Artificial Intelligence-Based Hyperspectral Classification of Rare Earth Element-Related Heavy Mineral Sand
Abstract
1. Introduction
- i.
- Supervised Learning: Relies on labeled datasets for training and has been widely used in hyperspectral image classification. Algorithms such as Support Vector Machine (SVM), Artificial Neural Networks (ANNs), random forests and decision trees fall into this group. These models use pre-defined input–output mapping to learn classifications effectively. In recent mineral identification studies, SVM has widely been recognized for its robustness in high-dimensionality feature spaces [17], which demonstrated superior classification performances [18,19].
- ii.
- Unsupervised Learning: Works with unlabeled data and identifies clusters or structures based on inherent features. This method is helpful when ground truth labels are not available, though it may struggle with mineral classification due to spectral similarities.
- iii.
- Semi-Supervised Learning: Combines a small labeled dataset with a larger unlabeled one to improve learning efficiency. Ref. [18] highlights that deep networks trained with semi-supervised learning can significantly enhance feature extraction and classification when labels are sparse.
- iv.
- Active Learning: Iteratively queries the most informative unlabeled samples to be manually labeled, thereby reducing the overall labeling effort. This approach is useful in geological datasets where expert labeling is expensive or time consuming.
- v.
- Transfer Learning: A machine learning technique that uses knowledge learned from one domain and applies it to another, often requiring minimal additional training. This is particularly relevant in geoscience, where labeled hyperspectral datasets are often scarce, but related domains can offer transferable spectral patterns.
2. Related Work
3. Materials and Methods
- i.
- Convolutional neural network (CNN): one layer, followed by batch normalization, ReLU activation, global average pooling, a fully connected layer and SoftMax output, was implemented to learn the spectral relationships and optimized for computational efficiency. It was selected for its proven ability to model spatial hierarchies and extra high-level spectral features from raw data [43] (Li, L., Iskander, M. et al., 2023).
- ii.
- Support vector machine (SVM) was implemented using the Radial Basis Function (RBF) Kernel. This algorithm is particularly effective for high-dimensional feature spaces and has demonstrated strong performance with limited training data, making it robust for small sample hyperspectral applications [42].
- iii.
- Neural Network (NN): a fully connected feed forward neural network was trained as the baseline deep learning method, requiring fewer computational resources and having the capability to recognize patterns in all spectral dimensions [33].
3.1. Data Collection
3.2. Hyperspectral Data Acquisition and Feature Extraction
3.3. Classification Dataset Preparation
3.4. Model Training and Algorithm Selection
3.4.1. Classical Machine Learning
- i.
- Decision trees: fine, medium and coarse.
- ii.
- Discriminant: linear and quadratic.
- iii.
- Logistic Regression: binary GLM and efficient.
- iv.
- Naive Bayes: Gaussian and Kernel based.
- v.
- Support Vector Machine: linear, quadratic, cubic, Kernel-based and Gaussian.
- vi.
- K-Nearest Neighbors: weighted, fine, medium, coarse, cosine and cubic.
- vii.
- Neural Network: narrow, medium, wide, bilayered and trilayered.
- viii.
- Ensemble methods: RUS Boosted, Boosted Trees, Bagged Trees, Subspaces Discriminant and others.
