Role of Natural and Modified Clay Minerals in Microbial Hydrocarbon Biodegradation
Abstract
1. Introduction
2. Natural Clay Minerals
| Year | Clay Mineral | Substrate | Degrader | Effect | Ref. |
|---|---|---|---|---|---|
| 1997 | Mixed clay | Crude oil | Microbial community | Stimulation for saturated hydrocarbons (23%), neutral for aromatic hydrocarbons | [25] |
| 2005 | Kaolinite | Heavy oil | Microbial community | Stimulation | [26] |
| 2005 | Montmorillonite | Heavy oil | Pseudomonas aeruginosa + microbial community | Stimulation | [27] |
| Kaolinite | |||||
| 2009 | Montmorillonite | Heavy oil | Microbial community | Stimulation (62.9%–78.4%) | [28] |
| 2009 | Vermiculite | Naphthalene, anthracene | Microbial community | Stimulation (11%–77%) | [29] |
| 2013 | Montmorillonite | Crude oil | Microbial community | Stimulation (30%) | [30] |
| 2014 | Montmorillonite | Saturated hydrocarbons | Microbial community | Stimulation (78.4) | [31] |
| Palygorskite | Stimulation (75.9%) | ||||
| Saponite | Neutral | ||||
| Kaolinite | Inhibition (5.5%) | ||||
| 2014 | Saponite | Crude oil | Microbial community | Stimulation (9%–12%) | [32] |
| 2014 | Kaolinite | Crude oil | Microbial community | Inhibition (−1%) | [33] |
| Palygorskite | Stimulation (17%) | ||||
| Saponite | Neutral | ||||
| Montmorillonite | Stimulation (22%) | ||||
| 2014 | Montmorillonite | Crude oil | Microbial community | Stimulation (22%) | [22] |
| 2014 | Montmorillonite | Phenanthrene and dibenzothiophene | Microbial community | Stimulation (28%–43%) | [34] |
| 2016 | Bentonite | Crude oil | Microbial community | Stimulation | [35] |
| Kaolinite | |||||
| 2017 | Palygorskite | Phenanthrene(C14) | Burkholderia sartisoli | Stimulation (66%–69%) | [36] |
| 2017 | Montmorillonite | Phenanthrene(C14) | Burkholderia sartisoli + microbial community | Stimulation (8% and 5% for montmorillonite and saponite) | [37] |
| Palygorskite | |||||
| 2017 | Montmorillonite | Polycyclic aromatic hydrocarbons (PAHs) | Microbial community | Neutral for low-weight PAHs, stimulation for high-weight PAHs | [38] |
| Saponite | |||||
| 2017 | Montmorillonite | Aromatic hydrocarbons in crude oil | Microbial community | Stimulation | [39] |
| Saponite | |||||
| Palygorskite | |||||
| Kaolinite | Inhibition | ||||
| 2018 | Kaolinite | Phenanthrene | Sphingomonas sp. GY2B | Stimulation (13%) | [40] |
| 2018 | Nontronite | Crude oil | Alcanivorax borkumensis | Stimulation (12.3%) | [41] |
| 2018 | Bentonite | Aromatic hydrocarbons and cadmium contaminated soil | Microbial community | Stimulation (23.6%) | [42] |
| 2018 | Palygorskite | Crude oil contaminated soil | Microbial community | Stimulation (12.3%) | [43] |
| 2023 | Illite | Heavy oil | Pseudomonas stutzeri | Inhibition (−5.1%–9.8%) | [24] |
| Clay Types | Structural Features | Size Range (Typical, µm) | Zeta Potential (Typical, in Water, mV) | Property |
|---|---|---|---|---|
| Kaolinite | 1:1 layered (T-O) with strong hydrogen bonds between layers | Diameter: 0.2–2 Thickness: 0.05–0.2 | −40–−20 | Low cation exchange capacity, small specific surface area |
| Montmorillonite | 2:1 layered (T-O-T) with octahedral alumina sandwiched between tetrahedral silica sheets | Diameter: 0.1–1 Thickness: 1 (monolayer) | −40–−25 | High cation exchange capacity, expandable interlayers, and adsorption dominated by cation exchange |
| Bentonite | Particle Size: 1–100 (raw ore) | −50–−20 | ||
| Vermiculite | 2:1-type, negatively charged surfaces | Flake Diameter: –1–10 (raw ore) | Negative charge (variable, often close to −25) | Moderate cation exchange capacity |
| Palygorskite | 2:1 (T-O-T) layer chain with zeolitic water channels | Length: 0.5–5 Diameter: 10–50 | −30–−15 | Fibrous, high specific surface area, M-OH groups |
| Attapulgite | ||||
| Saponite | Trioctahedral 2:1 smectite | Diameter: 0.01–1 | −50–−30 | Swelling properties |
| Nontronite | 2:1-type | Diameter: 0.1–1 | −50–−30 | High specific surface area, belonging to Fe–smectite |
| Illite | 2:1 layered with K+ locked in interlayers | Diameter: 0.1–5 µm Thickness: 10–50 nm | −40–−25 | Low cation exchange capacity due to fixed K+, limited specific surface area |

3. Acid-Activated Clay Minerals
| Year | Clay | Acid | Modification Methods | Hydrocarbon | Degrader | Result | Ref. |
|---|---|---|---|---|---|---|---|
| 2013 | Montmorillonite | HCl | Clay:HCl (3 mol/L) = 1:3 (w/w), 70 °C for 45 min | Saturated hydrocarbons, aromatic hydrocarbons, resins, and asphaltenes in crude oil | Microbial community | Inhibition | [54] |
