Apatite Geochemistry of the Slyudyanka Deposit, Siberia: Trace Element Composition, Y/Ho Anomaly, and Multivariate Statistical Analysis for Genetic Classification
Abstract
1. Introduction
2. Geological Setting, Materials, and Methods
2.1. Geological Setting

| Sample | Genetic Type | Mn | As | Sr | Y | La | Ce | Pb | Th | U |
|---|---|---|---|---|---|---|---|---|---|---|
| B-2307-A | Metamorphic | 8.4 | 10.4 | 580 | 24.0 | <LOD | 21.7 | 11.0 | 14.6 | 154 |
| B-233-A | Metamorphic | 39.3 | 3.2 | 601 | 23.1 | <LOD | 33.0 | 26.4 | 17.6 | 107 |
| B-2457-A | Metamorphic | 13.9 | 6.4 | 689 | 43.6 | <LOD | 19.4 | 33.6 | 3.1 | 252 |
| B-592-A | Silicate–carbonate | 244 | <LOD | 191 | 1702 | 156 | 873 | 6.5 | <LOD | 15.5 |
| B-595-A2 | Silicate–carbonate | 271 | 1.4 | 356 | 774 | 272 | 817 | 8.1 | <LOD | 14.7 |
| B-513-A5 | Silicate–carbonate | 182 | <LOD | 436 | 882 | 621 | 2020 | 3.9 | 10.6 | 0.0 |
| P-701-A | Metasomatic | 49.4 | 6.2 | 1490 | 32.1 | <LOD | 67.2 | 23.6 | 85.7 | 66.3 |
| P-706-A | Metasomatic | 106 | 16.1 | 1506 | 41.7 | <LOD | 53.5 | 10.3 | 98.9 | 77.4 |
| P-708-AG | Metasomatic | 48.8 | 6.3 | 1484 | 32.0 | <LOD | 60.8 | 23.9 | 90.1 | 64.8 |
| P-709-A | Metasomatic | 42.1 | 8.7 | 1421 | 27.5 | <LOD | 56.6 | 5.3 | 85.2 | 61.1 |
| P-712-A | Metasomatic | 41.9 | 12.0 | 1463 | 23.4 | <LOD | 60.9 | 9.9 | 82.9 | 66.9 |
| P-714 | Metasomatic | 36.8 | 14.0 | 1271 | 35.0 | 76.0 | 89.0 | 20.0 | 124 | 61.0 |
| P-720-A | Metasomatic | 44.1 | 13.5 | 1403 | 47.6 | <LOD | 83.7 | 3.4 | 67.9 | 59.0 |
| P-720-A1 | Metasomatic | 43.0 | 16.6 | 1495 | 53.7 | 19.3 | 79.5 | 5.5 | 72.4 | 57.1 |
| P-726-AB | Metasomatic | 55.3 | 6.4 | 1140 | 50.3 | <LOD | 70.7 | 13.8 | 66.4 | 40.0 |
| P-726-AB1 | Metasomatic | 57.5 | 9.7 | 1257 | 49.6 | <LOD | 52.7 | 3.4 | 75.4 | 40.5 |
| P-726-AG | Metasomatic | 83.4 | 9.8 | 1222 | 43.0 | <LOD | 51.3 | 12.2 | 69.8 | 43.9 |
| P-747 | Metasomatic | 51.2 | 12.0 | 1352 | 38.0 | 66.0 | 66.0 | 20.0 | 100 | 55.0 |
| P-789-AC | Metasomatic | 43.6 | 35.7 | 1371 | 48.6 | 43.8 | 130 | 11.2 | 72.8 | 110 |
| P-798 | Metasomatic | 60.7 | 26.0 | 1404 | 56.0 | 80.0 | 118 | 23.0 | 111 | 64.0 |
| P-804-A | Metasomatic | 72.7 | 15.4 | 1228 | 38.1 | 30.4 | 58.2 | 3.8 | 111 | 61.4 |
| P-804-A | Metasomatic | 73.2 | 15.4 | 1217 | 37.8 | <LOD | 68.9 | 5.9 | 92.3 | 56.9 |
| P-810 | Metasomatic | 62 | 18.0 | 1358 | 46.0 | 71.0 | 122 | 24.0 | 124 | 75.0 |
| P-811-AP | Metasomatic | 64.5 | 14.1 | 1428 | 54.0 | <LOD | 83.1 | 5.2 | 111 | 62.0 |
| P-811-AC | Metasomatic | 80.4 | 22.4 | 1398 | 58.3 | <LOD | 106 | 7.3 | 104 | 64.3 |
| P-832-AZ | Metasomatic | 43.0 | 20.9 | 1354 | 51.3 | <LOD | 102 | 15.0 | 95.8 | 69.5 |