3.4.2. Deep Learning (CNN)
3.5. Evaluation Metrics and Spectral Angle Mapper Analysis
4. Results and Discussion
4.1. Particle Size Effects on Reflectance and Classification
4.2. Model Performance Across Particle Sizes
4.3. Classification Metrics and Spectral Fidelity
125 μm | SVM | NN | CNN | ||||||
---|---|---|---|---|---|---|---|---|---|
Class | Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score |
BG | 97.71 | 99.71 | 98.71 | 96.87 | 99.56 | 98.2 | 83.87 | 97.52 | 90.13 |
Case | 85.06 | 83.93 | 84.49 | 90.63 | 98.34 | 94.33 | 46.88 | 10.81 | 17.45 |
Epidote | 81.94 | 88.06 | 84.87 | 88.65 | 94.57 | 91.51 | 57.58 | 80.85 | 67.23 |
Ilmenite | 87.85 | 82.82 | 85.26 | 90.05 | 88.37 | 89.2 | 48.84 | 44.21 | 46.41 |
Kyanite | 96.74 | 98.47 | 97.6 | 97.09 | 99.17 | 98.12 | 84.27 | 96.02 | 89.73 |
Monazite | 93.02 | 100 | 96.37 | 93.06 | 100 | 96.39 | 41.51 | 100 | 58.67 |
Pleonaste | 89.6 | 91.83 | 90.7 | 92.84 | 95.17 | 93.99 | 39.68 | 47.62 | 43.29 |
Rutile | 94.23 | 97.34 | 95.76 | 94.27 | 98.99 | 96.58 | 62.07 | 72.02 | 66.65 |
Staurolite | 84.67 | 75.76 | 79.97 | 91.21 | 83.63 | 87.24 | 23.33 | 7.61 | 11.42 |
Tourmaline | 91.68 | 93.31 | 92.48 | 95.21 | 96.45 | 95.83 | 63.64 | 71.43 | 67.31 |
Zircon | 97.41 | 99.36 | 98.38 | 98.49 | 99.82 | 99.15 | 74.91 | 88.49 | 81.11 |
150 μm | SVM | NN | CNN | ||||||
Class | Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score |
BG | 99.57 | 99.95 | 99.76 | 99.56 | 99.98 | 99.77 | 93.11 | 99.8 | 96.34 |
Case | 92.74 | 96.09 | 94.39 | 95.75 | 99.25 | 97.47 | 86.83 | 84.13 | 85.46 |
Ilmenite | 88 | 87.11 | 87.55 | 87.36 | 81.08 | 84.11 | 56.29 | 53.37 | 54.8 |
Kyanite | 97.37 | 98.95 | 98.15 | 97.97 | 98.8 | 98.38 | 94.26 | 95.27 | 94.76 |
Monazite | 95.45 | 100 | 97.66 | 93.61 | 100 | 96.7 | 87.19 | 100 | 93.2 |
Pleonaste | 89.37 | 89.71 | 89.54 | 90.38 | 89.78 | 90.08 | 24.12 | 29.09 | 26.35 |
Rutile | 95.94 | 94.69 | 95.31 | 96.49 | 97.38 | 96.93 | 75.78 | 73.78 | 74.77 |
Staurolite | 88.66 | 83.42 | 85.96 | 86.55 | 77.33 | 81.67 | 60.58 | 46.67 | 52.76 |
Tourmaline | 91.2 | 95.61 | 93.35 | 91.77 | 96.25 | 93.95 | 48.44 | 77.02 | 59.61 |
Zircon | 98.89 | 99.71 | 99.3 | 97.59 | 99.71 | 98.64 | 81.47 | 89.29 | 85.2 |
180/250/300 μm | SVM | NN | CNN | ||||||
Class | Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score |
BG | 99.41 | 99.91 | 99.66 | 99.54 | 99.98 | 99.76 | 94.61 | 98.59 | 96.56 |
Case | 91.37 | 93.95 | 92.64 | 95.73 | 98.28 | 96.99 | 83.88 | 84.53 | 84.2 |
Ilmenite | 90 | 89.03 | 89.51 | 87.83 | 85.18 | 86.49 | 63.35 | 46.15 | 53.41 |
Kyanite | 97.57 | 98.8 | 98.18 | 97.93 | 99.05 | 98.49 | 88.46 | 87.5 | 87.98 |
Pleonaste | 89.85 | 90.6 | 90.22 | 88.83 | 88.39 | 88.61 | 42.86 | 51.56 | 46.79 |
Rutile | 95.18 | 96.59 | 95.88 | 96.62 | 97.81 | 97.21 | 86.73 | 55.38 | 67.46 |
Staurolite | 88.26 | 84.46 | 86.32 | 88.7 | 83.48 | 86.01 | 41.84 | 48.13 | 44.78 |
Tourmaline | 94.46 | 96.68 | 95.56 | 91.13 | 94.65 | 92.85 | 53.28 | 54.17 | 53.72 |
Zircon | 98.33 | 99.36 | 98.84 | 98.02 | 99.78 | 98.89 | 76.35 | 90.21 | 82.68 |
>300 μm | SVM | NN | CNN | ||||||
Class | Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score |
BG | 98.66 | 99.87 | 99.26 | 98.98 | 99.94 | 99.46 | 80.22 | 99.86 | 88.91 |
