Time-Dependent Tap Density Modeling of Graphite Milled by Vibrating Disc Mill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. dt Measurements
2.3. Concept of Particle Degree of Sphericity
3. Results
3.1. Effect of Particle Size on dt Values
3.2. Empirical Time-Dependent dt Models
3.2.1. Linear Fitting Model
3.2.2. Logarithmic Fitting Model
3.2.3. Polynomial Fitting Model
3.2.4. Power Fitting Model
3.2.5. Exponential Fitting Model
3.2.6. Discussion
3.3. Validation of the Fitting Models Established: Predicted Versus Experimental dt Values
3.4. Correlation of dt and Particle Shape
4. Conclusions
5. Future Recommendation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1/BRAR | Inverse of bounding rectangular aspect ratio; degree of particle sphericity |
BRARav. | Average value of bounding rectangular aspect ratio |
BRL | Bounding rectangle length |
BRW | Bounding rectangle width |
DIA | Dynamic Image Analysis |
dt | Tap density |
EDS | X-ray spectroscopy |
HEVs | Hybrid electric vehicles |
LIB | Lithium-ion battery |
m | Mass of the powder (gr) |
R2 | Coefficient of determination |
SEM | Scanning Electron Microscopy |
V | Volume of the powder (g/cm3) |
VDM | Vibrating Disc Mill |
XRD | X-Ray Diffraction |
References
- Future Battery Industries CRC. Natural Graphite Purification Report. AusIndustry Cooperation Research Centres Program. September 2022. Available online: https://fbicrc.com.au/wp-content/uploads/2023/11/FBICRC_Graphite-Purification-Report-VFINAL-Sept22.pdf (accessed on 27 February 2003).
- Schalkwijk, W.A.; Scrosati, B. Advances in Lithium-Ion Batteries; Kluwer Academic: New York, NY, USA, 2002. [Google Scholar]
- Qi, Y.; Guo, H.; Hector, L.G., Jr.; Timmons, A. Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation. J. Electrochem. Soc. 2010, 157, A558–A566. [Google Scholar] [CrossRef]
- Liu, P. Improving the Tapped Density of the Cathode Material to Make a Lithium-Ion Battery Hold More Energy; Application Notes; Application Research Lab, Bettersize Instruments Ltd.: Liaoning, China, 2021; Available online: https://www.bettersizeinstruments.com/learn/knowledge-center/improving-the-tapped-density-of-the-cathode-material-to-make-a-lithium-ion-battery-hold-more-energy/ (accessed on 27 February 2003).
- Lee, G.-H.; Yi, H.; Kim, Y.-J.; Lee, J.B.; An, J.-C.; Park, S.-M.; Oh, K.; Yoon, S.-H.; Park, J.-I. A Shortened Process of Artificial Graphite Manufacturing for Anode Materials in Lithium-Ion Batteries. Processes 2024, 12, 2709. [Google Scholar] [CrossRef]
- IRENA. Geopolitics of the Energy Transition: Critical Materials; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Jul/IRENA_Geopolitics_energy_transition_critical_materials_2023.pdf (accessed on 27 February 2003).
- Ying, J.; Wan, C.; Jiang, C.; Li, Y. Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J. Power Sources 2001, 99, 78–84. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Yang, X.; Liu, Z.; Wei, Q.; Shu, H. High Tap Density Spherical Li[Ni0.5Mn0.3Co0.2]O2 Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries. Int. J. Electrochem. 2012, 9, 323560. [Google Scholar] [CrossRef]
- Zhang, J.-p.; Wang, D.-k.; Zhang, L.-h.; Liu, H.-y.; Liu, Z.-b.; Xing, T.; Ma, Z.-k.; Chen, X.-h.; Song, H.-h. A wet granulation method to prepare graphite particles with a high tap density for high volumetric energy density lithium-ion storage. New Carbon Mater. 2022, 37, 402–410. [Google Scholar] [CrossRef]
- Mazlan, M.R.; Jamadon, N.H.; Sulong, A.B.; Aripin, M.A.; Jamhari, F.I.; Yusof, F. Comparative Study of Particle Size and Shape Effects on Powder Packing Densities. J. Kejuruter. 2024, 36, 2563–2570. [Google Scholar] [CrossRef]
- Bettersize. BeDensi T Pro Series. 2025. Available online: https://www.bettersizeinstruments.com/products/bedensi-t-series-tapped-density-meter/ (accessed on 27 February 2003).
- Azom.com. Improving Lithium-Ion Batteries Through Measuring Tapped Density. 2021. Available online: https://www.azom.com/article.aspx?ArticleID=21056 (accessed on 27 February 2003).