| P-832-A3 | Metasomatic | 42.6 | 11.8 | 1328 | 53.9 | <LOD | 99.6 | 19.3 | 93.7 | 73.4 |
| P-833-AC | Metasomatic | 38.4 | 7.3 | 1320 | 42.4 | 24.6 | 89.2 | 7.0 | 85.2 | 38.5 |
| P-853-A31 | Metasomatic | 33.3 | 13.6 | 1646 | 66.1 | 37.5 | 142 | 7.1 | 77.4 | 65.0 |
| P-853-A32 | Metasomatic | 35.1 | 16.1 | 1693 | 64.6 | 89.1 | 176 | 2.5 | 70.2 | 44.9 |
| P-853-AF | Metasomatic | 50.7 | 10.6 | 1449 | 75.3 | <LOD | 129 | 17.8 | 80.9 | 60.9 |
| P-853-AG | Metasomatic | 71.9 | 11.4 | 1346 | 46.9 | 20.4 | 80.7 | 17.2 | 74.4 | 57.4 |
| P-853-AΓ | Metasomatic | 74.5 | 14.2 | 1280 | 45.7 | 29.0 | 89.1 | 4.1 | 70.8 | 56.3 |
| P-853-AC | Metasomatic | 40.5 | 9.5 | 1502 | 45.6 | <LOD | 92.9 | 8.4 | 96.3 | 59.4 |
| P-864 | Metasomatic | 85 | 11.0 | 1295 | 26.0 | 46.0 | 63.0 | 19.0 | 90.0 | 56.0 |
| P-893-A | Metasomatic | 65.4 | 19.6 | 1315 | 45.9 | <LOD | 79.8 | 18.3 | 121 | 54.1 |
| P-923-A | Metasomatic | 46 | 30.0 | 1602 | 104 | 267 | 494 | 32.0 | 151 | 133 |
| P-934-A | Metasomatic | 60.6 | 13.8 | 1410 | 58.4 | <LOD | 46.5 | 5.1 | 86.0 | 52.9 |
| PS-312-AG | Metasomatic | 20.0 | 9.0 | 1892 | 46.0 | 220 | 319 | 29.0 | 131 | 56.0 |
| PS-313 | Metasomatic | 13.5 | 9.5 | 2158 | 55.6 | 127.4 | 306 | 29.0 | 120 | 64.2 |
| PS-313-AC | Metasomatic | 14.5 | 11.9 | 1803 | 47.4 | 92.2 | 271 | 11.3 | 103 | 37.5 |
| PS-314-AG | Metasomatic | 17.9 | 13.0 | 1778 | 34.0 | 129 | 177 | 20.0 | 118 | 49.0 |
| PS-316 | Metasomatic | 10.0 | 8.7 | 1895 | 58.6 | 90.7 | 317 | 25.0 | 108 | 58.5 |
| PS-317 | Metasomatic | 11.8 | 12.1 | 1530 | 42.9 | 118 | 236 | 8.1 | 87.1 | 45.0 |
| PS-317-AC | Metasomatic | 14.9 | 11.0 | 1990 | 38.9 | 148 | 287 | 4.4 | 118 | 49.2 |
| PS-318 | Metasomatic | 12.7 | 13.1 | 1823 | 36.8 | 46.2 | 194 | 13.4 | 87.8 | 51.4 |
| PS-318-AG | Metasomatic | 16.9 | 8.8 | 1928 | 31.0 | 46.7 | 168 | 15.0 | 86.5 | 29.2 |
| PS-319-A | Metasomatic | 21.0 | 14.0 | 1466 | 25.0 | 84.0 | 96.0 | 18.0 | 96.0 | 44.0 |
| PS-334-A | Metamorphic | 201 | 7.6 | 364 | 4.7 | <LOD | 35.6 | 11.9 | <LOD | 82.6 |
| PS-353 | Metamorphic | 5.0 | 4.0 | 557 | 64.0 | 34.0 | 49.0 | 46.0 | 10.0 | 220 |
| PS-354-A | Metamorphic | <LOD | 5.6 | 1094 | 51.7 | <LOD | <LOD | 28.9 | <LOD | 208 |
| PS-355-A | Metamorphic | 195 | 4.5 | 326 | 4.6 | <LOD | 29.0 | 5.5 | 3.0 | 79.0 |
| PS-406-AMG | Silicate–carbonate | 653 | <LOD | 1202 | 466 | 1017 | 1942 | 2.2 | 8.8 | 9.6 |
| PS-414-AMG | Silicate–carbonate | 524 | 4.7 | 1578 | 705 | 691 | 2048 | 3.2 | 31.0 | 16.8 |
| PS-573-A | Metasomatic | 68 | 12.0 | 2028 | 38.0 | 105 | 134 | 26.0 | 125 | 103 |
| R-1-A | Metasomatic | 38.9 | 15.6 | 1252 | 50.5 | 23.0 | 98.3 | <LOD | 107 | 50.7 |
| R-712-A1 | Metasomatic | 48.3 | 7.7 | 1484 | 25.2 | <LOD | 61.0 | 22.0 | 88.2 | 58.7 |
