Coal-Based Direct Reduction for Dephosphorization of High-Phosphorus Iron Ore: A Critical Review
Abstract
1. Introduction
2. Form of Phosphorus in High-Phosphorus Iron Ore
2.1. Occurrence Forms of Phosphorus and Iron in High-Phosphorus Iron Ore
2.2. Forms of Phosphorus in Iron Minerals
3. Mechanism of Dephosphorization Agent
3.1. Indirect Inhibition of Phosphorus-Containing Mineral Reduction
3.2. Reaction with Phosphorus-Containing Minerals
3.3. Promote the Reduction of Iron Oxides
3.4. Promote the Gasification Reaction of Coal
3.5. Destruction of Oolitic Structure
3.6. Promote the Growth of Metallic Iron Particles
3.7. Improve the Intergrowth Relationship Between Metallic Iron Particles and Gangue Minerals
3.8. Improve Process Indicators
3.9. Mechanism of Combined Dephosphorization Agent
4. Iron Phase Transformation and Phosphorus Removal
4.1. Influencing Factors of Iron Mineral Transformation
4.2. Influencing Factors on Iron Removal and Phosphorus Reduction Effects
5. Conclusions
- (1)
- The main iron-bearing minerals in high-phosphorus iron ore include goethite, hematite, limonite, magnetite, and hydrohematite. The phosphorus-bearing minerals primarily occur in the form of apatite and collophane. Phosphorus in iron minerals is mainly present through isomorphic substitution within the mineral lattice; however, the specific phosphorus-bearing mineral phases within the iron minerals have not yet been clearly identified.
- (2)
- During the coal-based direct reduction process of high-phosphorus iron ore, the addition of dephosphorization agent is essential. The mechanism of the dephosphorization agent includes: indirectly inhibiting the reaction of phosphorus-containing minerals or reacting with phosphorus to form soluble salts, the reby preventing phosphorus from entering metallic iron; promoting the reduction of iron minerals and enhancing coal gasification, which improves iron recovery; disrupting the oolitic structure, facilitating the growth of metallic iron particles; and improving the distribution relationship between metallic iron and gangue, thereby increasing the iron grade. Through the action of the dephosphorization agent, the technological indicators such as phosphorus content, iron recovery, and iron grade are significantly improved.
- (3)
- In the coal-based direct reduction of high-phosphorus oolitic iron ores, the phase transformation of iron minerals proceeds in the sequence of Fe2O3 → Fe3O4 → FeO (FeAl2O4, Fe2SiO4) → Fe. The factors influencing the transformation of iron phases and the efficiency of iron enrichment and phosphorus removal are complex. Under the condition that phosphorus-containing phases are not reduced, favorable results in terms of iron enrichment and phosphorus removal can only be achieved by controlling the reduction temperature, reduction time, and types and dosages of reductants and dephosphorization agents, as well as grinding–magnetic separation parameters within appropriate ranges.
- (4)
- Future research should focus on investigating ore properties, particularly the forms of phosphorus in iron minerals, to enable more targeted development and utilization of ores. A key area for improvement is reducing the consumption of dephosphorization agents, which will not only optimize the dephosphorization process but also help lower resource and energy consumption. Additionally, refining models for metallic iron growth, especially in later stages, and improving energy efficiency during the reduction process are essential. These efforts aim to enhance mineral processing and metallurgy efficiency and establish sustainable pathways for high-phosphorus iron ore utilization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DRI | Direct reduced iron |
SEM-EDS | Scanning electron microscopy with energy-dispersive spectroscopy |
EPMA | Electron probe microanalysis |
TEM | Transmission electron microscopy |
CLSM | Confocal laser scanning microscopy |
TFe | Total iron |
P | Phosphorus |
EAF | Electric arc furnaces |
References
- Huang, J.B.; Liu, J.; Zhang, H.W.; Guo, Y.Q. Sustainable risk analysis of China's overseas investment in iron ore. Resour. Policy 2020, 68, 101771. [Google Scholar] [CrossRef]