| 2013 | Montmorillonite | HCl | Clay:HCl (3 mol/L) = 1:3 (w/w), 70 °C for 45 min | Steranes, diasteranes, and hopanes | Microbial community | No effect | [30] |
| 2014 | Montmorillonite | HCl | Clay:HCl (3 mol/L) = 1:3 (w/w), 70 °C for 45 min | C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes, C2-dibenzothiophenes | Microbial community | Inhibition (−6%) | [34] |
| 2014 | Montmorillonite Palygorskite Saponite Kaolinite | HCl | 2 mol/L HCl for saponite, 3 mol/L HCl for palygorskite and montmorillonite, 4 mol/L HCl for kaolinite (70 °C for 45 min | Crude oil | Microbial community | Inhibition (−13%, −13%, −8% and −13% for acid-activated montmorillonite, palygorskite, saponite, kaolinite) | [33] |
| 2014 | Montmorillonite Palygorskite Saponite Kaolinite | HCl | Clay:HCl (3 mol/L) = 1:3 (w/w), 70 °C for 45 min | Saturated hydrocarbons | Microbial community | Inhibition | [31] |
| 2017 | Montmorillonite | HCl | Clay:HCl (3 mol/L) = 1:3 (w/w), 70 °C for 45 min | 11 polycyclic aromatic hydrocarbons | Microbial community | Inhibition | [39] |
| Palygorskite | |||||||
| Saponite | |||||||
| Kaolinite | |||||||
| 2017 | Palygorskite Saponite | HCl | Clay:HCl (0.5,1 and 3 mol/L) = 1:3 (w/v) 75 °C for 45 min | PAHs | Microbial community + | Only the 0.5 mol/L HCl treatment showed stimulation | [37] |
| Burkholderia sartisoli | |||||||
| 2018 | Montmorillonite | Stearic acid | Stirred in 0.91% (w/v) stearic acid (ethanol-water, 1:1 v/v) at 50 °C for 4 h | Phenanthrene | Sphingomonas sp. GY2B | Stimulation | [48] |
4. Alkali-Activated Clay Minerals
5. Thermally Modified Clay Minerals
6. Metal Cation-Modified Clay Minerals
7. Organically Modified Clay Minerals
8. Clay Mineral-Containing Composite Materials
| Year | Clay Minerals | Main Composition | Preparation Method | Mechanism and Result | Ref. |
|---|---|---|---|---|---|
| 2003 | Montmorillonite | Trimethyl octadecylammonium cation, polylactide | Nanocomposites were prepared by melt extrusion of polylactide and montmorillonite modified with trimethyl octadecylammonium cation | The hydroxyl groups at the edges of silicate layers induce heterogeneous hydrolysis of polylactide, accelerating its biodegradation. | [94] |
| 2015 | Vermiculite | EcobrasTM (polyester and starch), tetrabutyl phosphonium bromide | Different formulations were mixed and melted at 140 °C for 8 min | High cation exchange capacity and porous structure promote microbial colonization, ensuring material integrity while significantly enhancing microbial immobilization and polymer degradation capabilities. | [95] |
| 2016 | Bentonite | Cationic surfactant, palmitic acid | Mix cationic surfactant and bentonite, add mixture to ethanol-dissolved palmitic acid (ethanol–water mixture (1:1)), stir 4 h at 25 °C | Surface engineering enables carboxyl-specific cadmium adsorption to reduce toxicity while retaining phenanthrene bioavailability on hydrophobic surfaces, offering a solution for Cd-PAHs co-contamination. | [53] |
| 2018 | Nontronite | Na-carboxymethyl cellulose, organoclay (Tixogel VP) | Mixing, forming, and sterilization | Nontronite flakes enhances oil biodegradation (by Alcanivorax borkumensis) primarily through physical adsorption and sustained nutrient supply in marine oil spill remediation. | [41] |
| 2019 | Nano attapulgite | Hydrophilic urethane foams | Incorporation of nano-attapulgite during hydrophilic urethane foam formation to create porous matrix (200–500 μm) | Enhanced surface area, improved mass transfer performance, and enriched hydrocarbon-degrading bacteria consortium achieved 99.73% COD removal and 97.48% ammonium nitrogen removal efficiency. | [89] |
| 2021 | Nontronite | Na-carboxymethyl cellulose, talc, organoclay (Tixogel VP) | Mixing raw materials with different formulations, ultrasonic dispersion, drop-casting molding, drying and peeling | Maintains long-term buoyancy stability in saline water, reduces oil film coverage to 6% within 5 weeks, and simultaneously enhances microbial growth by 44%–162% | [96] |
| 2023 | Clay (unspecified type, collected from Liaohe Estuarine wetland, China) | Biochar | Mix clay, 15% biochar (reed straw pyrolyzed at 600 °C for 3 h under oxygen-limited conditions), 3% Na2SiO3, and 3% NaHCO3, then press into composite particles. | Immobilized Flavobacterium mizutaii sp. and Aquamicrobium sp. to remove ammonia nitrogen and petroleum hydrocarbons | [93] |