| SL-254-A | Metamorphic | 23.0 | 2.5 | 500 | 29.7 | 50.2 | 52.8 | 30.3 | <LOD | 116 |
| SL-257-A | Metamorphic | 55.5 | 8.6 | 343 | 51.9 | <LOD | <LOD | 10.7 | 3.7 | 123 |
| SL-258-A | Metamorphic | 12.8 | 9.8 | 499 | 26.4 | <LOD | 21.2 | 9.6 | <LOD | 125 |
| SL-264 | Metamorphic | 13 | <LOD | 507 | 43.0 | 22.0 | 22.0 | 32.0 | 7.0 | 218 |
| SL-265-A | Metamorphic | 25.2 | <LOD | 733 | 19.6 | <LOD | 33.0 | 19.3 | <LOD | 223 |
| SL-266-A | Metamorphic | 64.0 | 4.8 | 287 | 2.7 | <LOD | <LOD | 11.2 | <LOD | 50.4 |
| SL-271-A | Metamorphic | 4.9 | 4.8 | 461 | 25.7 | <LOD | <LOD | 4.8 | <LOD | 82.0 |
| SL-271-A5 | Metamorphic | <LOD | 4.8 | 450 | 19.5 | <LOD | 20.2 | 9.6 | 5.9 | 84.3 |
| SL-273-A1 | Metamorphic | 18.3 | 3.4 | 577 | 15.7 | <LOD | 26.3 | 16.7 | <LOD | 154 |
| SL-276 | Metamorphic | <LOD | <LOD | 712 | 67.0 | 54.0 | 45.0 | 38.0 | 63.0 | 119 |
| SL-288-AG | Metamorphic | 29.2 | <LOD | 518 | 26.5 | <LOD | 20.4 | 22.4 | <LOD | 98 |
| SL-291-AG | Metamorphic | 17.8 | 7.8 | 541 | 60.9 | <LOD | 21.8 | 23.3 | <LOD | 300 |
| SL-291-A3 | Metamorphic | 16.7 | 11.4 | 578 | 66.4 | <LOD | 24.1 | 19.6 | <LOD | 320 |
| T-93-A | Metamorphic | 31.3 | 2.9 | 388 | 10.8 | <LOD | <LOD | 9.0 | <LOD | 52.9 |
| T-93-A2 | Metamorphic | 25.8 | <LOD | 374 | 8.3 | <LOD | <LOD | 10.4 | <LOD | 52.3 |
| T-95-A | Metamorphic | 46.9 | <LOD | 440 | 10.3 | <LOD | <LOD | 15.4 | <LOD | 33.9 |
| T-95-A1 | Metamorphic | 17.6 | 0.0 | 508 | 2.5 | <LOD | <LOD | 9.1 | <LOD | 32.5 |
| T-97-A | Metamorphic | 38.0 | 3.9 | 470 | 8.7 | <LOD | <LOD | 13.5 | <LOD | 38.9 |
| T-97-A1 | Metamorphic | 40.9 | 0.0 | 494 | 10.0 | <LOD | 33.3 | 4.4 | <LOD | 35.5 |
| TH-701-A | Metasomatic | 44.9 | 5.3 | 1530 | 38.9 | 22.1 | 77.7 | 27.9 | 88.6 | 70.3 |
| TH-715 | Metamorphic | 34 | <LOD | 321 | 32.0 | 14.0 | <LOD | 18.0 | 8.0 | 55.0 |
| TH-74-A | Metamorphic | 21.6 | 3.8 | 429 | 39.0 | <LOD | <LOD | 18.3 | <LOD | 69.8 |
| TH-78-A1 | Metamorphic | 22.3 | 2.9 | 335 | 5.4 | <LOD | 21.7 | 10.1 | <LOD | 30.3 |
2.2. Analytical Instrumentation
2.2.1. Total Reflection X-Ray Fluorescence (TXRF) Analysis
2.2.2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis
2.3. Reagents
2.4. Sample Preparation
2.4.1. TXRF
2.4.2. ICP-MS
2.5. Quantification and Data Treatment
2.5.1. TXRF Quantification and Figures of Merit
2.5.2. ICP-MS Performance
2.6. Statistical Analysis
3. Results
3.1. TXRF and ICP-MS Results
3.2. Multivariate Analysis
3.3. Geochemistry of Slyudyanka Apatite
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TXRF | Total reflection X-ray fluorescence |
| ICP-MS | Inductively coupled plasma mass spectrometry |
| PCA | Principal component analysis |
| CA | Cluster analysis |
| REE | Rare earth element |
| CHARAC | CHArge-and-RAdius-Controlled |