- Jiang, H.D.; Liu, Y.X.; Wang, H.X.; Li, H.J.; Jiang, Y.T. An economy-wide and environmental assessment of an imported supply shortage for iron ore: The case of China. Econ. Anal. Policy 2024, 83, 606–617. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Misra, V.N.; Clough, J.; Muni, R. Dephosphorisation of western australian iron ore by hydrometallurgical process. Miner. Eng. 1999, 12, 1083–1092. [Google Scholar] [CrossRef]
- Durães, N.; Silva, E.F.D.; Bobos, I.; Ávila, P. Rare Earth Elements Fractionation in Native Vegetation from the Moncorvo Iron Mines, NE Portugal. Procedia Earth Planet. Sci. 2014, 10, 376–382. [Google Scholar] [CrossRef]
- Song, S.X.; Campos-Toro, E.F.; Zhang, Y.M.; Lopez-Valdivieso, A. Morphological and mineralogical characterizations of oolitic iron ore in the Exi region, China. Int. J. Miner. Metall. Mater. 2013, 20, 113–118. [Google Scholar] [CrossRef]
- Abro, M.I.; Pathan, A.G.; Mallah, A.H.M. Liberation of oolitic hematite grains from iron ore, Dilband Mines Pakistan. Mehran Univ. Res. J. Eng. Technol. 2011, 30, 329–338. [Google Scholar]
- Wu, J.; Wen, Z.J.; Cen, M.J. Development of Technologies for High Phosphorus Oolitic Hematite Utilization. Steel Res. Int. 2011, 82, 494–500. [Google Scholar] [CrossRef]
- Yu, Y.F.; Qi, C.Y. Magnetizing Roasting Mechanism and Effective Ore Dressing Process for Oolitic Hematite Ore. J. Wuhan Univ. Technol.-Mater. 2011, 26, 177–181. [Google Scholar] [CrossRef]
- Hao, X.Y.; Dai, H.X.; Zhao, Z.Q. State Quo of Phosphorous Reduction of High Phosphorus Iron Ore and Discussion on Its Problems. Met. Mine 2007, 1, 7–10. [Google Scholar] [CrossRef]
- Quast, K. A review on the characterisation and processing of oolitic iron ores. Miner. Eng. 2018, 126, 89–100. [Google Scholar] [CrossRef]
- Xiao, J.H.; Zou, K.; Wang, Z. Studying on mineralogical characteristics of a refractory high-phosphorous oolitic iron ore. SN Appl. Sci. 2020, 2, 1051. [Google Scholar] [CrossRef]
- Fisher-White, M.J.; Lovel, R.R.; Sparrow, G.J. Phosphorus Removal from Goethitic Iron Ore with a Low Temperature Heat Treatment and a Caustic Leach. Isij Int. 2012, 52, 797–803. [Google Scholar] [CrossRef]
- Nunes, A.P.L.; Pinto, C.L.L.; Valadão, G.E.S.; Viana, P.R.D.M. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Miner. Eng. 2012, 39, 206–212. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Wang, F.L.; Li, H. Study on magnetic roasting-magnetic separation-inverse flotation for phosphorus reduction of oolitic hematite. J. Wuhan Inst. Technol. 2011, 33, 29–32. [Google Scholar] [CrossRef]
- Li, Y.J.; Yuan, S.; Liu, J.; Zhou, Z.; Wang, S.X. Study on magnetizing roasting—Magnetic separation—Reverse flotation of a high-phosphorus oolitic hematite ore in hubei. Min. Metall. 2015, 24, 72–75. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.J.; Liu, J.; Nie, C.M.; Zhang, Y.S. Suspension calcination of oolitic hematite ore from Donganshan. Met. Mine 2015, 12, 55–57. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, J.; Zhang, S.M.; Li, Y.J. Research on flotation dephosphorization of iron concentrate from suspended roasting-magnetic separation. Met. Mine 2018, 5, 72–75. [Google Scholar] [CrossRef]
- Zhu, D.Q.; Chun, T.J.; Pan, J.; Wei, X.M. Upgrading iron and removing phosphorus from high-phosphorus iron ore. J. Cent. South Univ. (Nat. Sci. Ed.) 2011, 42, 568–573. [Google Scholar]
- Hu, C.; Gong, W.Q.; Li, Y.B.; Zhong, L.L.; Xin, Z.K.; Wan, J.; Liu, X.H. Experiments on reduction roasting and bio-dephosphorization of high phosphorus oolitic hematite. J. Chongqing Univ. (Nat. Sci. Ed.) 2013, 36, 133–139. [Google Scholar]
- Bao, Q.P.; Guo, L.; Guo, Z.C. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technol. 2021, 377, 149–162. [Google Scholar] [CrossRef]
- Xia, W.T.; Ren, Z.D.; Gao, Y.F. Removal of Phosphorus From High Phosphorus Iron Ores by Selective HCl Leaching Method. J. Iron Steel Res. Int. 2011, 18, 1–4. [Google Scholar] [CrossRef]
- Wang, H.H.; Li, G.Q.; Zhao, D.; Ma, J.H.; Yang, J. Dephosphorization of high phosphorus oolitic hematite by acid leaching and the leaching kinetics. Hydrometallurgy 2017, 171, 61–68. [Google Scholar] [CrossRef]
- Zhou, W.T.; Han, Y.X.; Sun, Y.S.; Li, Y.J. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int. J. Miner. Metall. Mater. 2020, 27, 443–453. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, Q.S.; Fan, C.L.; Xie, Z.H.; Li, H.Z. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int. J. Miner. Metall. Mater. 2015, 22, 346–352. [Google Scholar] [CrossRef]
