Isotopic and Elemental Constraints on Zircon, Garnet, and Uraninite from Nakexiuma: Implications for U–W Mineralization
Abstract
1. Introduction
2. Regional and Deposit Geology
3. Analytical Methods
4. Result
4.1. Petrography
4.2. Geochronology
4.3. Trace Elements
4.3.1. Uraninite
4.3.2. Garnet
5. Discussion
5.1. Genetic Type of Uraninite
5.2. U-W-Mo Mineralization-Related to Granitic Fluids
5.3. Fluids of Skarn Formation
5.4. Factors Controlled Spatial Separation of U and W Mineralization
5.5. Geodynamic Setting for U-Mo-W Mineralization at Nakexiuma
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, G.; Luo, M.; Mo, X.; Zhao, Z.; Dong, L.; Yu, X.; Wang, X.; Li, X.; Huang, X.; Liu, Y. Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geosci. Front. 2018, 9, 1383–1397. [Google Scholar] [CrossRef]
- Li, S.; Zhao, S.; Liu, X.; Cao, H.; Yu, S.; Li, X.; Somerville, I.; Yu, S.; Suo, Y. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Sci. Rev. 2018, 186, 37–75. [Google Scholar] [CrossRef]
- Yu, M.; Feng, C.Y.; Santosh, M.; Mao, J.W.; Zhu, Y.F.; Zhao, Y.M.; Li, D.X.; Li, B. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau. Earth-Sci. Rev. 2017, 167, 103–123. [Google Scholar] [CrossRef]
- Shao, F.; Niu, Y.; Liu, Y.; Chen, S.; Kong, J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282, 33–44. [Google Scholar] [CrossRef]
- Hu, Y.-D.; Ma, L.-T.; Dai, L.-Q.; Zhao, Z.-F.; Sun, G.-C.; Gong, B. Recycling of Paleo-Tethyan oceanic crust: Geochemical record from Early–Middle Triassic igneous rocks in the East Kunlun Orogen in western China. Geol. Soc. Am. Bull. 2024, 136, 4633–4647. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Wang, Y.-L.; Qian, B.; Liu, Y.-G.; Zhang, D.-Y.; Lü, P.-R.; Dong, J. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China. Ore Geol. Rev. 2018, 96, 236–246. [Google Scholar] [CrossRef]
- Qu, H.; Friehauf, K.; Santosh, M.; Pei, R.; Li, D.; Liu, J.; Zhou, S.; Wang, H. Middle–Late Triassic magmatism in the Hutouya Fe–Cu–Pb–Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization. Ore Geol. Rev. 2019, 113, 103088. [Google Scholar] [CrossRef]
- Li, B.; Zhi, Y.; Zhang, L.; Ding, Q.; Xu, Q.; Zhang, Y.; Qian, Y.; Wang, G.; Peng, B.; Ao, C. U–Pb dating, geochemistry, and Sr–Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu–(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China. Ore Geol. Rev. 2015, 67, 1–10. [Google Scholar] [CrossRef]
- Feng, L.-Q.; Gu, X.-X.; Zhang, Y.-M.; Shen, H.; Xu, J.-C.; Kang, J.-Z. Genesis of the gold deposits in the Kunlun River area, East Kunlun, Qinghai Province: Constraints from geology, fluid inclusions and isotopes. Ore Geol. Rev. 2021, 139, 104564. [Google Scholar] [CrossRef]
- Feng, C.; Qu, W.; Zhang, D.; Dang, X.; Du, A.; Li, D.; She, H. Re–Os dating of pyrite from the Tuolugou stratabound Co(Au) deposit, eastern Kunlun Orogenic Belt, northwestern China. Ore Geol. Rev. 2009, 36, 213–220. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Li, W.; Wang, Y.; Sun, T.; Ripley, E.M. Geochronology, petrology and Hf–S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China. Lithos 2015, 216–217, 224–240. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Li, W.; Xu, X.; Kou, X.; Jia, Q.; Zhang, Z.; Liu, F.; Wang, Y.; You, M. The Cu-Ni mineralization potential of the Kaimuqi mafic-ultramafic complex and the indicators for the magmatic Cu-Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. J. Geochem. Explor. 2019, 198, 41–53. [Google Scholar] [CrossRef]