| LA | Laser ablation |
| CAOB | Central Asian orogenic belt |
| ID-TIMS | Isotope dilution thermal ionization mass spectrometry |
| PTFE | Polytetrafluoroethylene |
| PAAS | Post-Archean Australian Shale |
| LOD | Limit of detection |
References
- Almada-Gutiérrez, V.; Noury, M.; Calmus, T.; Cogné, N.; Barrera-Moreno, E.; Poujol, M. Processes Controlling Magma Fertility at Buenavista Del Cobre Porphyry Copper Deposit (Cananea, México): A New Petrogenetic Model Based on Zircon U-Pb Dating and Apatite Geochemistry. Ore Geol. Rev. 2024, 175, 106320. [Google Scholar] [CrossRef]
- Nekrylov, N.; Hovakimyan, S.; Meliksetian, K.B.; Veress, E.; Bergemann, C.A.; Hambaryan, K.; Vardanyan, A.; Navasardyan, G.; Korneeva, A.; Kamenetsky, V.S.; et al. The Role of Evaporite in Iron Oxide-Apatite Ore Deposit Formation: Constraints of the Late Miocene Abovyan Deposit, Armenia. Lithos 2025, 508, 108078. [Google Scholar] [CrossRef]
- Qu, H.; Zhang, B.; Friehauf, K.; Wang, H.; Feng, C.; Dick, J.M.; Yu, M. Apatite as a Record of Ore-Forming Processes: Magmatic-Hydrothermal Evolution of the Hutouya Cu–Fe–Pb–Zn Ore District in the Qiman Tagh Metallogenic Belt, NW China. Ore Geol. Rev. 2023, 154, 105343. [Google Scholar] [CrossRef]
- Du, Y.; Li, G.; Liu, D.; Wang, X.; Cai, D.; Dong, X.; Yu, Q. Application of Detrital Apatite U-Pb Geochronology and Trace Elements for Provenance Analysis, Insights from a Study on the Yarlung River Sand. J. Earth Sci. 2024, 35, 1118–1129. [Google Scholar] [CrossRef]
- Hu, S.; Zeng, Z.; Fang, X.; Qi, H.; Yin, X.; Chen, Z.; Li, X.; Zhu, B. Geochemical Study of Detrital Apatite in Sediment from the Southern Okinawa Trough: New Insights into Sediment Provenance. Minerals 2019, 9, 619. [Google Scholar] [CrossRef]
- Kogarko, L. Chemical Composition and Petrogenetic Implications of Apatite in the Khibiny Apatite-Nepheline Deposits (Kola Peninsula). Minerals 2018, 8, 532. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The Trace Element Composition of Apatite and Its Application to Detrital Provenance Studies. Earth-Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Zhang, L.; Algeo, T.J.; Cao, L.; Zhao, L.; Chen, Z.-Q.; Li, Z. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 458, 176–197. [Google Scholar] [CrossRef]
- Bau, M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour During Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater. Chem. Geol. 1999, 155, 77–90. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, Z.; Cao, X.; Fan, H.; Xiao, J.; Xia, Y.; Zeng, M. Geochemistry of Apatite Individuals in Zhijin Phosphorites, South China: Insight into the REY Sources and Diagenetic Enrichment. Ore Geol. Rev. 2022, 150, 105169. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Rasskazov, S.V.; Chebykin, E.P.; Markova, M.E.; Saranina, E.V. Y/Ho Ratios in the Late Cenozoic Basalts from the Eastern Tuva, Russia: An ICP-MS Study with Enhanced Data Quality. Geostand. Geoanal. Res. 2000, 24, 197–204. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol. 1995, 119, 213–223. [Google Scholar] [CrossRef]