- Chen, W.X.; Hu, W.M.; Wang, B. Research on the Combined Beneficiation Process for Dephosphorization of High Phosphorus Oolitic Hematite Ore from Wushan Taohua. Met. Miner. 2009, 3, 50–53+136. [Google Scholar] [CrossRef]
- Xu, C.Y.; Sun, T.C.; Kou, J.; Yu, W.; Cao, Y.Y.; Wang, Z.P. Effects of Reductants on the Reduction Roasting and Fe-P Separation of High Phosphorus Oolitic Hematite. Chin. J. Eng. 2016, 38, 26–33. [Google Scholar] [CrossRef]
- He, Y.; Wang, H.J. Research on the Reduction Roasting and Synchronous Dephosphorization of Huimin High Phosphorus Iron Ore. Met. Mine 2011, 3, 60–62. [Google Scholar] [CrossRef]
- Li, G.H.; Zhang, S.H.; Rao, M.J.; Zhang, Y.B.; Jiang, T. Effects of sodium salts on reduction roasting and Fe–P separation of high-phosphorus oolitic hematite ore. Int. J. Miner. Process. 2013, 124, 26–34. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, T.C.; Liu, Z.G.; Xu, C.Y. Phosphorus Occurrence State and Phosphorus Removal Research of a High Phosphorus Oolitic Hematite by Direct Reduction Roasting Method. J. Northeast. Univ. (Nat. Sci.) 2013, 34, 1651–1655. [Google Scholar] [CrossRef]
- Long, Q.; Li, J.; Chen, C.; Lan, Y.; Wei, G. Optimization of iron and aluminum recovery in bauxite. J. Iron Steel Res. Int. 2020, 27, 310–318. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, W.T.; Li, Y.J.; Han, Y.X. Efficient enrichment of nickel and iron in laterite nickel ore by deep reduction and magnetic separation. Trans. Nonferrous Met. Soc. China 2020, 30, 812–822. [Google Scholar] [CrossRef]
- Yu, W.; Sun, T.C.; Cui, Q.; Xu, C.Y.; Kou, J. Effect of Coal Type on the Reduction and Magnetic Separation of a High-phosphorus Oolitic Hematite Ore. ISIJ Int. 2015, 55, 536–543. [Google Scholar] [CrossRef]
- Wu, S.C.; Sun, T.C.; Yang, H.F. Study on Phosphorus Removal of High-Phosphorus Oolitic Hematite Abroad by Direct Reduction and Magnetic Separation. Met. Mine 2019, 11, 109–114. [Google Scholar] [CrossRef]
- Wei, C.Z.; Zhang, X.; Zhang, J.; Xu, L.P.; Li, G.H.; Jiang, T. Development of Direct Reduced Iron in China: Challenges and Pathways. Engineering 2024, 41, 93–109. [Google Scholar] [CrossRef]
- Xu, H.D.; Sun, T.C.; Wu, S.C.; Lian, X.X.; Han, W.L.; DENG, Z.Y. Research Progress on the Effects of Reducing Agents and Dephosphorization Agents on Direct Reduction-Magnetic Separation of High-Phosphorus Oolitic Hematite. Multipurpose Util. Miner. Resour. 2024, 45, 176–184. [Google Scholar] [CrossRef]
- Wu, S.C.; Sun, T.C.; Xu, H.D. A new way to efficient utilization of eggshell waste: As green dephosphorization agent and accelerator for reduction roasting of high-phosphorus oolitic iron ore. Process Saf. Environ. 2023, 173, 702–714. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, T.C.; Li, Y.L.; Zhai, D.; Zhang, S.Y.; Liu, Z.G. Effects of Particle Size of Raw Ore on Direct Reduction Roasting and Synchronous Dephosphorization of High Phosphorus Oolitic Hematite from Western Hubei. Min. Metall. Eng. 2013, 33, 60–64. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.C.; Zeng, W.; Ni, J.; Si, Y.P.; Zhou, H.; Zhang, T.X.; Wu, S.L.; Kou, M.Y. Iron recovery and dephosphorization behaviors from high-phosphorus oolitic hematite by gas-based direct reduction and magnetic separation. J. Iron Steel Res. Int. 2024, 32, 550–563. [Google Scholar] [CrossRef]
- Gao, P.; Zhou, W.T.; Han, Y.X.; Li, Y.J.; Zhang, C.W. Influence Mechanisms of Additives on Coal-based Reduction of Complex Refractory Iron Ore. Min. Proc. Extr. Met. Rev. 2022, 43, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.R.; Hu, L.K.; Liang, Y.Y.; Yang, H.P.; Sun, D. The research on refractory oolitic hematite and expectation. China Min. Mag. 2007, 16, 74–76. [Google Scholar]
- Baioumy, H.; Omran, M.; Fabritius, T. Mineralogy, geochemistry and the origin of high-phosphorus oolitic iron ores of Aswan, Egypt. Ore Geol. Rev. 2017, 80, 185–199. [Google Scholar] [CrossRef]
- Pereira, A.C.; Papini, R.M. Processes for phosphorus removal from iron ore—A review. Rem Rev. Esc. Minas 2015, 68, 331–335. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N.A.; El-Aref, M.; Elmanawi, A.E. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl. Surf. Sci. 2015, 345, 127–140. [Google Scholar] [CrossRef]