- Wang, K.; Liu, S.; Dai, J.; Liu, X.; Yu, C. Uranium-molybdenum mineralization age in Nakexiuma area of East Kunlun Orogenic Belt and its implications for regional hydrothermal uranium mineralization. Geol. Bull. China 2025, 44, 623–632. [Google Scholar]
- Ge, W.P.; Shen, Z.K.; Molnar, P.; Wang, M.; Zhang, P.Z.; Yuan, D.Y. GPS determined asymmetric deformation across central Altyn Tagh fault reveals rheological structure of northern Tibet. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024216. [Google Scholar] [CrossRef]
- Xu, C.; Sun, F.; Fan, X.; Yu, L.; Yang, D.; Bakht, S.; Wu, D. Composition, Age, and Origin of Ordovician-Devonian Tanjianshan granitoids in the North Qaidam Orogenic Belt of northern Tibet: Implications for Tectonic Evolution. Int. Geol. Rev. 2023, 65, 61–88. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Ludwig, K. User’s Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication 4, 77; Berkeley Geochronology Center Special Publication: Berkley, CA, USA, 2008; Volume 4, p. 6. [Google Scholar]
- Chen, Y.-H.; Hu, R.-Z.; Lan, T.-G.; Wang, H.; Tang, Y.-W.; Yang, Y.-H.; Tian, Z.-D.; Ulrich, T. Precise UPb dating of grandite garnets by LA-ICP-MS: Assessing ablation behaviors under matrix-matched and non-matrix-matched conditions and applications to various skarn deposits. Chem. Geol. 2021, 572, 120198. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, W.; Liu, Y.; Gao, S.; Li, M.; Zong, K.; Chen, H.; Hu, S. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef]
- Seman, S.; Stockli, D.F.; McLean, N.M. U-Pb geochronology of grossular-andradite garnet. Chem. Geol. 2017, 460, 106–116. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Zong, K.; Chen, J.; Hu, Z.; Liu, Y.; Li, M.; Fan, H.; Meng, Y. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS. Sci. China Earth Sci. 2015, 58, 1731–1740. [Google Scholar] [CrossRef]
- Mercadier, J.; Cuney, M.; Lach, P.; Boiron, M.-C.; Bonhoure, J.; Richard, A.; Leisen, M.; Kister, P. Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 2011, 23, 264–269. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, K.; Layton-Matthews, D.; Joy, B.; Uvarova, Y. Chemical Compositions of Natural Uraninite. Can. Mineral. 2015, 53, 595–622. [Google Scholar] [CrossRef]
- Macmillan, E.; Ciobanu, C.L.; Ehrig, K.; Cook, N.J.; Pring, A. Chemical zoning and lattice distortion in uraninite from Olympic Dam, South Australia. Am. Mineral. 2016, 101, 2351–2354. [Google Scholar] [CrossRef]
- Yuan, F.; Jiang, S.-Y.; Liu, J.; Zhang, S.; Xiao, Z.; Liu, G.; Hu, X. Geochronology and Geochemistry of Uraninite and Coffinite: Insights into Ore-Forming Process in the Pegmatite-Hosted Uraniferous Province, North Qinling, Central China. Minerals 2019, 9, 552. [Google Scholar] [CrossRef]
- Yu, C.-D.; Wang, K.-X.; Liu, X.-D.; Cuney, M.; Pan, J.-Y.; Wang, G.; Zhang, L.; Zhang, J. Uranium Mineralogical and Chemical Features of the Na-Metasomatic Type Uranium Deposit in the Longshoushan Metallogenic Belt, Northwestern China. Minerals 2020, 10, 335. [Google Scholar] [CrossRef]
- Huang, H.; Wang, K.-X.; Cuney, M.; Pan, J.-Y.; Bonnetti, C.; Liu, X.-D.; Zhong, F.-J. Mesozoic magmatic and hydrothermal uranium mineralization in the Huayangchuan carbonatite-hosted U-Nb-polymetallic deposit, North Qinling Orogen (Central China): Evidence from uraninite chemical and isotopic compositions. Ore Geol. Rev. 2022, 146, 104958. [Google Scholar] [CrossRef]
- Shabaga, B.M.; Fayek, M.; McNeil, A.; Linnen, R.L.; Potter, E.G. Rare earth element partitioning between fluids and uraninite at 50−700 °C. Can. Mineral. 2020, 59, 869–884. [Google Scholar] [CrossRef]