| 2024 | Attapulgite | Alginate | Adding 1% (w/v) CaCl2 to a solution containing polyvinyl alcohol (1% w/v), sodium alginate (2% w/v), and attapulgite (1% w/v) after microbial inoculation | Immobilized microbial cells provide the optimal degradation environment | [97] |
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duran, R.; Cravo-Laureau, C. The hydrocarbon pollution crisis: Harnessing the earth hydrocarbon-degrading microbiome. Microb. Biotechnol. 2024, 17, e14526. [Google Scholar] [CrossRef]
- Duran, R.; Cravo-Laureau, C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol. Rev. 2016, 40, 814–830. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Chebbi, A.; Formicola, F.; Prasad, S.; Gomez, F.H.; Franzetti, A.; Vaccari, M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere 2022, 293, 133572. [Google Scholar] [CrossRef]
- Sam, K.; Coulon, F.; Prpich, G. Management of petroleum hydrocarbon contaminated sites in Nigeria: Current challenges and future direction. Land Use Policy 2017, 64, 133–144. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Chintalacheruvu, M.R. Distribution, risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) using positive matrix factorization (PMF) in urban soils of East India. Environ. Geochem. Health 2023, 45, 491–505. [Google Scholar] [CrossRef]
- Truskewycz, A.; Gundry, T.D.; Khudur, L.S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Petroleum hydrocarbon contamination in terrestrial ecosystems-fate and microbial responses. Molecules 2019, 24, 3400. [Google Scholar] [CrossRef]
- Saqr, A.M.; Ibrahim, M.G.; Fujii, M.; Nasr, M. Sustainable development goals (SDGs) associated with groundwater over-exploitation vulnerability: Geographic information system-based multi-criteria decision analysis. Nat. Resour. Res. 2021, 30, 4255–4276. [Google Scholar] [CrossRef]
- Joseph Omeiza, A.; Hammed Adeniyi, L.; Mohammed Shettima, N. Investigation of groundwater vulnerability to open dumpsites and its potential risk using electrical resistivity and water analysis. Heliyon 2023, 9, e13265. [Google Scholar] [CrossRef]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Macht, F.; Eusterhues, K.; Pronk, G.J.; Totsche, K.U. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Appl. Clay Sci. 2011, 53, 20–26. [Google Scholar] [CrossRef]
- Seabaugh, J.L.; Dong, H.L.; Kukkadapu, R.K.; Eberl, D.D.; Morton, J.P.; Kim, J. Microbial reduction of Fe(III) in the Fithian and Muloorina illites: Contrasting extents and rates of bioreduction. Clay Clay Min. 2006, 54, 67–79. [Google Scholar] [CrossRef]
- Chang, P.H.; Li, Z.H.; Jean, J.S.; Jiang, W.T.; Wang, C.J.; Lin, K.H. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl. Clay Sci. 2012, 67–68, 158–163. [Google Scholar] [CrossRef]
- Li, S.Y.; He, H.P.; Tao, Q.; Zhu, J.X.; Tan, W.; Ji, S.C.; Yang, Y.P.; Zhang, C.Q. Kaolinization of 2:1 type clay minerals with different swelling properties. Am. Miner. 2020, 105, 687–696. [Google Scholar] [CrossRef]
- Kapellos, G.E. Chapter 2—Microbial Strategies for Oil Biodegradation. In Modeling of Microscale Transport in Biological Processes; Becker, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 19–39. [Google Scholar]
- Sergeyev, Y.M.; Olszewska-Grabowska, B.; Osipov, V.I.; Sokolov, V.N.; Kolomenski, Y.N. The classification of microstructures of clay soils. J. Microsc. 1980, 120, 237–260. [Google Scholar] [CrossRef]
- Fomina, M.; Skorochod, I. Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals 2020, 10, 861. [Google Scholar] [CrossRef]
- Rahsepar, S.; Langenhoff, A.A.M.; Smit, M.P.J.; van Eenennaam, J.S.; Murk, A.J.; Rijnaarts, H.H.M. Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit. Mar. Pollut. Bull. 2017, 125, 186–191. [Google Scholar] [CrossRef]
- Zhang, T.T.; Wang, W.; Zhao, Y.L.; Bai, H.Y.; Wen, T.; Kang, S.C.; Song, G.S.; Song, S.X.; Komarneni, S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2021, 420, 127574. [Google Scholar] [CrossRef]
- Sarkar, B.; Xi, Y.F.; Megharaj, M.; Krishnamurti, G.; Bowman, M.; Rose, H.; Naidu, R. Bioreactive organoclay: A new technology for environmental remediation. Crit. Rev. Environ. Sci. Technol. 2012, 42, 435–488. [Google Scholar] [CrossRef]
- Lee, S.M.; Tiwari, D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Appl. Clay Sci. 2012, 59–60, 84–102. [Google Scholar] [CrossRef]
- España, V.A.A.; Sarkar, B.; Biswas, B.; Rusmin, R.; Naidu, R. Environmental applications of thermally modified and acid activated clay minerals: Current status of the art. Environ. Technol. Innov. 2019, 13, 383–397. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Jones, M.D.; Head, I.M.; Manning, D.; Fialips, C.I. Biodegradation and adsorption of crude oil hydrocarbons supported on “homoionic” montmorillonite clay minerals. Appl. Clay Sci. 2014, 87, 81–86. [Google Scholar] [CrossRef]