- Fisher-White, M.J.; Lovel, R.R.; Sparrow, G.J. Heat and Acid Leach Treatments to Lower Phosphorus Levels in Goethitic Iron Ores. ISIJ Int. 2012, 52, 1794–1800. [Google Scholar] [CrossRef]
- Cai, X.Y.; Qian, G.M.; Zhang, B.; Chen, Q.S.; Hu, C.Q. Selective Liberation of High-Phosphorous Oolitic Hematite Assisted by Microwave Processing and Acid Leaching. Minerals 2018, 8, 245. [Google Scholar] [CrossRef]
- Ofoegbu, S.U. Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing. Sustainability 2019, 11, 6787. [Google Scholar] [CrossRef]
- Li, Y.M.; Guo, W.J.; Liu, Z.T.; An, H. Research on phosphorous-reduction technology for a Australian high-phosphorous iron ore. Contrib. Geol. Miner. Resour. Res. 2011, 26, 229–234. [Google Scholar]
- Tohry, A.; Dehghani, A. Effect of sodium silicate on the reverse anionic flotation of a siliceous–phosphorus iron ore. Sep. Purif. Technol. 2016, 164, 28–33. [Google Scholar] [CrossRef]
- Sparks, B.D.; Sirianni, A.F. Beneficiation of a phosphoriferous iron ore by agglomeration methods. Int. J. Miner. Process. 1974, 1, 231–241. [Google Scholar] [CrossRef]
- Peng, T.F.; Gao, X.C.; Li, Q.B.; Xu, L.J.; Luo, L.Q.; Xu, L.H. Phase transformation during roasting process and magnetic beneficiation of oolitic-iron ores. Vacuum 2017, 146, 63–73. [Google Scholar] [CrossRef]
- Xiang, X.Y.; Xia, W.T.; Yuan, X.L.; Yin, J.G.; An, J. Removal of Phosphorus from High Phosphorus Iron Ores in Wushan Mountain by Crosscurrent Acid Leaching. Solid State Phenom. 2018, 279, 222–229. [Google Scholar] [CrossRef]
- Lovel, R.R.; Sparrow, G.J.; Fisher-White, M.J. Developments in chemical separation of iron ore. In Iron Ore; Elsevier: Amsterdam, The Netherlands, 2015; pp. 357–372. [Google Scholar]
- Maximov, P.; Rudmin, M. Origin of Upper Cretaceous marine ironstones of Ayat Formation (Turgay depression, Northern Kazakhstan). Solid Earth Sci. 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Ofoegbu, S.U. Characterization studies on Agbaja iron ore: A high-phosphorus content ore. SN Appl. Sci. 2019, 1, 204. [Google Scholar] [CrossRef]
- Jin, Y.S.; Jiang, T.; Yang, Y.B.; Li, Q.; Li, G.H.; Guo, Y.F. Removal of phosphorus from iron ores by chemical leaching. J. Cent. South Univ. Technol. 2006, 13, 673–677. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, J.L.; Zhang, Z.H. Experiments on segregation technological conditions of iron increase and dephosphorization from high-phosphorus hematite-limonite ore. China Min. Mag. 2010, 19, 67–70. [Google Scholar]
- Wu, S.C. Effect and Mechanism of Combined Dephosphorization Agent on Dephosphorization of High-Phosphorus Oolitic Iron Ore by Direct Reduction Roasting. Ph.D. Dissertation, University of Science and Technology, Beijing, China, December 2023. [Google Scholar]
- Omran, M.; Fabritius, T.; Abdel-Khalek, N.; El-Aref, M.; Elmanawi, A.E.H.; Nasr, M.; Elmahdy, A. Microwave assisted liberation of high phosphorus oolitic iron ore. J. Miner. Mater. Charact. Eng. 2014, 2, 414–427. [Google Scholar] [CrossRef]
- Gomes, M.; Ramos, J. Recursos minerais de Trás-os-Montes e Alto Douro. In Recursos Geológicos de Trás-Os-Montes–Passado, Presente e Perspetivas Futuras; Instituto Politécnico de Bragança: Bragança, Portugal, 2018. [Google Scholar]
- Edström, J.O. Optimized steelmaking from high phosphorus ores. Trans. Iron Steel Inst. Jpn. 1986, 26, 679–696. [Google Scholar] [CrossRef]
- Rudmin, M.A.; Mazurov, A.K. Oolitic ores in the Bakchar iron-ore cluster (Tomsk Oblast). Dokl. Earth Sci. 2016, 471, 1238–1241. [Google Scholar] [CrossRef]
- Nekipelova, A.V.; Sokol, E.V.; Kokh, S.N.; Khvorov, P.V. Rare Earth Phosphates in the Kerch Caviar Ironstones. Russ. Geol. Geophys. 2021, 62, 1189–1207. [Google Scholar] [CrossRef]
- Barbour, A.P. Distribution of phosphorus in the iron ore deposits of Itabira, Minas Gerais, Brazil. Econ. Geol. 1973, 68, 52–64. [Google Scholar] [CrossRef]
- MacRae, C.M.; Wilson, N.C.; Pownceby, M.I.; Miller, P.R. The occurrence of phosphorus and other impurities in Australian iron ores. In Proceedings of the Iron Ore Conference, Perth, Australia, 11–13 July 2011; pp. 281–289. [Google Scholar]
- Ward, D.F.; Coles, I.G.; Carr, W. Jimblebar and Western Ridge iron ore deposits, Hamersley Iron Province. Econ. Geol. Aust. Papua New Guin. 1975, 1, 916–923. [Google Scholar]