- Shabaga, B.M.; Fayek, M.; Quirt, D.; Jefferson, C.W.; Ledru, P. Geochemistry and geochronology of the Kiggavik uranium deposit, Nunavut, Canada. Min. Depos. 2021, 56, 1245–1262. [Google Scholar] [CrossRef]
- Zhao, P.; Zajacz, Z.; Tsay, A.; Yuan, S. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochim. Et Cosmochim. Acta 2022, 316, 331–346. [Google Scholar] [CrossRef]
- Wen, C.; Zhao, P.; Grondahl, C.; Tsay, A.; Zajacz, Z.; Yuan, S. Cesium partitioning between granitic melts and aqueous fluids: Is Cs in hydrothermal fluids an accurate proxy of the degree of fractionation of parental magmas? Geochim. Et Cosmochim. Acta 2025, 396, 159–169. [Google Scholar] [CrossRef]
- Yuan, S.; Williams-Jones, A.E.; Mao, J.; Zhao, P.; Yan, C.; Zhang, D. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Econ. Geol. 2018, 113, 1193–1208. [Google Scholar] [CrossRef]
- Yuan, S.; Williams-Jones, A.E.; Romer, R.L.; Zhao, P.; Mao, J. Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China. Econ. Geol. 2019, 114, 1005–1012. [Google Scholar] [CrossRef]
- Zhao, P.; Yuan, S.; Williams-Jones, A.E.; Romer, R.L.; Yan, C.; Song, S.; Mao, J. Temporal Separation of W and Sn Mineralization by Temperature-Controlled Incongruent Melting of a Single Protolith: Evidence from the Wangxianling Area, Nanling Region, South China. Econ. Geol. 2022, 117, 667–682. [Google Scholar] [CrossRef]
- Meinert, L.D.; Hefton, K.K.; Mayes, D.; Tasiran, I. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ. Geol. 1997, 92, 509–534. [Google Scholar] [CrossRef]
- Angel, R.J.; Gilio, M.; Mazzucchelli, M.; Alvaro, M. Garnet EoS: A critical review and synthesis. Contrib. Miner. Pet. 2022, 177, 54. [Google Scholar] [CrossRef]
- Van Westrenen, W.; Blundy, J.D.; Wood, B.J. High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities. Geochem. Geophys. Geosyst. 2001, 2. [Google Scholar] [CrossRef]
- Westrenen, W.V.; Blundy, J.; Wood, B. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 1999, 84, 838–847. [Google Scholar] [CrossRef]
- Van Westrenen, W.; Allan, N.; Blundy, J.; Purton, J.; Wood, B. Atomistic simulation of trace element incorporation into garnets—Comparison with experimental garnet-melt partitioning data. Geochim. Et Cosmochim. Acta 2000, 64, 1629–1639. [Google Scholar] [CrossRef]
- Gaspar, M.; Knaack, C.; Meinert, L.D.; Moretti, R. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim. Et Cosmochim. Acta 2008, 72, 185–205. [Google Scholar] [CrossRef]
- Tian, Z.-D.; Leng, C.-B.; Zhang, X.-C.; Zafar, T.; Zhang, L.-J.; Hong, W.; Lai, C.-K. Chemical composition, genesis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit, SW China. Ore Geol. Rev. 2019, 112, 103016. [Google Scholar] [CrossRef]
- Fan, Y.; QiHai, S.; QingWen, Z.; XingHua, M.; XuDong, N.; ShaoLong, M.; YiXin, L.; Kai, X. Chemical composition of garnet from the Xintianling skarn W deposit in southern Hunan and its geological significance. Acta Petrol. Sin. 2022, 38, 78–90. [Google Scholar] [CrossRef]
- Yu, F.; Shu, Q.; Niu, X.; Xing, K.; Li, L.; Lentz, D.R.; Zeng, Q.; Yang, W. Composition of garnet from the Xianghualing Skarn Sn Deposit, South China: Its petrogenetic significance and exploration potential. Minerals 2020, 10, 456. [Google Scholar] [CrossRef]
- He, X.; Zhang, D.; Chen, G.; Di, Y.; Huo, H.; Li, N.; Zhang, Z.; Rao, J.; Wei, J.; Ouyang, Y. Genesis of Zhuxi copper-tungsten deposit in Jiangxi Province: Insights from mineralogy and chronology. J. Jilin Univ. Earth Sci. Ed. 2018, 48, 1050–1070. [Google Scholar]