- Yoo, J.; Choi, J.; Lee, T.; Park, J. Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water Air Soil Pollut. 2004, 154, 225–237. [Google Scholar] [CrossRef]
- Li, L.; Wan, Y.Y.; Mu, H.M.; Shi, S.B.; Chen, J.F. Interaction between illite and a Pseudomonas stutzeri-heavy oil biodegradation complex. Microorganisms 2023, 11, 330. [Google Scholar] [CrossRef]
- Weise, A.M.; Lee, K. The effect of clay-oil flocculation on natural oil degradation. Int. Oil Spill Conf. Proc. 1997, 1997, 955–956. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Tazaki, K. How kaolinite plays an essential role in remediating oil-polluted seawater. Clay Miner. 2005, 40, 481–491. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Tazaki, K.; Asada, R.; Kogure, K. Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil: Implications for bioremediation. Clay Miner. 2005, 40, 105–114. [Google Scholar] [CrossRef]
- Warr, L.N.; Perdrial, J.N.; Lett, M.; Heinrich-Salmeron, A.; Khodja, M. Clay mineral-enhanced bioremediation of marine oil pollution. Appl. Clay Sci. 2009, 46, 337–345. [Google Scholar] [CrossRef]
- Froehner, S.; Luz, E.; Maceno, M. Enhanced biodegradation of naphthalene and anthracene by modified vermiculite mixed with soil. Water Air Soil Pollut. 2009, 202, 169–177. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Head, I.M.; Manning, D.A.C. Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes. Environ. Sci. Pollut. Res. 2013, 20, 8881–8889. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Jones, M.D.; Head, I.M.; Manning, D.A.C.; Fialips, C.I. Biodegradation of crude oil saturated fraction supported on clays. Biodegradation 2014, 25, 153–165. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Manning, D.A.C.; Fialips, C.I. Microbial degradation of crude oil hydrocarbons on organoclay minerals. J. Environ. Manag. 2014, 144, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Ugochukwu, U.C.; Jones, M.D.; Head, I.M.; Manning, D.A.C.; Fialips, C.I. Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons. Int. Biodeterior. Biodegrad. 2014, 88, 185–191. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Head, I.M.; Manning, D.A.C. Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: Effect on forensic diagnostic ratios. Biodegradation 2014, 25, 515–527. [Google Scholar] [CrossRef]
- Warr, L.N.; Friese, A.; Schwarz, F.; Schauer, F.; Portier, R.J.; Basirico, L.M.; Olson, G.M. Experimental study of clay-hydrocarbon interactions relevant to the biodegradation of the Deepwater Horizon oil from the Gulf of Mexico. Chemosphere 2016, 162, 208–221. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Naidu, R. Bacterial mineralization of phenanthrene on thermally activated palygorskite: A 14C radiotracer study. Sci. Total Environ. 2017, 579, 709–717. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Rusmin, R.; Naidu, R. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study. Environ. Pollut. 2017, 223, 255–265. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Fialips, C.I. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions. Chemosphere 2017, 174, 28–38. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Fialips, C.I. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals. Chemosphere 2017, 178, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Wu, P.; Ruan, B.; Zhang, Y.; Lai, X.; Yu, L.; Li, Y.; Dang, Z. Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism. J. Hazard. Mater. 2018, 349, 51–59. [Google Scholar] [CrossRef]
- Warr, L.N.; Schlüter, M.; Schauer, F.; Olson, G.M.; Basirico, L.M.; Portier, R.J. Nontronite-enhanced biodegradation of Deepwater Horizon crude oil by Alcanivorax borkumensis. Appl. Clay Sci. 2018, 158, 11–20. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Faustorilla, M.V.; Naidu, R. Effect of surface-tailored biocompatible organoclay on the bioavailability and mineralization of polycyclic aromatic hydrocarbons in long-term contaminated soil. Environ. Technol. Innov. 2018, 10, 152–161. [Google Scholar] [CrossRef]
- Tolpeshta, I.I.; Erkenova, M.I. Effect of palygorskite clay, fertilizers, and lime on the degradation of oil products in oligotrophic peat soil under laboratory experimental conditions. Eurasian Soil Sci. 2018, 51, 229–240. [Google Scholar] [CrossRef]