- Pownceby, M.I.; Hapugoda, S.; Manuel, J.; Webster, N.A.S.; MacRae, C.M. Characterisation of phosphorus and other impurities in goethite-rich iron ores—Possible P incorporation mechanisms. Miner. Eng. 2019, 143, 106022. [Google Scholar] [CrossRef]
- Xu, H.D.; Wen, X.J.; Kou, J.; Zhang, J.; Yu, K.X.; Sun, T.C. Preparation of powdery reduced iron from high-phosphorus iron ore: Effects of raw material particle size combination. Miner. Eng. 2025, 229, 109380. [Google Scholar] [CrossRef]
- Xu, H.D.; Li, R.; Kou, J.; Wen, X.J.; Zhang, J.; Geng, C.; Sun, T.C. Effect of Na2CO3 and CaCO3 on deep dephosphorization by the direct reduction of high-phosphorus oolitic hematite. Physicochem. Probl. Miner. Process. 2024, 60, 195249. [Google Scholar] [CrossRef]
- Yu, W.; Sun, T.C.; Cui, Q. Can sodium sulfate be used as an additive for the reduction roasting of high-phosphorus oolitic hematite ore? Int. J. Miner. Process. 2014, 133, 119–122. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Sun, T.C.; Zhao, H.Y.; Li, X.H.; Wang, X.P. Effects of CaCO3 as Additive on Coal-based Reduction of High-phosphorus Oolitic Hematite Ore. ISIJ Int. 2018, 58, 1768–1774. [Google Scholar] [CrossRef]
- Yu, W.; Sun, T.C.; Kou, J.; Wei, Y.X.; Xu, C.Y.; Liu, Z.Z. The Function of Ca(OH)2 and Na2CO3 as Additive on the Reduction of High-Phosphorus Oolitic Hematite-coal Mixed Pellets. ISIJ Int. 2013, 53, 427–433. [Google Scholar] [CrossRef]
- Tang, H.Q.; Qi, T.F.; Qin, Y.Q. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char. JOM 2015, 67, 1956–1965. [Google Scholar] [CrossRef]
- Sun, Y.S.; Li, Y.F.; Han, Y.X.; Li, Y.J. Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore. Int. J. Miner. Metall. Mater. 2019, 26, 938–945. [Google Scholar] [CrossRef]
- Rao, M.J.; Ouyang, C.Z.; Li, G.H.; Zhang, S.H.; Zhang, Y.B.; Jiang, T. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. Int. J. Miner. Process. 2015, 143, 72–79. [Google Scholar] [CrossRef]
- Yu, W.; Sun, T.C.; Liu, Z.Z.; Kou, J.; Xu, C.Y. Effects of Particle Sizes of Iron Ore and Coal on the Strength and Reduction of High Phosphorus Oolitic Hematite-coal Composite Briquettes. ISIJ Int. 2014, 54, 56–62. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Xue, Q.G.; Wang, G.; Wang, J.S. Gasification and Migration of Phosphorus from High-phosphorus Iron Ore during Carbothermal Reduction. ISIJ Int. 2018, 58, 2219–2227. [Google Scholar] [CrossRef]
- Sun, Y.S.; Zhang, Q.; Han, Y.X.; Gao, P.; Li, G.F. Comprehensive Utilization of Iron and Phosphorus from High-Phosphorus Refractory Iron Ore. Jom 2018, 70, 144–149. [Google Scholar] [CrossRef]
- Ji, G.H.; Xiao, C.H.; Gao, X.; Zhou, Y.; Wang, W.L. Direct Reduction of High-Phosphorus Oolitic Hematite: Quantifying Phosphorus Migration and Recovery. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2024, 55, 3107–3121. [Google Scholar] [CrossRef]
- Sun, Y.S.; Zhou, W.T.; Han, Y.X.; Li, Y.J. Effect of Different Additives on Reaction Characteristics of Fluorapatite During Coal-Based Reduction of Iron Ore. Metals 2019, 9, 923. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, Y.F.; Zhang, L.; Fan, J.; Yu, F.S.; Dong, F.Z. Preparation of direct reduction iron by coal-based reduction of high phosphorus oolitic hematite. J. Shandong Univ. Technol. (Nat. Sci.) 2020, 34, 1–4. [Google Scholar]
- Bai, S.J.; Wen, S.M.; Liu, D.W.; Zhang, W.B.; Xian, Y.J. Catalyzing Carbothermic Reduction of Siderite Ore with High Content of Phosphorus by Adding Sodium Carbonate. ISIJ Int. 2011, 51, 1601–1607. [Google Scholar] [CrossRef]
- Peng, C.; Cao, Z.C.; Liu, C.Z.; Cui, H.J. Direct Reduction of High-Phosphorus Oolitic Hematite with Rotary Hearth Furnace for Iron Increase and Phosphorus Reduction. Min. Metall. Eng. 2020, 40, 102–106. [Google Scholar] [CrossRef]
- Yang, D.W.; Sun, T.C.; Yang, H.F.; Xu, C.Y.; Qi, C.Y.; Li, Z.X. Dephosphorization mechanism in a roasting process for direct reduction of high phosphorus oolitic hematite in west Hubei Province, China. J. Univ. Sci. Technol. 2010, 32, 968–974. [Google Scholar]
- Han, Y.X.; Zhang, C.W.; Sun, Y.S.; Gao, P. Mechanism Analysis on Deep Reduction of Complex Refractory Iron Ore Promoted by Na2CO3. J. Northeast. Univ. (Nat. Sci.) 2012, 33, 1633–1636. [Google Scholar]