- Nozaki, Y.; Zhang, J.; Amakawa, H. The Fractionation between Y and Ho in the Marine Environment. Earth Planet. Sci. Lett. 1997, 148, 329–340. [Google Scholar] [CrossRef]
- Zhang, X.-N.; Pan, J.-Y.; Lehmann, B.; Li, J.-X.; Yin, S.; Ouyang, Y.-P.; Wu, B.; Fu, J.-L.; Zhang, Y.; Sun, Y.; et al. Diagnostic REE Patterns of Magmatic and Hydrothermal Apatite in the Zhuxi Tungsten Skarn Deposit, China. J. Geochem. Explor. 2023, 252, 107271. [Google Scholar] [CrossRef]
- Deng, M.; Xu, C.; Song, W.; Tang, H.; Liu, Y.; Zhang, Q.; Zhou, Y.; Feng, M.; Wei, C. REE Mineralization in the Bayan Obo Deposit, China: Evidence from Mineral Paragenesis. Ore Geol. Rev. 2017, 91, 100–109. [Google Scholar] [CrossRef]
- Zhang, X.-N.; Pan, J.-Y.; Lehmann, B.; Li, J.-X.; Yin, S.; Ouyang, Y.-P.; Zhang, Y.; Zhong, F.-J.; Fu, J.-L.; Wu, B. Geochemical Composition of Apatite from the Zhuxi Tungsten Granite and the Zhenzhushan Granite Porphyry in the Jiangnan Porphyry-Skarn Tungsten Belt, China. Geochemistry 2023, 83, 126010. [Google Scholar] [CrossRef]
- Cao, M.-J.; Zhou, Q.-F.; Qin, K.-Z.; Tang, D.-M.; Evans, N.J. The Tetrad Effect and Geochemistry of Apatite from the Altay Koktokay No. 3 Pegmatite, Xinjiang, China: Implications for Pegmatite Petrogenesis. Mineral. Petrol. 2013, 107, 985–1005. [Google Scholar] [CrossRef]
- Veksler, I.V. Liquid Immiscibility and Its Role at the Magmatic–Hydrothermal Transition: A Summary of Experimental Studies. Chem. Geol. 2004, 210, 7–31. [Google Scholar] [CrossRef]
- Lumiste, K.; Mänd, K.; Bailey, J.; Paiste, P.; Lang, L.; Lepland, A.; Kirsimäe, K. REE+Y Uptake and Diagenesis in Recent Sedimentary Apatites. Chem. Geol. 2019, 525, 268–281. [Google Scholar] [CrossRef]
- Vasil’ev, E.P.; Reznitskiy, L.Z.; Vishnyakov, V.N.; Nekrasova, E.A. Sludyanskiy Crystalline Complex; Nauka: Novosibirsk, Russia, 1981. (In Russian) [Google Scholar]
- Kozlov, E.N.; Maltsev, A.S.; Fomina, E.N.; Sidorov, M.Y.; Zhilicheva, A.N.; Panteeva, S.V.; Kompanchenko, A.A.; Chernyavskiy, A.V. Study of the Distribution of Rare-Earth Elements and Strontium in Apatite from Rocks of the Vuoriyarvi Carbonatite Complex by Total-Reflection X-Ray Fluorescence Spectrometry (TXRF): First Results and Prospects. Russ. Geol. Geophys. 2023, 64, 1031–1039. [Google Scholar] [CrossRef]