- Sun, Z.; Wang, J.; Wang, Y.; Long, L.; Hu, Q.; Wang, M.; Li, D.; Xie, H. Two generations of garnets and their relevance for the hydrothermal fluid evolution of the Hongyuntan deposit, NW China. Ore Geol. Rev. 2020, 122, 103513. [Google Scholar] [CrossRef]
- Li, Z.; Lang, X.; Bai, Y.; Yang, Z.; Zhao, F.; Wu, H.; Jia, J. Garnet U-Pb geochronology and geochemistry of the Pusangguo skarn deposit in Tibet: Insights into the genesis and fluid evolution during prograde skarn formation. Ore Geol. Rev. 2024, 173, 106246. [Google Scholar] [CrossRef]
- Wen, G.; Qiu, J.; Hofstra, A.H.; Harlov, D.E.; Ren, Z.; Li, J.-W. Revealing the role of crystal chemistry in REE fractionation in skarn garnets: Insights from lattice-strain theory. Contrib Miner. Pet. 2024, 179, 18. [Google Scholar] [CrossRef]
- Su, H.-M.; Che, Y.-Y.; Liu, T.; Li, H.; Liu, L.; Jin, T.; He, S. Multiple generations of garnet and their genetic significance in the Niukutou cobalt-rich Pb-Zn-(Fe) skarn deposit, East Kunlun orogenic belt, western China. Ore Geol. Rev. 2024, 174, 106308. [Google Scholar] [CrossRef]
- Allen, D.E.; Seyfried, W.E. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure. Geochim. Et Cosmochim. Acta 2005, 69, 675–683. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.-j.; Wu, C.-d.; Chen, H.-y. LA-ICP-MS trace element geochemistry of garnets: Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu–S–Fe–Au deposit, eastern China. Ore Geol. Rev. 2017, 86, 426–439. [Google Scholar] [CrossRef]
- Zhai, D.-G.; Liu, J.-J.; Zhang, H.-Y.; Wang, J.-P.; Su, L.; Yang, X.-A.; Wu, S.-H. Origin of oscillatory zoned garnets from the Xieertala Fe–Zn skarn deposit, northern China: In situ LA–ICP-MS evidence. Lithos 2014, 190, 279–291. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Shao, Y.; Li, H.; Shah, S.A.; Zhou, W. Using garnet geochemistry discriminating different skarn mineralization systems: Perspective from Huangshaping W-Mo-Sn-Cu polymetallic deposit, South China. Ore Geol. Rev. 2021, 138, 104412. [Google Scholar] [CrossRef]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A.E.; Roback, R.; Nelson, A.T.; Xu, H. Uranium transport in acidic brines under reducing conditions. Nat. Commun. 2018, 9, 1469. [Google Scholar] [CrossRef]
- Cuney, M. The extreme diversity of uranium deposits. Min. Depos. 2009, 44, 3. [Google Scholar] [CrossRef]
- Bonnetti, C.; Liu, X.; Cuney, M.; Mercadier, J.; Riegler, T.; Yu, C. Evolution of the uranium mineralisation in the Zoujiashan deposit, Xiangshan ore field: Implications for the genesis of volcanic-related hydrothermal U deposits in South China. Ore Geol. Rev. 2020, 122, 103514. [Google Scholar] [CrossRef]
- Zhu, K.-H.; Wang, K.-X.; Gao, S.; Tan, S.; Liu, X.-D.; Bonnetti, C.; Wu, K.-M.; Yu, C.-D.; Sun, L.-Q.; Yang, H. Unraveling the genetic type and metallogenetic mechanism of the oldest uranium deposit associated with granitoid, South China: A comprehensive analysis of whole-rock geochemistry, and elemental and u-pb isotopic signatures of uranium minerals. Ore Geol. Rev. 2024, 175, 106376. [Google Scholar] [CrossRef]
- Yu, C.-D.; Wang, K.-X.; Liu, X.-D.; Pan, J.-Y.; Chen, Q.; Zhang, J. Hydrothermal Alteration and Elemental Mass Changes of the Xiangyangping Uranium Deposit in the Miao’ershan Ore Field, South China. Ore Geol. Rev. 2020, 125, 103675. [Google Scholar] [CrossRef]