- Jiang, T.; Guan, S.F.; Xia, Y.; Yu, S.W.; Xue, X.X.; Bai, R.G.; Chen, D.H.; Chang, F.Z. Research on the Coal-Based Direct Reduction of Vanadium Titanomagenetite. Adv. Mater. Res. 2013, 753–755, 16–19. [Google Scholar] [CrossRef]
- Bai, S.J.; Wen, S.M.; Liu, D.W.; Zhang, W.B.; Cao, Q.B. Beneficiation of High Phosphorus Limonite Ore by Sodium-carbonate-added Carbothermic Reduction. ISIJ Int. 2012, 52, 1757–1763. [Google Scholar] [CrossRef]
- Bai, S.J.; Lv, C.; Wen, S.M.; Liu, D.W.; Zhang, W.B.; Cao, Q.B. Effects of sodium carbonate on the carbothermic reduction of siderite ore with high phosphorus content. Miner. Metall. Process. 2013, 30, 100–107. [Google Scholar] [CrossRef]
- Xu, Y. Study on Upgrading Iron and Removing Phosphorus by Direct Reduction Roasting for the Nigeria High Phosphorus Iron Ore. Ph.D. Dissertation, University of Science and Technology Beijing, Beijing, China, 2014. [Google Scholar]
- Fan, D.C.; Ni, W.; Wang, J.Y.; Wang, K. Effects of CaO and Na2CO3 on the reduction of high silicon iron ores. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2017, 32, 508–516. [Google Scholar] [CrossRef]
- Long, H.; Meng, Q.; Chun, T.; Wang, P.; Li, J. Preparation of metallic iron powder from copper slag by carbothermic reduction and magnetic separation. Can. Met. Q. 2016, 55, 338–344. [Google Scholar] [CrossRef]
- Sun, Y.S.; Gao, P.; Han, Y.X.; Ren, D.Z. Reaction Behavior of Iron Minerals and Metallic Iron Particles Growth in Coal-Based Reduction of an Oolitic Iron Ore. Ind. Eng. Chem. Res. 2013, 52, 2323–2329. [Google Scholar] [CrossRef]
- Gao, P.; Sun, Y.S.; Ren, D.Z.; Han, Y.X. Growth of metallic iron particles during coal-based reduction of a rare earths-bearing iron ore. Miner. Metall. Process. 2013, 30, 74–78. [Google Scholar] [CrossRef]
- Chen, C.; Wu, S.C. Calcium Carbonate as Dephosphorization Agent in Direct Reduction Roasting of High-Phosphorus Oolitic Iron Ore: Reaction Behavior, Iron Recovery, and Dephosphorization Mechanism. Minerals 2024, 14, 1023. [Google Scholar] [CrossRef]
- Li, Y.L.; Sun, T.C.; Xu, C.Y.; Liu, Z.H. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J. Cent. South Univ. (Nat. Sci. Ed.) 2012, 43, 827–834. [Google Scholar]
- Wu, S.C.; Sun, T.C.; Kou, J.; Xu, H.D. A new iron recovery and dephosphorization approach from high-phosphorus oolitic iron ore via oxidation roasting-gas-based reduction and magnetic separation process. Powder Technol. 2023, 413, 118043. [Google Scholar] [CrossRef]
- Wu, S.C.; Sun, T.C.; Kou, J.; Li, X.H.; Xu, C.Y.; Chen, Z.K. Influence of Sodium Salts on Reduction Roasting of High-Phosphorus Oolitic Iron Ore. Min. Proc. Extr. Met. Rev. 2022, 43, 947–953. [Google Scholar] [CrossRef]
- Wu, S.C.; Li, Z.Y.; Sun, T.C.; Kou, J.; Li, X.H. Effect of additives on iron recovery and dephosphorization by reduction roasting-magnetic separation of refractory high-phosphorus iron ore. Int. J. Miner. Metall. Mater. 2021, 28, 1908–1916. [Google Scholar] [CrossRef]
- Wu, S.C.; Li, Z.Y.; Sun, T.C.; Li, X.H.; Xu, C.Y. Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore. J. Cent. South. Univ. 2022, 29, 443–454. [Google Scholar] [CrossRef]
- Wu, S.C.; Sun, T.C.; Kou, J.; Li, X.H. Pilot-scale Study on Direct Reduction-Magnetic Separation for Iron Upgrading and Phosphorus Removal from High-phosphorus Oolitic Iron Ore. Chin. J. Eng. 2022, 44, 849–856. [Google Scholar] [CrossRef]
- Leißner, T.; Mütze, T.; Bachmann, K.; Rode, S.; Gutzmer, J.; Peuker, U.A. Evaluation of mineral processing by assessment of liberation and upgrading. Miner. Eng. 2013, 53, 171–173. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Chen, Y.L.; Duan, X.Q. Study on the factors affecting the deep reduction of coal gangue containing high contents of iron and sulfur. Fuel 2021, 288, 119571. [Google Scholar] [CrossRef]
- Ji, G.; Gao, X.; Sohn, I.L.; Ueda, S.; Wang, W. Review of beneficiation techniques and new thinking for comprehensive utilization of high-phosphorus iron ores. Miner. Eng. 2025, 223, 109176. [Google Scholar] [CrossRef]
- Li, G.F.; Han, Y.X.; Gao, P.; Sun, Y.S. The Growth Characteristics of Iron Particle during Coal-based Reduction of Oolitic Hematite Ore. Miner. Resour. Utiliz. 2015, 4, 35–38. [Google Scholar]