- Maltsev, A.S.; Ivanov, A.V.; Chubarov, V.M.; Pashkova, G.V.; Panteeva, S.V.; Reznitskii, L.Z. Development and Validation of a Method for Multielement Analysis of Apatite by Total-Reflection X-Ray Fluorescence Spectrometry. Talanta 2020, 214, 120870. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, A.S.; Ivanov, A.V.; Pashkova, G.V.; Marfin, A.E.; Bishaev, Y.A. New Prospects to the Multi-Elemental Analysis of Single Microcrystal of Apatite by Total-Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta Part B 2021, 184, 106281. [Google Scholar] [CrossRef]
- Maltsev, A.S.; Zhilicheva, A.N.; Pashkova, G.V.; Karimov, A.A. New Quantification Approaches for Total-Reflection X-Ray Fluorescence Analysis of Micro-Sized Samples: Apatite Case Study. Microchem. J. 2023, 193, 109139. [Google Scholar] [CrossRef]
- Donskaya, T.V.; Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M. The Baikal Collisional Metamorphic Belt. Dokl. Earth Sci. 2000, 374, 1075–1079. [Google Scholar]
- Reznitskii, L.Z.; Fefelov, N.N.; Vasil’ev, E.P.; Zarudneva, N.V.; Nekrasova, E.A. Isotopic composition of lead in metaphosphorites and the problem of age of the Slyudyanka series (Southern CisBaikalia-Western Hamar-Daban). Lithol. Miner. Resour. 1998, 5, 484–493. [Google Scholar]
- Kotov, A.B.; Sal’nikova, E.B.; Kozakov, I.K.; Yakovleva, S.Z.; Kovach, V.P.; Reznitskii, L.Z.; Vasil’ev, E.P.; Berezhnaya, N.G. Age of Metamorphism of the Slyudyanka Crystalline Complex, Southern Baikal Area: U-Pb Geochronology of Granitoids. Petrology 1997, 5, 338–349. [Google Scholar]
- Kovach, V.; Salnikova, E.; Wang, K.L.; Jahn, B.M.; Chiu, H.Y.; Reznitskiy, L.; Kotov, A.; Iizuka, Y.; Chung, S.-L. Zircon Ages and Hf Isotopic Constraints on Sources of Clastic Metasediments of the Slyudyansky High-Grade Complex, South-Eastern Siberia: Implication for Continental Growth and Evolution of the Central Asian Orogenic Belt. J. Asian Earth Sci. 2013, 62, 18–36. [Google Scholar] [CrossRef]
- Salnikova, E.B.; Sergeev, S.A.; Kotov, A.B.; Yakovleva, S.Z.; Steiger, R.H.; Reznitskiy, L.Z.; Vasil’ev, E.P. U-Pb Zircon Dating of Granulite Metamorphism in the Sludyanskiy Complex, Eastern Siberia. Gondwana Res. 1998, 1, 195–205. [Google Scholar] [CrossRef]
- Brandt, I.S.; Rasskazov, S.V.; Ivanov, A.V.; Reznitskii, L.Z.; Brandt, S.B. Radiogenic Argon Distribution Within a Mineral Grain: Implications for Dating of Hydrothermal Mineral-Forming Event in Sludyanka Complex, Siberia, Russia. Isot. Environ. Health Stud. 2006, 42, 189–201. [Google Scholar] [CrossRef]
- Panteeva, S.V.; Gladkochoub, D.P.; Donskaya, T.V.; Markova, V.V.; Sandimirova, G.P. Determination of 24 Trace Elements in Felsic Rocks by Inductively Coupled Plasma Mass Spectrometry after Lithium Metaborate Fusion. Spectrochim. Acta Part B 2003, 58, 341–350. [Google Scholar] [CrossRef]