- Cuney, M. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Econ. Geol. 2010, 105, 553–569. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, S.-Y.; Chen, Z.-P.; Su, H.-M.; Li, H.; He, S. The origin and mineralization processes of the Dulenggou copper-cobalt deposit in the East Kunlun orogenic belt, western China. Ore Geol. Rev. 2024, 171, 106186. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, C.; Li, J.; Pan, Y. A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, western China. Ore Geol. Rev. 2017, 81, 342–357. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Q.; Li, C.; Wang, Y.; Ripley, E.M. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai–Tibet plateau, China. Min. Depos. 2016, 52, 51–68. [Google Scholar] [CrossRef]
- Xing, L.; Li, W.; Zang, M.; Yang, F.; Liu, J.; Shi, Y.; Guo, L.; Li, P. Genesis and mineralization implications of dissolution–regrowth pyrite in the large Qukulekedong Au–Sb deposit, East Kunlun, NW China. Ore Geol. Rev. 2023, 157, 105448. [Google Scholar] [CrossRef]
- Guo, X.; Jia, Q.; Kong, H. Age, genesis and geological significance of Harizha quartz diorite in the Eastern Part of East Kunlun. Bull. Geol. Sci. Technol. 2016, 35, 18–26. [Google Scholar]
- Zhong, S.; Feng, C.; Seltmann, R.; Li, D.; Dai, Z. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: Constraints from accessory minerals (zircon and apatite). Min. Depos. 2018, 53, 855–870. [Google Scholar] [CrossRef]
- Yu, M.; Feng, C.; Liu, H.; Li, D.; Zhao, Y.-m.; Li, D.; Liu, J.; Wang, H.; Zhang, M. 40Ar-39Ar geochronology of the Galinge large skarn iron deposit in Qinghai province and geological significance. Acta Geol. Sin. 2015, 89, 510–521. [Google Scholar]
- Zhang, R.; Yuan, F.; Deng, Y.; Xu, H.; Zhou, T.; Wang, F.; Wang, Z.; Li, Y.; Han, J.; Zhang, F. Implications of garnet composition on metallogenic chronology and ore-forming fluid evolution of skarn deposits: A case study of the Kendekeke Fe-polymetallic deposit in East Kunlun. Ore Geol. Rev. 2024, 168, 106020. [Google Scholar] [CrossRef]
- Wang, K.-X.; Zhu, K.-H.; Dai, J.-W.; Yang, J.-J.; Liu, X.-D.; Cuney, M.; Yu, C.-D.; Wu, J. Genesis of the Haidewula volcanic rock-hosted uranium deposit in the East Kunlun Orogen, northwestern China. J. Asian Earth Sci. 2024, 266, 106124. [Google Scholar] [CrossRef]
- Zhang, A.; He, S.; Zhang, Y.; Sun, J.; Qian, Y. Geodynamic evolution in the post-collisional stage of the East Kunlun Orogenic Belt: Constraints from the Late Triassic intermediate–felsic igneous rocks. Aust. J. Earth Sci. 2024, 71, 114–128. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, S.; Duan, J.; Wang, K.; Dai, J.; Sun, H. Isotopic and Elemental Constraints on Zircon, Garnet, and Uraninite from Nakexiuma: Implications for U–W Mineralization. Minerals 2025, 15, 1182. https://doi.org/10.3390/min15111182
Li Y, Liu S, Duan J, Wang K, Dai J, Sun H. Isotopic and Elemental Constraints on Zircon, Garnet, and Uraninite from Nakexiuma: Implications for U–W Mineralization. Minerals. 2025; 15(11):1182. https://doi.org/10.3390/min15111182
Chicago/Turabian StyleLi, Yanqiang, Songlin Liu, Jianhua Duan, Kaixing Wang, Jiawen Dai, and Hongqing Sun. 2025. "Isotopic and Elemental Constraints on Zircon, Garnet, and Uraninite from Nakexiuma: Implications for U–W Mineralization" Minerals 15, no. 11: 1182. https://doi.org/10.3390/min15111182
APA StyleLi, Y., Liu, S., Duan, J., Wang, K., Dai, J., & Sun, H. (2025). Isotopic and Elemental Constraints on Zircon, Garnet, and Uraninite from Nakexiuma: Implications for U–W Mineralization. Minerals, 15(11), 1182. https://doi.org/10.3390/min15111182

