossRef]
- Burriel, F.; Lucena, F.; Arribas, S.; Hernández, J. Química Analítica Cualitativa, 18th ed.; Thomson Editores: Madrid, Spain, 2008; pp. 567–570. [Google Scholar]
- Hernández, M.C.; Benavente, O.; Roca, A.; Melo, E.; Quezada, V. Selective Leaching of Arsenic from Copper Concentrates in Hypochlorite Medium. Minerals 2023, 13, 1372. [Google Scholar] [CrossRef]
Factor/Level | (1) | (2) | (3) |
---|---|---|---|
Temperature, °C | 35 | 45 | 55 |
ClO−, M | 0.4 | 0.53 | 0.68 |
pH | 11 | 11.5 | 12 |
Element | %Weight | %Atomic |
---|---|---|
Ag | 65.48 | 58.13 |
Se | 34.52 | 41.87 |
No. Test | Temperature, °C | ClO−, M | pH | Selenium Solution (%) |
---|---|---|---|---|
1 | 35 | 0.40 | 11.0 | 78.0 |
2 | 35 | 0.53 | 11.5 | 85.9 |
3 | 35 | 0.68 | 12.0 | 83.4 |
4 | 45 | 0.40 | 11.5 | 81.7 |
5 | 45 | 0.53 | 12.0 | 77.1 |
6 | 45 | 0.68 | 11.0 | 84.7 |
7 | 55 | 0.40 | 12.0 | 79.6 |
8 | 55 | 0.53 | 11.0 | 94.2 |
9 | 55 | 0.68 | 11.5 | 91.8 |
% Selenium Dissolution | |||
---|---|---|---|
Level | ClO−, M | pH | Temperature, °C |
Low (1) | 79.70 | 85.0 | 82.40 |
Medium (2) | 85.70 | 86.50 | 81.20 |
High (3) | 88.53 | 86.63 | 80.03 |
Factor | F | p-Value |
---|---|---|
ClO− | 17.74 | 0.05 |
pH | 6.80 | 0.12 |
Temperature | 14.72 | 0.06 |
Element | Weight % | Atomic % |
---|---|---|
Cl | 16.50 | 21.55 |
O | 14.17 | 40.97 |
Pb | 4.80 | 1.08 |
Na | 4.12 | 8.32 |
Sb | 3.73 | 1.43 |
Cu | 2.28 | 1.66 |
Ag | 50.04 | 21.48 |
Si | 0.96 | 1.59 |
S | 0.38 | 0.55 |
Ba | 1.47 | 0.51 |
Te | 0.83 | 0.30 |
Se | 0.34 | 0.21 |
As | 0.28 | 0.18 |
Al | 0.09 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, E.; Jaldín, Á. Advancements in Anode Slime Treatment: Effects of pH, Temperature, and Concentration of ClO−/OH− on Selenium Dissolution from Decopperized Anode Slimes. Minerals 2025, 15, 442. https://doi.org/10.3390/min15050442
Melo E, Jaldín Á. Advancements in Anode Slime Treatment: Effects of pH, Temperature, and Concentration of ClO−/OH− on Selenium Dissolution from Decopperized Anode Slimes. Minerals. 2025; 15(5):442. https://doi.org/10.3390/min15050442
Chicago/Turabian StyleMelo, Evelyn, and Álvaro Jaldín. 2025. "Advancements in Anode Slime Treatment: Effects of pH, Temperature, and Concentration of ClO−/OH− on Selenium Dissolution from Decopperized Anode Slimes" Minerals 15, no. 5: 442. https://doi.org/10.3390/min15050442
APA StyleMelo, E., & Jaldín, Á. (2025). Advancements in Anode Slime Treatment: Effects of pH, Temperature, and Concentration of ClO−/OH− on Selenium Dissolution from Decopperized Anode Slimes. Minerals, 15(5), 442. https://doi.org/10.3390/min15050442