Case | 93.97 | 94.83 | 94.4 | 97.77 | 99.28 | 98.52 | 76.4 | 43.88 | 55.79 |
Epidote | 80.56 | 88.52 | 84.36 | 87.37 | 88.04 | 87.7 | 54.75 | 59.38 | 56.96 |
Ilmenite | 86.78 | 86.84 | 86.81 | 88.22 | 85.56 | 86.87 | 43.65 | 39.57 | 41.52 |
Kyanite | 95.5 | 98.69 | 97.07 | 96.84 | 97.87 | 97.35 | 90.05 | 95.78 | 92.83 |
Pleonaste | 85.47 | 88.44 | 86.94 | 92.02 | 86.1 | 88.96 | 28 | 10.45 | 15.15 |
Quartz | 99.29 | 100 | 99.64 | 98.13 | 100 | 99.06 | 100 | 100 | 100 |
Rutile | 95 | 100 | 97.43 | 91.99 | 100 | 95.81 | 38.82 | 37.08 | 37.93 |
Staurolite | 84.42 | 78.34 | 81.26 | 80.26 | 77.78 | 79 | 4.35 | 1.96 | 2.69 |
Tourmaline | 90.53 | 92.4 | 91.46 | 90.79 | 93.08 | 91.92 | 78.18 | 84.04 | 80.99 |
Zircon | 95.96 | 98.46 | 97.19 | 95.6 | 99.28 | 97.41 | 76.44 | 73.04 | 74.71 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
SVM | 97.07 | 86.92 | 87.04 | 86.85 |
CNN | 87.86 | 73.57 | 70.06 | 70.1 |
NN | 96.40 | 88.63 | 88.47 | 88.54 |
Particle Size (μm) | Model | Mean SAM | Mean Intensity | Std Dev | Median Intensity | Skewness | Kurtosis | Entropy | Edge Density | SSIM | PSNR |
---|---|---|---|---|---|---|---|---|---|---|---|
125 | CNN | 0.659 | 0.530 | 0.477 | 0.667 | −0.116 | −1.903 | 37,159.137 | 0.306 | 0.854 | 19.659 |
NN | 0.659 | 0.530 | 0.477 | 0.667 | −0.116 | −1.903 | 37,159.137 | 0.306 | 0.854 | 19.659 | |
SVM | 0.625 | 0.553 | 0.465 | 0.667 | −0.203 | −1.837 | 52,027.082 | 0.307 | 0.807 | 20.020 | |
150 | CNN | 0.570 | 0.584 | 0.427 | 0.667 | −0.281 | −1.639 | 155,009.620 | 0.316 | 0.862 | 20.144 |
NN | 0.560 | 0.594 | 0.424 | 0.667 | −0.334 | −1.599 | 152,966.480 | 0.315 | 0.834 | 20.120 | |
SVM | 0.560 | 0.594 | 0.424 | 0.667 | −0.334 | −1.599 | 152,966.480 | 0.315 | 0.834 | 20.120 | |
180 | CNN | 0.594 | 0.561 | 0.430 | 0.333 | −0.130 | −1.718 | 167,020.220 | 0.318 | 0.910 | 22.010 |
NN | 0.563 | 0.595 | 0.427 | 0.667 | −0.324 | −1.623 | 149,673.390 | 0.316 | 0.865 | 21.686 | |
SVM | 0.563 | 0.595 | 0.427 | 0.667 | −0.324 | −1.623 | 149,673.390 | 0.316 | 0.865 | 21.686 | |
250 | CNN | 0.591 | 0.565 | 0.430 | 0.333 | −0.155 | −1.714 | 163,420.980 | 0.318 | 0.879 | 20.578 |
NN | 0.550 | 0.607 | 0.425 | 0.667 | −0.387 | −1.578 | 144,747.860 | 0.313 | 0.845 | 20.379 | |
SVM | 0.550 | 0.607 | 0.425 | 0.667 | −0.387 | −1.578 | 144,747.860 | 0.313 | 0.845 | 20.379 | |
300 | CNN | 0.596 | 0.559 | 0.430 | 0.333 | −0.121 | −1.721 | 167,090.450 | 0.319 | 0.907 | 22.100 |
NN | 0.553 | 0.610 | 0.430 | 1.000 | −0.404 | −1.587 | 134,489.800 | 0.316 | 0.837 | 21.084 | |
SVM | 0.553 | 0.610 | 0.430 | 1.000 | −0.404 | −1.587 | 134,489.800 | 0.316 | 0.837 | 21.084 | |
+300 | CNN | 0.629 | 0.546 | 0.462 | 0.667 | −0.161 | −1.837 | 60,438.332 | 0.310 | 0.850 | 20.328 |
NN | 0.673 | 0.520 | 0.480 | 0.667 | −0.077 | −1.922 | 32,796.434 | 0.307 | 0.836 | 19.492 | |
SVM | 0.673 | 0.520 | 0.480 | 0.667 | −0.077 | −1.922 | 32,796.434 | 0.307 | 0.836 | 19.492 |
4.4. Impact of Training Dataset Structure
4.5. Misclassification Patterns and Spectral Overlap
4.6. Optimal Conditions for REE-Bearing HMS Mapping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
SAM | Spectral Angle Mapper |
SVM | Support Vector Machine |