- Jeswiet, J.; Szekeres, A. Energy Consumption in Mining Comminution. Procedia CIRP 2016, 48, 140–145. [Google Scholar] [CrossRef]
- Seino, K.; Golman, B.; Shinohara, K.; Ohzeki, K. Variation of packing structure of cast film with preparation conditions and particle properties. TANSO 2005, 216, 2–7. [Google Scholar] [CrossRef]
- Qiu, X. Investigating the Particle Size and Shape Influences on Anode Energy Density of Lithium-Ion Batteries; Bettersize Application Note; Application Research Lab, Bettersize Instruments Ltd.: Liaoning, China, 2024; Available online: https://www.bettersizeinstruments.com/uploads/file/investigating-the-particle-size-and-shape-influences-on-anode-energy-density-of-lithium-ion-batteries.pdf (accessed on 27 February 2003).
- Ulusoy, U.; Burat, F.; Bayar, G.; Mojtahedi, B.; Güven, G. Modeling the change of the sphericity feature of graphite particles ground in a ball and vibrating disc mill with grinding time. J. Energy Storage 2024, 97, 112814. [Google Scholar] [CrossRef]
- Andrić, L.; Trumić, M.; Trumić, M.; Nikolić, V. Micronization of zeolite in vibration mill. RSD 2018, 11, 63–71. [Google Scholar] [CrossRef]
- ISO 3953:2011; Metallic Powders—Determination of Tap Density. Technical Committee ISO/TC 119: Stockholm, Sweden, 2011.
- Ulusoy, U. Dynamic image analysis of differently milled talc particles and comparison by various methods. Part. Sci. Technol. 2018, 36, 332–339. [Google Scholar] [CrossRef]
- Ulusoy, U. Quantifying of particle shape differences of differently milled barite using a novel technique: Dynamic image analysis. Materialia 2019, 8, 100434. [Google Scholar] [CrossRef]
- Czajkowska, M.; Sznitowska, M.; Kleinebudde, P. Determination of coating thickness of minitablets and pellets by dynamic image analysis. Int. J. Pharm. 2015, 495, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Weger, R.J.; Eberli, G.P.; Baechle, G.T.; Massaferro, J.L.; Sun, Y.-F. Quantitative characterization of carbonate pore systems by digital image Analysis. AAPG Bull. 1998, 93, 1297–1317. [Google Scholar] [CrossRef]
- Ma, G.; Bu, X.; Ulusoy, U.; Xie, G. Effect of particle shape on bubble-particle attachment behavior: Roles of surfaces, edges and vertexes. J. Clean. Prod. 2023, 429, 139606. [Google Scholar] [CrossRef]
- Particle Insight Manual. Micromeritics Instrument Corp.: Norcross, GA, USA, 2013.
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behaviour, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Barrett, P.J. The shape of rock particles, a critical review. Sedimentology 1980, 27, 291–303. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle shape: A review and new methods of characterization and classification. Sedimentology 2008, 55, 31–63. [Google Scholar] [CrossRef]
- Ulusoy, U. A review of particle shape effects on material properties for various engineering applications: From macro to nanoscale. Minerals 2023, 13, 91. [Google Scholar] [CrossRef]
- Disma, F.; Aymard, L.; Dupont, L.; Tarascon, J.-M. Effect of Mechanical Grinding on the Lithium Intercalation Process in Graphites and Soft Carbons. J. Electrochem. Soc. 1996, 143, 3959–3972. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Lu, P.; Xie, Y. Maximum packing densities of basic 3D objects. Chin. Sci. Bull. 2010, 55, 114–119. [Google Scholar] [CrossRef]
- Wang, S.; Marmysh, D.; Ji, S. Construction of irregular particles with superquadric equation in DEM. Theor. Appl. Mech. Lett. 2020, 10, 68–73. [Google Scholar] [CrossRef]
- Wouterse, A.; Williams, S.R.; Philipse, A.P. Effect of particle shape on the density and microstructure of random packings. J. Phys. Condens. Matter. 2007, 19, 406215. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Gan, J.Q.; Pinson, D.; Yu, A.B.; Zhou, Z.Y. Dynamic analysis of poured packing process of ellipsoidal particles. Powder Technol. 2021, 385, 444–454. [Google Scholar] [CrossRef]