- Isçi, S. Intercalation of vermiculite in presence of surfactants. Appl. Clay Sci. 2017, 146, 7–13. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Ponce, C.P. Spectroscopic studies of synthetic and natural saponites: A review. Minerals 2021, 11, 112. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Rusmin, R.; Naidu, R. Bioremediation of PAHs and VOCs: Advances in clay mineral–microbial interaction. Environ. Int. 2015, 85, 168–181. [Google Scholar] [CrossRef]
- Biswas, B.; Juhasz, A.L.; Rahman, M.M.; Naidu, R. Modified clays alter diversity and respiration profile of microorganisms in long-term hydrocarbon and metal co-contaminated soil. Microb. Biotechnol. 2020, 13, 522–534. [Google Scholar] [CrossRef]
- Ruan, B.; Wu, P.X.; Lai, X.L.; Wang, H.M.; Li, L.P.; Chen, L.Y.; Kang, C.X.; Zhu, N.W.; Dang, Z.; Lu, G.N. Effects of Sphingomonas sp GY2B on the structure and physicochemical properties of stearic acid-modified montmorillonite in the biodegradation of phenanthrene. Appl. Clay Sci. 2018, 156, 36–44. [Google Scholar] [CrossRef]
- Theocharis, C.R.; S’Jacob, K.J.; Gray, A.C. Enhancement of Lewis acidity in layer aluminosilicates: Treatment with acetic acid. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1988, 84, 1509–1515. [Google Scholar] [CrossRef]
- Komadel, P. Chemically modified smectites. Clay Miner. 2003, 38, 127–138. [Google Scholar] [CrossRef]
- Rusmin, R.; Sarkar, B.; Biswas, B.; Churchman, J.; Liu, Y.; Naidu, R. Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Appl. Clay Sci. 2016, 134, 95–102. [Google Scholar] [CrossRef]
- Dubiková, M.; Cambier, P.; Šucha, V.; Čaplovičová, M. Experimental soil acidification. Appl. Geochem. 2002, 17, 245–257. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Mandal, A.; Naidu, R. Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination. Water Res. 2016, 104, 119–127. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Jones, M.D.; Head, I.M.; Manning, D.; Fialips, C.I. Compositional changes of crude oil SARA fractions due to biodegradation and adsorption on colloidal support such as clays using Iatroscan. Environ. Sci. Pollut. Res. 2013, 20, 6445–6454. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Herbert, B.E.; Schlautman, M.A.; Carraway, E.; Hur, J. Cation-π bonding: A new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces. J. Environ. Qual. 2004, 33, 1322–1330. [Google Scholar] [CrossRef]
- Barrios, M.S.; González, L.V.F.; Rodríguez, M.A.V.; Pozas, J.M.M. Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties. Appl. Clay Sci. 1995, 10, 247–258. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, Q.; Chen, H.; Wang, A.Q. XRF and nitrogen adsorption studies of acid-activated palygorskite. Clay Miner. 2010, 45, 145–156. [Google Scholar] [CrossRef]
- White, R.D.; Bavykin, D.V.; Walsh, F.C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions. Nanotechnology 2012, 23, 65705. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.B.; Wang, F.F.; Kang, Y.R.; Wang, A.Q. Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite. Water Air Soil Pollut. 2015, 226, 83. [Google Scholar] [CrossRef]
- Jozefaciuk, G.; Bowanko, G. Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clay Clay Min. 2002, 50, 771–783. [Google Scholar] [CrossRef]
- Sarkar, B.; Megharaj, M.; Xi, Y.; Krishnamurti, G.S.R.; Naidu, R. Sorption of quaternary ammonium compounds in soils: Implications to the soil microbial activities. J. Hazard. Mater. 2010, 184, 448–456. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Naidu, R. Influence of thermally modified palygorskite on the viability of polycyclic aromatic hydrocarbon-degrading bacteria. Appl. Clay Sci. 2016, 134, 153–160. [Google Scholar] [CrossRef]
- Boudriche, L.; Calvet, R.; Hamdi, B.; Balard, H. Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloid Surf. A-Physicochem. Eng. Asp. 2012, 399, 1–10. [Google Scholar] [CrossRef]
- Kuang, W.X.; Facey, G.A.; Detellier, C. Dehydration and rehydration of palygorskite and the influence of water on the nanopores. Clay Clay Min. 2004, 52, 635–642. [Google Scholar] [CrossRef]
- Bhatti, Q.A.; Mouzam, A.; Ishaq, M.; Javid, N.U.; Tariq, A.; Baloch, M.K. Insights on adsorptive property of thermally treated smectite (dioctahedral). Surf. Interface Anal. 2024, 56, 821–831. [Google Scholar] [CrossRef]
- Toor, M.; Jin, B.; Dai, S.; Vimonses, V. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. J. Ind. Eng. Chem. 2015, 21, 653–661. [Google Scholar] [CrossRef]
- Bojemueller, E.; Nennemann, A.; Lagaly, G. Enhanced pesticide adsorption by thermally modified bentonites. Appl. Clay Sci. 2001, 18, 277–284. [Google Scholar] [CrossRef]