NN | Neural Network |
References
- Hitchman, A. Australian Resources Review: Mineral Sand 2017; Australian Government Geoscience: Canberra, Australia, 2018. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare Earth Elements: Minerals, Mines, Magnets (and More). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Wall, F.; Merriman, D. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res. 2018, 27, 201–216. [Google Scholar] [CrossRef]
- Dumouchel, J.; Hees, F.; Alvin, M.P. Coastal evolution and associated titanium sand mineralisation of Jangamo district, Inhambane Province, Mozambique. Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci. 2016, 125, 140–152. [Google Scholar] [CrossRef]
- Hao, H.; Guo, R.; Gu, Q.; Hu, X. Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. Min. Eng. 2019, 143, 105899. [Google Scholar] [CrossRef]
- Kruse, F.A. Mapping surface mineralogy using imaging spectrometry. Geomorphology 2012, 137, 41–56. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Mark van der Meijde, E.; Carranza, J.M.; de Smeth, J.B.; Tsehaie, W. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 2013, 10, 318–322. [Google Scholar] [CrossRef]
- Long, T.; Zhou, Z.; Hancke, G.; Bai, Y.; Gao, Q. A Review of Artificial Intelligence Technologies in Mineral Identification: Classification and Visualization. J. Sens. Actuator Netw. 2022, 11, 50. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Lou, W.; Zhang, D.; Bayless, R.C. Review of mineral recognition and its future. Appl. Geochem. 2020, 122, 104727. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhang, Z.; Deng, F. A review of deep leaning in image classification for mineral exploration. Min. Eng. 2023, 204, 108433. [Google Scholar] [CrossRef]
- Zuo, R.; Carranza, E.J.M. Machine Learning-Based Mapping for Mineral Exploration. Math Geosci. 2023, 55, 891–895. [Google Scholar] [CrossRef]
- Schnitzler, N.; Ross, P.S.; Gloaguen, E. Using machine learning to estimate a key missing geochemical variable in mining exploration: Application of the Random Forest algorithm to multi-sensor core logging data. J. Geochem. Explor. 2019, 205, 106344. [Google Scholar] [CrossRef]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine learning based hyperspectral image analysis: A survey. arXiv 2018, arXiv:1802.08701. [Google Scholar]
- Zhang, L.; He, Z.; Liu, Y. Deep object recognition across domains based on adaptive extreme learning machine. Neurocomputing 2017, 239, 194–203. [Google Scholar] [CrossRef]
- Prasad, S.; Chanussot, J. Hyperspectral Image Analysis Advances in Machine Learning and Signal Processing; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Hamedianfar, A.; Laakso, K.; Middleton, M.; Törmänen, T.; Köykkä, J.; Torppa, J. Leveraging High-Resolution Long-Wave Infrared Hyperspectral Laboratory Imaging Data for Mineral Identification Using Machine Learning Methods. Remote Sens. 2023, 15, 4806. [Google Scholar] [CrossRef]
- Xiao, D.; Le, B.T.; Ha, T.T.L. Iron ore identification method using reflectance spectrometer and a deep neural network framework. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119168. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Heidari, E.; Beiranvand Pour, A.; Pradhan, B.; Müller, D.; Chandra, R. A Comparative Study of Convolutional Neural Networks and Conventional Machine Learning Models for Lithological Mapping Using Remote Sensing Data. Remote Sens 2022, 14, 819. [Google Scholar] [CrossRef]