- Li, Y.F.; Han, Y.X.; Sun, Y.S.; Gao, P.; Li, Y.J.; Gong, G.C. Growth Behavior and Size Characterization of Metallic Iron Particles in Coal-Based Reduction of Oolitic Hematite–Coal Composite Briquettes. Minerals 2018, 8, 177. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.J.; Chen, B.Y.; Zhang, Y.S.; Chen, C. Present Situation and Prospects of Research on Kinetics Study of Iron Ore Roasting. Met. Mine 2015, 8, 100–105. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Viswanathan, N.N.; Björkman, B. Isothermal reduction kinetics of self-reducing mixtures. Ironmak. Steelmak. 2017, 44, 66–75. [Google Scholar] [CrossRef]
- Tang, H.Q.; Qin, Y.Q.; Qi, T.F.; Dong, Z.L.; Xue, Q.G. Application of Wood Char in Processing Oolitic High-phosphorus Hematite for Phosphorus Removal. J. Iron Steel Res. Int. 2016, 23, 109–115. [Google Scholar] [CrossRef]
- Li, Y.F.; Han, Y.X.; Sun, Y.S.; Gao, P.; Gong, G.C. Characteristic Analysis of Iron Particle Size and Microtopography of Oolitic Hematite in Coal-Based Reduction Process. J. Cent. South. Univ. 2018, 49, 779–785. [Google Scholar] [CrossRef]
- Li, Y.F.; Han, Y.X.; Sun, Y.S.; Li, Y.J. Influence of Ore Granularity of Oolitic Hematite on Coal-Based Reduction Indexes and Morphology of Iron Particles. J. China Univ. Min. Technol. 2017, 46, 622–627. [Google Scholar]
- Sun, Y.S.; Han, Y.X.; Gao, P.; Yu, J.W. Size Distribution Behavior of Metallic Iron Particles in Coal-Based Reduction Products of an Oolitic Iron Ore. Min. Proc. Extr. Met. Rev. 2015, 36, 249–257. [Google Scholar] [CrossRef]
- Yu, J.W.; Qin, Y.H.; Gao, P.; Sun, Y.S.; Ma, S.B. The Growth Characteristics and Kinetics of Metallic Iron in Coal-Based Reduction of Jinchuan Ferronickel Slag. Minerals 2021, 11, 876. [Google Scholar] [CrossRef]
- Jin, G.L.; Zhang, J.Z.; Xu, B.J.; Yang, S. Study on the Reduction of Oolitic Hematite Ores in N2-CO Atmosphere. Adv. Mater. Res. 2014, 968, 198–201. [Google Scholar] [CrossRef]
- Hammam, A.; Cao, Y.; El-Geassy, A.A.; El-Sadek, M.H.; Li, Y.; Wei, H.; Omran, M.; Yu, Y. Non-Isothermal Reduction Kinetics of Iron Ore Fines with Carbon-Bearing Materials. Metals 2021, 11, 1137. [Google Scholar] [CrossRef]
- Sun, Y.S.; Han, Y.X.; Wei, X.C.; Gao, P. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J. Therm. Anal. Calorim. 2016, 123, 703–715. [Google Scholar] [CrossRef]
- Sun, Y.S.; Han, Y.X.; Gao, P.; Wei, X.C.; Li, G.F. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. Int. J. Miner. Process. 2015, 143, 87–97. [Google Scholar] [CrossRef]
- Sun, Y.S.; Han, Y.X.; Gao, P.; Li, Y.J. Prediction Model of Metallic Iron Particle Size during Coal-Based Reduction of Oolitic Hematite Ore. J. Cent. South. Univ. 2017, 48, 282–288. [Google Scholar] [CrossRef]
- Sun, Y.S.; Han, Y.X.; Li, Y.F.; Li, Y.J. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int. J. Miner. Metall. Mater. 2017, 24, 123–129. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, Z.B.; Chen, D.Z.; He, F.; Liu, S.; Zhao, K.; Wei, G.Q.; Zheng, A.Q.; Zhao, Z.L.; Li, H.B. Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier. Energy 2017, 141, 1836–1844. [Google Scholar] [CrossRef]
- Man, Y.; Feng, J.X. Effect of iron ore-coal pellets during reduction with hydrogen and carbon monoxide. Powder Technol. 2016, 301, 1213–1217. [Google Scholar] [CrossRef]
- Li, K.Q.; Ni, W.; Zhu, M.; Zheng, M.J.; Li, Y. Iron Extraction From Oolitic Iron Ore by a Deep Reduction Process. J. Iron Steel Res. Int. 2011, 18, 9–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Han, Y.; Li, Y.; Gao, P. Review on coal-based reduction and magnetic separation for refractory iron-bearing resources. Int. J. Miner. Metall. Mater. 2022, 29, 2087–2105. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Wang, J.S.; Xue, Q.G. Dephosphorisation of high phosphorus oolitic hematite by carbon composite pre-reduction and fast melting separation. Ironmak. Steelmak. 2015, 42, 689–697. [Google Scholar] [CrossRef]
- Peng, C.; Cao, Z.C.; Liu, C.Z.; Cui, H.J. Pilot-Scale Study on Direct Reduction of High Phosphorus Oolitic Hematite by Rotary Hearth Furnace. Conserv. Util. Miner. Resour. 2020, 40, 119–124. [Google Scholar] [CrossRef]
- Ji, G.H.; Xiao, C.H.; Gao, X.; Zhou, Y.; Wang, W.L. In-Situ Investigation of Phosphorus Transformation and Distribution During Gas-Based Reduction of High-Phosphorus Oolitic Hematite. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2024, 6, 1–16. [Google Scholar] [CrossRef]