- Tan, H.M.R.; Huang, X.-W.; Meng, Y.-M.; Xie, H.; Qi, L. Multivariate Statistical Analysis of Trace Elements in Apatite: Discrimination of Apatite with Different Origins. Ore Geol. Rev. 2023, 153, 105269. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Weller, O.M.; Jackson, S.; Miller, W.G.R.; St-Onge, M.R.; Rayner, N. Quantitative elemental mapping of granulite-facies monazite: Textural insights and implications for petrochronology. J. Metamorph. Geol. 2020, 38, 853–880. [Google Scholar] [CrossRef]
- Blundy, J.D.; Wood, B.J. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta 1991, 55, 193–209. [Google Scholar] [CrossRef]
- Shkolnik, S.I.; Reznitsky, L.Z.; Letnikova, E.F.; Proshenkin, A.I. New Data about Age and Geodynamic Nature of Hamsara Terrane. Geodyn. Tectonophys. 2017, 8, 557–560. [Google Scholar] [CrossRef]
- Zhang, J.; Nozaki, Y. Rare Earth Elements and Yttrium in Seawater: ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean. Geochim. Cosmochim. Acta 1996, 60, 4631–4644. [Google Scholar] [CrossRef]
- Emsbo, P.; McLaughlin, P.I.; Breit, G.N.; du Bray, E.A.; Koenig, A.E. Rare Earth Elements in Sedimentary Phosphate Deposits: Solution to the Global REE Crisis? Gondwana Res. 2015, 27, 776–785. [Google Scholar] [CrossRef]
- Shatsky, V.S.; Kozmenko, O.A.; Sobolev, N.V. Behaviour of rare-earth elements during high-pressure metamorphism. Lithos 1990, 25, 219–226. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, Y.; Yin, J.; Lai, J. Recent Advances for Seawater Hydrogen Evolution. ChemCatChem 2024, 16, 1305. [Google Scholar] [CrossRef]






| Sample | Genetic Type | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| B-513-A5 | Sil.–carbonate | 661 | 693 | 1584 | 216 | 886 | 264 | 18.9 | 227 | 32.6 | 163 | 28.2 | 64.9 | 7.9 | 40.4 | 5.3 |
| P-708-AG | Metasomatic | 32.4 | 59.5 | 105 | 10.4 | 35.0 | 6.9 | 1.3 | 6.1 | 0.9 | 5.2 | 1.0 | 2.6 | 0.3 | 2.0 | 0.3 |
| P-714 | Metasomatic | 33.8 | 62.5 | 110 | 11.2 | 39.3 | 7.4 | 1.6 | 6.6 | 1.0 | 5.8 | 1.2 | 3.2 | 0.4 | 2.6 | 0.3 |
| P-720-A1 | Metasomatic | 50.3 | 76.2 | 134 | 14.1 | 47.2 | 9.0 | 2.0 | 8.4 | 1.3 | 7.7 | 1.6 | 4.1 | 0.6 | 3.2 | 0.4 |
| P-798 | Metasomatic | 56.4 | 70.7 | 126 | 14.8 | 53.0 | 9.9 | 2.2 | 9.3 | 1.5 | 9.1 | 1.8 | 4.8 | 0.6 | 3.6 | 0.5 |
| P-832-AZ | Metasomatic | 59.0 | 92.5 | 169 | 16.9 | 56.1 | 10.5 | 2.4 | 9.9 | 1.6 | 9.3 | 1.9 | 4.9 | 0.7 | 4.0 | 0.5 |
| P-923-A | Metasomatic | 91.0 | 247 | 421 | 42.0 | 141 | 24.1 | 4.9 | 20.6 | 3.0 | 16.0 | 3.0 | 7.8 | 1.0 | 5.6 | 0.7 |
| PS-312-AG | Metasomatic | 42.2 | 211 | 316 | 28.1 | 85.2 | 12.7 | 3.0 | 10.5 | 1.5 | 7.4 | 1.3 | 3.4 | 0.5 | 2.6 | 0.3 |