- Barraza, J.F.; Droguett, E.L.; Martins, M.R. Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks. Sensors 2021, 21, 5888. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Son, H.; Kim, S.; Yeon, H.; Kim, Y.; Jang, Y.; Kim, S.E. Visual Analysis of Spatiotemporal Data Predictions with Deep Learning Models. Appl. Sci. 2021, 11, 5853. [Google Scholar] [CrossRef]
- Chen, J.; Pisonero, J.; Chen, S.; Wang, X.; Fan, Q.; Duan, Y. Convolutional neural network as a novel classification approach for laser-induced breakdown spectroscopy applications in lithological recognition. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105801. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Wald, A. The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus 1992, 96, 121–128. [Google Scholar] [CrossRef]
- Mustard, J.F.; Pieters, C.M. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. 1989, 94, 13619–13634. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113 (Suppl. S1), S110–S122. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Agrawal, N.; Govil, H. A deep residual convolutional neural network for mineral classification. Adv. Space Res. 2023, 71, 3186–3202. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Maekawa, Y.; Owada, N.; Haga, K.; Shibayama, A.; Kawamura, Y. Automated identification of mineral types and grain size using hyperspectral imaging and deep learning for mineral processing. Minerals 2020, 10, 809. [Google Scholar] [CrossRef]
- Dell, P.; Eni, A. An Integrated Deep Learning Framework for Classification of Mineral Thin Sections and Other Geo-Data, a Tutorial. Minerals 2023, 13, 584. [Google Scholar] [CrossRef]
- Theerthagiri, P.; Ruby, A.U.; Chandran, J.G.C. Prediction and classification of minerals using deep residual neural network. Neural Comput. Appl. 2024, 36, 1539–1551. [Google Scholar] [CrossRef]
- Latif, G.; Bouchard, K.; Maitre, J.; Back, A.; Bédard, L.P. A framework for microscopic grains segmentation and classification for minerals recognition using hybrid features. Earth Sci. Inform. 2024, 17, 5823–5840. [Google Scholar] [CrossRef]
- Wenxue, Z.; Shikun, D.; Hongjun, T.; Dexiang, Z.; Ying, Z.; Fan, J. An Overview Study of Deep Learning in Geophysics: Cross-Cutting Research to Advance Geoscience. IEEE Access 2025, 13, 124364–124388. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced Spectral Classifiers for Hyperspectral Images: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [Google Scholar] [CrossRef]
- Salam, M.L.; Saxena, R.S. Comparative Analysis of SVM and CNN for Hyperspectral Image Classification. arXiv 2024, arXiv:7538. [Google Scholar] [CrossRef]
- Okada, N.; Owada, N.; Takizawa, K.; Sinaice, B.B.; Muacanhia, O.; Gebretsadik, A.; Tanaka, S.; Aikawa, K.; Park, I.; Ito, M.; et al. APiS (AI powered intelligence spectrum analyser): Hyperspectral imaging machine learning analyser app for mineral processing. Int. J. Min. Reclam. Environ. 2024, 1–27. [Google Scholar] [CrossRef]