- Ji, G.H.; Xiao, C.H.; Gao, X.; Zhou, Y.; Sohn, I.L.; Ueda, S.; Wang, W.L. Mechanistic insight into phosphorus migration pathways from oolitic hematite using in-situ observations during roasting and reduction process. Sep. Purif. Technol. 2024, 348, 127696. [Google Scholar] [CrossRef]
- Sun, Y.S.; Han, Y.X.; Gao, P.; Wang, Q. Exploratory Tests on Deep Reduction of High-Phosphorus Oolitic Hematite Ore. Min. Metall. Eng. 2015, 35, 68–71. [Google Scholar] [CrossRef]
- Xu, C.Y.; Sun, T.C.; Qi, C.Y.; Li, Y.L.; Mo, X.L.; Yang, D.W.; Li, Z.X.; Xing, B.L. Effects of Reductants on Direct Reduction and Synchronous Dephosphorization of High-Phosphorous Oolitic Hematite. Chin. J. Nonferr. Met. 2011, 21, 680–686. [Google Scholar]
- Cao, Y.Y.; Sun, T.C.; Gao, E.X.; Xu, C.Y. Effects of Volatile Component in Coal on High-Phosphorus Oolitic Hematite in Direct Reduction Roasting Process. J. Northeast. Univ. 2014, 35, 1346–1349 + 1355. [Google Scholar] [CrossRef]
- Li, G.Q.; Yang, J.; Wang, H.H.; Ma, J.H. Effect of Hematite Particle Size and Reaction Temperature on the Preparation of Iron Carbide from High Phosphorus Oolitic Hematite. J. Chongqing Univ. 2015, 38, 1–10. [Google Scholar] [CrossRef]
Region | P Content/% | Occurrence Form of P | Fe Grade/% | Occurrence Form of Fe | Ref. |
---|---|---|---|---|---|
Australia | 0.15 | Iron minerals | 63.38 | Hematite, limonite | [47] |
Iron Quadrangle region, Brazil | 0.82 | Wavellite, variscite | 61.92 | Hematite | [13] |
Chadormalu region, Iran | 0.748 | Apatite | 57.20 | Hematite, magnetite | [48] |
Yukon Snake River mining area, Canada | 0.39 | Apatite, wavellite, collophanite | 53.4 | Magnetite | [49] |
Western Hubei Province, China | 1.18 | collophanite | 49.02 | Magnetite, hematite-limonite | [50] |
Wushan, Chongqing, China | 0.72 | Fluorapatite | 45.11 | Hematite | [51] |
Lisakovsk region, Kazakhstan | 0.6–0.8 | Iron minerals | 48.76 | Limonite | [52] |
Turgay depression, Northern Kazakhstan | 0.3–0.5 | Iron minerals | 42.14–43.82 | Hematite | [53] |
Kogi State, Nigeria | 0.85 | Iron minerals, vayrynenite, phosphosiderite | 50.08 | Hematite, limonite | [29] |
Agbaja region, Nigeria | 1.395 | Iron minerals | 53.1 | Goethite | [54] |
Changde, Hunan Province, China | 1.12 | Iron minerals, phosphate | 47.79 | Hematite | [55] |
Huimin, Yunnan Province, China | 0.85 | Iron minerals | 43.50 | Goethite, hematite | [24] |
Yunnan Province, China | 0.88 | Iron minerals, collophanite | 35.55 | Limonite | [56] |
Gara Djebilet region, Algeria | 0.56 | Iron minerals, phosphate | 55.55 | Hematite, magnetite, maghemite | [57] |
Aswan, Egypt | 0.13–1.49 | hydroxyapatite | — | Hematite | [58] |
Moncorvo, Portugal | 0.30–0.70 | Iron minerals, phosphate | — | — | [59] |
Grangesberg, Sweden | 0.88 | Phosphate | 60 | Magnetite | [60] |
Tomsk Oblast, Russia | 0.036–0.56 | Rare earth elements phosphates | 21.40–41.43 | Siderite | [61] |
Kerch, Russia | 0.13–0.87 | Rare earth elements phosphates | 17.00–45.60 | Goethite | [62] |
Dephosphorization Agent | P Content/ Percentage Point | Recovery Rate/ Percentage Point | Fe Grade/ Percentage Point | References |
---|---|---|---|---|
Na2CO3 (10%) | −0.32 | +8.60 | +4.57 | [95] |
Na2CO3 (15%) | −0.32 | +6.60 | +1.67 | [96] |
Na2CO3 (20%) | −0.31 | +8.55 | +2.04 | [97] |
CaF2 (20%) | −0.10 | −0.23 | +0.62 | |
CaCO3 (20%) | −0.27 | +5.84 | −0.82 | |
CaCO3 (15%) | −0.24 | +4.77 | −0.07 | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Li, R.; Kou, J.; Wen, X.; Lin, J.; Yin, J.; Sun, C.; Sun, T. Coal-Based Direct Reduction for Dephosphorization of High-Phosphorus Iron Ore: A Critical Review. Minerals 2025, 15, 1067. https://doi.org/10.3390/min15101067
Xu H, Li R, Kou J, Wen X, Lin J, Yin J, Sun C, Sun T. Coal-Based Direct Reduction for Dephosphorization of High-Phosphorus Iron Ore: A Critical Review. Minerals. 2025; 15(10):1067. https://doi.org/10.3390/min15101067
Chicago/Turabian StyleXu, Hongda, Rui Li, Jue Kou, Xiaojin Wen, Jiawei Lin, Jiawen Yin, Chunbao Sun, and Tichang Sun. 2025. "Coal-Based Direct Reduction for Dephosphorization of High-Phosphorus Iron Ore: A Critical Review" Minerals 15, no. 10: 1067. https://doi.org/10.3390/min15101067
APA StyleXu, H., Li, R., Kou, J., Wen, X., Lin, J., Yin, J., Sun, C., & Sun, T. (2025). Coal-Based Direct Reduction for Dephosphorization of High-Phosphorus Iron Ore: A Critical Review. Minerals, 15(10), 1067. https://doi.org/10.3390/min15101067