- Nones, J.; Nones, J.; Riella, H.G.; Poli, A.; Trentin, A.G.; Kuhnen, N.C. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 55, 530–537. [Google Scholar] [CrossRef]
- Zhou, C.H.; Keeling, J. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Appl. Clay Sci. 2013, 74, 3–9. [Google Scholar] [CrossRef]
- Redd, C.R.; Nagendrappa, G.; Prakash, B. Surface acidity study of Mn+-montmorillonite clay catalysts by FT-IR spectroscopy: Correlation with esterification activity. Catal. Commun. 2007, 8, 241–246. [Google Scholar]
- Tourney, J.; Ngwenya, B.T. The role of bacterial extracellular polymeric substances in geomicrobiology. Chem. Geol. 2014, 386, 115–132. [Google Scholar] [CrossRef]
- Tao, K.L.; Zhao, S.; Gao, P.; Wang, L.J.; Jia, H.Z. Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene. Ecotoxicol. Environ. Saf. 2018, 161, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.D.; Freeman, J.P.; Doerge, D.R.; Cerniglia, C.E. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. Strain PYR-1. Appl. Environ. Microbiol. 2001, 67, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Laszlo, P. Chemical reactions on clays. Science 1987, 235, 1473–1477. [Google Scholar] [CrossRef]
- Pinnavaia, T.J. Intercalated clay catalysts. Science 1983, 220, 365–371. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Manning, D.; Fialips, C.I. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds. J. Environ. Manag. 2014, 142, 30–35. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Sheng, H.J.; Xiang, L.L.; Bian, Y.R.; Herzberger, A.; Cheng, H.; Jiang, Q.; Jiang, X.; Wang, F. Different performance of pyrene biodegradation on metal-modified montmorillonite: Role of surface metal ions from a bioelectrochemical perspective. Sci. Total Environ. 2022, 805, 150324. [Google Scholar] [CrossRef]
- Dutta, A.; Singh, N. Surfactant-modified bentonite clays: Preparation, characterization, and atrazine removal. Environ. Sci. Pollut. Res. 2015, 22, 3876–3885. [Google Scholar] [CrossRef]
- Sun, K.; Shi, Y.; Chen, H.H.; Wang, X.Y.; Li, Z.H. Extending surfactant-modified 2:1 clay minerals for the uptake and removal of diclofenac from water. J. Hazard. Mater. 2017, 323, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Tohdee, K.; Kaewsichan, L.; Asadullah. Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. J. Environ. Chem. Eng. 2018, 6, 2821–2828. [Google Scholar] [CrossRef]
- Gardi, I.; Nir, S.; Mishael, Y.G. Filtration of triazine herbicides by polymer-clay sorbents: Coupling an experimental mechanistic approach with empirical modeling. Water Res. 2015, 70, 64–73. [Google Scholar] [CrossRef]
- Kadi, S.; Djadoun, S.; Sbirrazzuoli, N. Thermal stability and kinetic study of poly(ethyl methacrylate-co-acrylonitrile) nanocomposites prepared by in situ polymerization in presence of an Algerian bentonite. Thermochim. Acta 2013, 569, 127–133. [Google Scholar] [CrossRef]
- Tonle, I.K.; Ngameni, E.; Njopwouo, D.; Carteret, C.; Walcarius, A. Functionalization of natural smectite-type clays by grafting with organosilanes: Physico-chemical characterization and application to mercury(II) uptake. Phys. Chem. Chem. Phys. 2003, 5, 4951–4961. [Google Scholar] [CrossRef]
- Tharmavaram, M.; Pandey, G.; Rawtani, D. Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Adv. Colloid Interface Sci. 2018, 261, 82–101. [Google Scholar] [CrossRef]
- Le Pluart, L.; Duchet, J.; Sautereau, H.; Gérard, J.F. Surface modifications of montmorillonite for tailored interfaces in nanocomposites. J. Adhes. 2002, 78, 645–662. [Google Scholar] [CrossRef]
- Crocker, F.H.; Guerin, W.F.; Boyd, S.A. Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ. Sci. Technol. 1995, 29, 2953–2958. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Sarkar, B.; Mandal, A.; Naidu, R. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil. J. Hazard. Mater. 2015, 298, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Biswas, B.; Sarkar, B.; Patra, A.K.; Naidu, R. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination. Sci. Total Environ. 2016, 550, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.M.; Khan, A.; Huang, H.Y.; Tian, Y.R.; Yu, X.; Xu, Q.; Mou, L.C.; Lv, J.G.; Zhang, P.Y.; Liu, P.; et al. Using nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as biofilm support enhances oil-refinery wastewater treatment in a biofilm membrane bioreactor. Sci. Total Environ. 2019, 646, 606–617. [Google Scholar] [CrossRef]