- Li, L.; Iskander, M.; Asce, A.M.; Iskander, M.; Asce, F. Classification of Sand Using Deep Learning. J. Geotech. Geoenviron. Eng. 2023, 149, 04023103. [Google Scholar] [CrossRef]
- Lorenz, S.; Ghamisi, P.; Kirsch, M.; Jackisch, R.; Rasti, B.; Gloaguen, R. Feature extraction for hyperspectral mineral domain mapping: A test of conventional and innovative methods. Remote Sens. Environ. 2021, 252, 112129. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Yadav, P.P.; Shetty, A.; Raghavendra, B.S.; Narasimhadhan, A.V. 1-D CNN for mineral classification using hyperspectral data. In Proceedings of the 2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS 2023), Bangalore, India, 10–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Boesche, N.K.; Rogass, C.; Lubitz, C.; Brell, M.; Herrmann, S.; Mielke, C.; Tonn, S.; Appelt, O.; Altenberger, U.; Kaufmann, H. Hyperspectral REE (Rare Earth Element) Mapping of Outcrops—Applications for Neodymium Detection. Remote Sens. 2015, 7, 5160–5186. [Google Scholar] [CrossRef]
- Daempfling, H.L.C.; Mielke, C.; Koellner, N.; Lorenz, M.; Rogass, C.; Altenberger, U.; Harlov, D.E.; Knoper, M. Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM). Eur. J. Mineral. 2022, 34, 275–284. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Koellner, N.; Chabrillat, S. Detecting rare earth elements using EnMAP hyperspectral satellite data: A case study from Mountain Pass, California. Sci. Rep. 2024, 14, 20766. [Google Scholar] [CrossRef]
Particle Size (μm) | Model Type | Accuracy % (Validation) | Total Cost (Validation) | Accuracy % (Test) | Total Cost (Test) |
---|---|---|---|---|---|
125 | SVM | 95.03 | 303 | 96.45 | 24 |
NN | 97.39 | 159 | 98.82 | 8 | |
CNN | 74.37 | ||||
150 | SVM | 97.06 | 509 | 97.29 | 52 |
NN | 97.43 | 445 | 98.28 | 33 | |
CNN | 86.16 | ||||
180 | SVM | 96.85 | 510 | 96.55 | 62 |
NN | 96.74 | 527 | 97.61 | 43 | |
CNN | 82.53 | ||||
250 | SVM | 96.85 | 510 | 96.55 | 62 |
NN | 96.74 | 527 | 97.61 | 43 | |
CNN | 82.53 | ||||
300 | SVM | 96.85 | 510 | 96.55 | 62 |
NN | 96.74 | 527 | 97.61 | 43 | |
CNN | 82.53 | ||||
>300 | SVM | 96.04 | 283 | 96.22 | 30 |
NN | 96.77 | 231 | 95.47 | 36 | |
CNN | 59.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muacanhia, O.; Okada, N.; Ohtomo, Y.; Kawamura, Y. Artificial Intelligence-Based Hyperspectral Classification of Rare Earth Element-Related Heavy Mineral Sand. Minerals 2025, 15, 1015. https://doi.org/10.3390/min15101015
Muacanhia O, Okada N, Ohtomo Y, Kawamura Y. Artificial Intelligence-Based Hyperspectral Classification of Rare Earth Element-Related Heavy Mineral Sand. Minerals. 2025; 15(10):1015. https://doi.org/10.3390/min15101015
Chicago/Turabian StyleMuacanhia, Okhala, Natsuo Okada, Yoko Ohtomo, and Youhei Kawamura. 2025. "Artificial Intelligence-Based Hyperspectral Classification of Rare Earth Element-Related Heavy Mineral Sand" Minerals 15, no. 10: 1015. https://doi.org/10.3390/min15101015
APA StyleMuacanhia, O., Okada, N., Ohtomo, Y., & Kawamura, Y. (2025). Artificial Intelligence-Based Hyperspectral Classification of Rare Earth Element-Related Heavy Mineral Sand. Minerals, 15(10), 1015. https://doi.org/10.3390/min15101015