| PS-314-AG | Metasomatic | 30.2 | 114 | 180 | 17.0 | 54.5 | 8.6 | 2.0 | 7.4 | 1.0 | 5.4 | 1.0 | 2.6 | 0.3 | 1.9 | 0.2 |
| PS-319-A | Metasomatic | 23.7 | 75.9 | 123 | 12.0 | 39.3 | 6.7 | 1.5 | 5.8 | 0.8 | 4.2 | 0.8 | 2.1 | 0.3 | 1.6 | 0.2 |
| PS-354-A | Metamorphic | 42.2 | 20.2 | 34.0 | 3.5 | 12.2 | 2.6 | 0.6 | 3.0 | 0.5 | 3.3 | 0.7 | 2.1 | 0.3 | 1.9 | 0.3 |
| PS-406-AMG | Sil.–carbonate | 328 | 839 | 1335 | 126 | 495 | 101 | 22.2 | 86.7 | 12.2 | 65.6 | 12.3 | 31.4 | 4.1 | 25.1 | 4.2 |
| PS-414-AMG | Sil.–carbonate | 528 | 641 | 1244 | 142 | 543 | 135 | 29.3 | 120 | 18.3 | 101 | 19.9 | 51.1 | 6.8 | 39.0 | 6.0 |
| PS-573-A | Metasomatic | 33.3 | 97.1 | 154 | 14.9 | 50.1 | 8.6 | 1.8 | 7.6 | 1.1 | 5.9 | 1.1 | 3.0 | 0.4 | 2.3 | 0.3 |
| SL-254-A | Metamorphic | 31.0 | 12.8 | 23.0 | 2.4 | 8.8 | 2.0 | 0.5 | 2.3 | 0.4 | 2.8 | 0.6 | 1.8 | 0.3 | 1.6 | 0.2 |
| SL-257-A | Metamorphic | 50.5 | 22.8 | 43.1 | 4.6 | 17.0 | 3.7 | 0.9 | 4.3 | 0.7 | 4.8 | 1.1 | 3.0 | 0.4 | 2.7 | 0.4 |
| T-97-A | Metamorphic | 12.4 | 9.4 | 15.7 | 1.5 | 5.1 | 1.1 | 0.3 | 1.2 | 0.2 | 1.2 | 0.3 | 0.7 | 0.1 | 0.6 | 0.1 |
| Cluster Number | 1 | 2 | 3 | Total | |
|---|---|---|---|---|---|
| Apatite Type | |||||
| Hydrothermal–metasomatic apatite | 0 | 47 | 0 | 47 | |
| Metamorphic apatite veinlets of metaphosphorites | 28 | 0 | 0 | 28 | |
| Massive metamorphic apatite of silicate–carbonate rocks | 0 | 0 | 5 | 5 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maltsev, A.S.; Zhilicheva, A.N.; Reznitskii, L.Z.; Ivanov, A.V. Apatite Geochemistry of the Slyudyanka Deposit, Siberia: Trace Element Composition, Y/Ho Anomaly, and Multivariate Statistical Analysis for Genetic Classification. Minerals 2025, 15, 1312. https://doi.org/10.3390/min15121312
Maltsev AS, Zhilicheva AN, Reznitskii LZ, Ivanov AV. Apatite Geochemistry of the Slyudyanka Deposit, Siberia: Trace Element Composition, Y/Ho Anomaly, and Multivariate Statistical Analysis for Genetic Classification. Minerals. 2025; 15(12):1312. https://doi.org/10.3390/min15121312
Chicago/Turabian StyleMaltsev, Artem S., Alena N. Zhilicheva, Leonid Z. Reznitskii, and Alexei V. Ivanov. 2025. "Apatite Geochemistry of the Slyudyanka Deposit, Siberia: Trace Element Composition, Y/Ho Anomaly, and Multivariate Statistical Analysis for Genetic Classification" Minerals 15, no. 12: 1312. https://doi.org/10.3390/min15121312
APA StyleMaltsev, A. S., Zhilicheva, A. N., Reznitskii, L. Z., & Ivanov, A. V. (2025). Apatite Geochemistry of the Slyudyanka Deposit, Siberia: Trace Element Composition, Y/Ho Anomaly, and Multivariate Statistical Analysis for Genetic Classification. Minerals, 15(12), 1312. https://doi.org/10.3390/min15121312