- Ndirangu, S.M.; Liu, Y.Y.; Xu, K.; Song, S.X. Risk evaluation of pyrolyzed biochar from multiple wastes. J. Chem. 2019, 2019, 4506314. [Google Scholar] [CrossRef]
- Santos, D.; Evaristo, R.; Dutra, R.C.; Suarez, P.; Silveira, E.A.; Ghesti, G.F. Advancing biochar applications: A review of production processes, analytical methods, decision criteria, and pathways for scalability and certification. Sustainability 2025, 17, 2685. [Google Scholar] [CrossRef]
- Lin, Q.; Tan, X.F.; Almatrafi, E.; Yang, Y.; Wang, W.J.; Luo, H.Z.; Qi, F.Z.; Zhou, C.Y.; Zeng, G.M.; Zhang, C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci. Total Environ. 2022, 826, 153956. [Google Scholar] [CrossRef]
- Sun, P.F.; Wei, J.; Gao, Y.Y.; Zhu, Z.H.; Huang, X. Biochar/clay composite particle immobilized compound bacteria: Preparation, collaborative degradation performance and environmental tolerance. Water 2023, 15, 2959. [Google Scholar] [CrossRef]
- Ray, S.S.; Yamada, K.; Okamoto, M.; Ueda, K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 2003, 44, 857–866. [Google Scholar] [CrossRef]
- Oliveira, M.; China, A.L.; Oliveira, M.G.; Leite, M. Biocomposites based on Ecobras matrix and vermiculite. Mater. Lett. 2015, 158, 25–28. [Google Scholar] [CrossRef]
- Warr, L.N.; Podlech, C.; Kandler, J.; Peltz, M. Developing buoyant and biocompatible nanoclays for the removal of hydrocarbon pollution from aqueous systems. Appl. Clay Sci. 2021, 201, 105917. [Google Scholar] [CrossRef]
- Farid, E.; Kamoun, E.A.; Taha, T.H.; El-Dissouky, A.; Khalil, T.E. Eco-friendly biodegradation of hydrocarbons compounds from crude oily wastewater using PVA/alginate/clay composite hydrogels. J. Polym. Environ. 2024, 32, 225–245. [Google Scholar] [CrossRef]
- Perelomov, L.V. The role of interactions between bacteria and clay minerals in pedochemical processes. Geochem. Int. 2023, 61, 1026–1035. [Google Scholar] [CrossRef]
- Kurdish, I.K.; Bega, Z.T. Effect of argillaceous minerals on the growth of phosphate-mobilizing bacteria Bacillus subtilis. Appl. Biochem. Microbiol. 2006, 42, 388–391. [Google Scholar] [CrossRef]
- Stotzky, G. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In Interactions of Soil Minerals with Natural Organics and Microbes; Huang, P.M., Schnitzer, M., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1986; Volume 17, pp. 305–428. [Google Scholar]
| Year | Clay | Metal Cation | Modification Method | Hydrocarbon | Degrader | Result | Ref. |
|---|---|---|---|---|---|---|---|
| 2013 | Montmorillonite | K+, Ca2+, Zn2+, Cr3+ | 200 mL of 0.5 mol/L chloride solutions (KCl, CaCl2, ZnCl2, CrCl3) added to 5 g montmorillonite, shaken 24 h, centrifugation | Saturated hydrocarbons, aromatic hydrocarbons, resins, and asphaltenes in crude oil | Microbial community | Ca-montmorillonite: stimulation; Cr-montmorillonite: inhibition; K- and Zn-montmorillonite: neutral | [54] |
| 2013 | Montmorillonite | K+, Na+, Ca2+, Fe3+ | 200 mL of 0.5 mol/L chloride solutions (KCl, NaCl, CaCl2, FeCl3) added to 5 g montmorillonite, shaken 24 h, centrifugation | Steranes, diasteranes, and hopanes | Microbial community | Stimulation: K-montmorillonite (4%), Na-montmorillonite (28%–33%), Ca- (49%–58%), and Fe-montmorillonite (49%–58%) | [30] |
| 2014 | Montmorillonite | Na+, K+, Mg2+, Ca2+, Zn2+, Al3+, Cr3+, Fe3+ | 200 mL of 0.5 mol/L chloride solutions (NaCl, KCl, MgCl2, CaCl2, ZnCl2, AlCl3, CrCl3, FeCl3) added to 5 g montmorillonite, shaken 24 h, centrifugation | 11 Aromatic compounds | Microbial community | K- and Zn-montmorillonite: no stimulation; Ca- and Fe-montmorillonite: stimulation | [76] |
| 2014 | Montmorillonite | Na+, K+, Ca2+, Zn2+, Cr3+, Fe3+ | 200 mL of 0.5 mol/L chloride solutions (NaCl, KCl, CaCl2, ZnCl2, CrCl3, FeCl3) added to 5 g montmorillonite, shaken 24 h, centrifugation | C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes, C2-dibenzothiophenes | Microbial community | Stimulation: K-montmorillonite (18%–25%), Ca- (48%–63%), and Fe-montmorillonite (48%–63%) | [34] |
| 2014 | Montmorillonite | Na+, K+, Mg2+, Ca2+, Zn2+, Al3+, Cr3+, Fe3+ | 200 mL of 0.5 mol/L chloride solutions (NaCl, KCl, MgCl2, CaCl2, ZnCl2, AlCl3, CrCl3, FeCl3) added to 5 g montmorillonite, shaken 24 h, centrifugation | Crude oil hydrocarbons | Microbial community | Na- (21%), Ca- (29%), Mg- (21%), and Fe-montmorillonites (28%): stimulation; K- (−9%), Zn- (−6%), Al-, and Cr-montmorillonites (−3%): inhibition | [22] |