- Pisecky, J. Handbook of Milk Powder Manufacture; GEA Process Engineering A/S: Soeborg, Denmark, 2012. [Google Scholar]
- Ding, H.; Li, B.; Boiarkina, I.; Wilson, D.I.; Yu, W.; Young, B.R. Effects of Morphology on the Bulk Density of Instant Whole Milk Powder. Foods 2020, 9, 1024. [Google Scholar] [CrossRef]
Fitting Models | Size Fractions (mm) | Equations | R2 |
---|---|---|---|
Linear | 0.150–0.250 | dt = −0.0046t + 1.2963 | 0.7424 |
0.053–0.150 | dt = −0.0033t + 1.3253 | 0.9713 | |
Logarithmic | 0.150–0.250 | dt = −0.144ln(t) + 1.6223 | 0.8944 |
0.053–0.150 | dt = −0.089ln(t) + 1.5126 | 0.8821 | |
Second-order polynomial | 0.150–0.250 | dt = 0.0001t2 − 0.0138t + 1.4191 | 0.8700 |
0.053–0.150 | dt = −0.000005t2 − 0.002933t + 1.320119 | 0.9718 | |
Power | 0.150–0.250 | dt = 1.7091t(−0.122) | 0.9086 |
0.053–0.150 | dt = 1.5517t(−0.074) | 0.8703 | |
Exponential | 0.150–0.250 | dt = 1.2988e−0.004t | 0.7599 |
0.053–0.150 | dt = 1.3298e−0.003t | 0.9699 |
Fitting Model | Size (mm) | Grinding Time | Absolute Error * | Relative Error (%) ** |
---|---|---|---|---|
Linear | 0.150–0.250 | 10 s | 0.078 | 5.851 |
20 s | −0.070 | −6.199 | ||
30 s | −0.037 | −3.272 | ||
40 s | −0.012 | −1.080 | ||
50 s | 0.014 | 1.324 | ||
60 s | 0.020 | 1.881 | ||
0.053–0.150 | 10 s | −0.007 | −0.577 | |
20 s | 0.003 | 0.224 | ||
30 s | 0.016 | 1.295 | ||
40 s | −0.009 | −0.739 | ||
50 s | −0.012 | −1.057 | ||
60 s | 0.005 | 0.465 | ||
Logarithmic | 0.150–0.250 | 10 s | 0.037 | 2.807 |
20 s | −0.057 | −5.019 | ||
30 s | −0.011 | −0.974 | ||
40 s | 0.009 | 0.846 | ||
50 s | 0.022 | 2.002 | ||
60 s | 0.007 | 0.687 | ||
0.053–0.150 | 10 s | −0.023 | −1.773 | |
20 s | 0.016 | 1.280 | ||
30 s | 0.033 | 2.616 | ||
40 s | 0.000 | 0.022 | ||
50 s | −0.016 | −1.417 | ||
60 s | −0.016 | −1.380 | ||
Second-order polynomial | 0.150–0.250 | 10 s | 0.037 | 2.779 |
20 s | −0.049 | −4.330 | ||
30 s | 0.026 | 2.363 | ||
40 s | 0.073 | 6.662 | ||
50 s | 0.102 | 9.394 | ||
60 s | 0.089 | 8.536 | ||
0.053–0.150 | 10 s | −0.005 | −0.420 | |
20 s | 0.003 | 0.212 | ||
30 s | 0.015 | 1.188 | ||
40 s | −0.010 | −0.865 | ||
50 s | −0.013 | −1.115 | ||
60 s | 0.006 | 0.568 | ||
Power | 0.150–0.250 | 10 s | 0.037 | 2.822 |
20 s | −0.052 | −4.575 | ||
30 s | −0.007 | −0.628 | ||
40 s | 0.011 | 0.972 | ||
50 s | 0.020 | 1.865 | ||
60 s | 0.003 | 0.262 | ||
0.053–0.150 | 10 s | −0.024 | −1.846 | |
20 s | 0.019 | 1.502 | ||
30 s | 0.036 | 2.895 | ||
40 s | 0.004 | 0.299 | ||
50 s | −0.014 | −1.176 | ||
60 s | −0.014 | −1.195 | ||
Exponential | 0.150–0.250 | 10 s | 0.080 | 6.034 |
20 s | −0.065 | −5.727 | ||
30 s | −0.030 | −2.704 | ||
40 s | −0.006 | −0.577 | ||
50 s | 0.017 | 1.595 | ||
60 s | 0.018 | 1.749 | ||
0.053–0.150 | 10 s | −0.006 | −0.437 | |
20 s | 0.010 | 0.774 | ||
30 s | 0.027 | 2.177 | ||
40 s | 0.005 | 0.433 | ||
50 s | 0.004 | 0.313 | ||
60 s | 0.022 | 1.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güven, G.; Ulusoy, U.; Burat, F.; Mojtahedi, B.; Bayar, G. Time-Dependent Tap Density Modeling of Graphite Milled by Vibrating Disc Mill. Minerals 2025, 15, 403. https://doi.org/10.3390/min15040403
Güven G, Ulusoy U, Burat F, Mojtahedi B, Bayar G. Time-Dependent Tap Density Modeling of Graphite Milled by Vibrating Disc Mill. Minerals. 2025; 15(4):403. https://doi.org/10.3390/min15040403
Chicago/Turabian StyleGüven, Gülşah, Ugur Ulusoy, Fırat Burat, Behrad Mojtahedi, and Guler Bayar. 2025. "Time-Dependent Tap Density Modeling of Graphite Milled by Vibrating Disc Mill" Minerals 15, no. 4: 403. https://doi.org/10.3390/min15040403
APA StyleGüven, G., Ulusoy, U., Burat, F., Mojtahedi, B., & Bayar, G. (2025). Time-Dependent Tap Density Modeling of Graphite Milled by Vibrating Disc Mill. Minerals, 15(4), 403. https://doi.org/10.3390/min15040403