| 2018 | Montmorillonite, kaolinite, pyrophyllite | Na+, Fe3+ | 100 mL of 0.1 mol/L chloride solutions (NaCl and FeCl3) added to 5 g clays, ultrasonic treatment 10 min | Phenanthrene | Pantoea agglomerans | Stimulation: Na-montmorillonite (14.9%) > Fe-montmorillonite (13.8%) >Fe-kaolinite > Na-Kaolinite > Fe-pyrophyllite > Na-pyrophyllite | [72] |
| 2022 | Montmorillonite | Na+, Ni2+, Co2+, Cu2+, Fe3+ | Solid/water ratio of 1:20 (NaCl, 0.1 mol/L; NiCl2, 0.5 mol/L; CoCl2, 0.5 mol/L; CuCl2, 0.5 mol/L; FeCl3, 0.033 mol/L); shaken at 160 rpm for 2 h | Pyrene | Mycobacteria strain NJS−1 | Stimulation: Fe-montmorillonite (33.6%) > Na-montmorillonite ≈ Co-montmorillonite > Ni-montmorillonite ≈ Cu-montmorillonite | [77] |
| Year | Clay | Organic Modifier | Modification Method | Hydrocarbon | Degrader | Result | Ref. |
|---|---|---|---|---|---|---|---|
| 1995 | Smectite | HDTMA bromide | Mix HDTMA bromide and smectite, stir 16 h at 23 °C | Naphthalene | Pseudomonas putida, Alcaligenes sp. | Stimulation only for Pseudomonas putida | [86] |
| 2004 | Bromide | HDTMA bromide | Add solution of HDTMA bromide to the stirred bentonite suspension | Phenol | Microbial community | Inhibition | [23] |
| 2013 | Montmorillonite | DDDMA bromide | Add DDDMA bromide to montmorillonite/saponite suspension, stir 24 h | Saturated hydrocarbons, aromatic hydrocarbons, resins, and asphaltenes in crude oil | Microbial community | Inhibition | [54] |
| 2013 | Montmorillonite | DDDMA bromide | Add 100 mL of DDDMA bromide solution (5.17 g) to 1500 mL clay suspension (50 g), stir 24 h | Steranes, diasteranes, and hopanes | Microbial community | No stimulation (−1%) | [30] |
| 2014 | Montmorillonite, Saponite | DDDMA bromide | Add 100 mL of DDDMA bromide solution (5.17 g) to 1500 mL clay suspension (50 g), stir 24 h | Saturated hydrocarbons | Microbial community | Inhibition | [31] |
| 2014 | Montmorillonite, Saponite | DDDMA bromide | Add sufficient DDDMA bromide to montmorillonite/saponite suspension, stir 24 h | Crude oil hydrocarbons | Microbial community | Organosaponite: no stimulation; organomontmorillonite: inhibition (−12%) | [32] |
| 2014 | Montmorillonite | DDDMA bromide | Add 100 mL of DDDMA bromide solution (5.17 g) to 1500 mL clay suspension (50 g), stir 24 h | C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes, C2-dibenzothiophenes | Microbial community | Stimulation (8%–23%) | [34] |
| 2015 | Bentonite | Cationic surfactant, palmitic acid | Mix cationic surfactant and bentonite, add mixture to ethanol-dissolved palmitic acid (10.99 g in 1000 mL ethanol–water mixture (1:1)), stir 4 h | Phenanthrene | Microbial community | Stimulation: microbial count (10%–43%), respiration (3%–44%; enzymatic activities (68%) | [87] |
| 2016 | Bentonite | Cationic surfactant, palmitic acid | Mix cationic surfactant and bentonite, add mixture to ethanol-dissolved palmitic acid (10.99 g in 1000 mL ethanol–water mixture (1:1)), stir 4 h | Phenanthrene | Mycobacterium gilvum VF1 | Neutral | [88] |
| 2017 | Saponite, Montmorillonite | DDDMA bromide | Add sufficient DDDMA bromide to clay suspension, stir 24 h | Polycyclic aromatic hydrocarbons | Microbial community (Alcanivorax-dominated) | Organosaponite: stimulation; organomontmorillonite: inhibition | [38] |
| 2018 | Bentonite | Cationic surfactant, palmitic acid | Mix cationic surfactant and bentonite, add mixture to ethanol-dissolved palmitic acid (10.99 g in 1000 mL ethanol–water mixture (1:1)), stir 4 h | Polycyclic aromatic hydrocarbons | Microbial community | Stimulation (13.3%) | [42] |
| 2020 | Bentonite | Cationic surfactant, palmitic acid | Mix cationic surfactant and bentonite, add mixture to ethanol-dissolved palmitic acid (10.99 g in 1000 mL ethanol–water mixture (1:1)), stir 4 h | Polycyclic aromatic hydrocar-bons | Microbial community | Stimulation: modulates microbiota structure, enhances growth, and boosts respiration | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, C. Role of Natural and Modified Clay Minerals in Microbial Hydrocarbon Biodegradation. Minerals 2025, 15, 1120. https://doi.org/10.3390/min15111120
Li L, Zhang C. Role of Natural and Modified Clay Minerals in Microbial Hydrocarbon Biodegradation. Minerals. 2025; 15(11):1120. https://doi.org/10.3390/min15111120
Chicago/Turabian StyleLi, Lei, and Chunhui Zhang. 2025. "Role of Natural and Modified Clay Minerals in Microbial Hydrocarbon Biodegradation" Minerals 15, no. 11: 1120. https://doi.org/10.3390/min15111120
APA StyleLi, L., & Zhang, C. (2025). Role of Natural and Modified Clay Minerals in Microbial Hydrocarbon Biodegradation. Minerals, 15(11), 1120. https://doi.org/10.3390/min15111120

