Mesophotic Hardground Revealed by Multidisciplinary Cruise on the Brazilian Equatorial Margin
Abstract
:1. Introduction
2. Areas of Interest
3. Methods
3.1. Geophysics
3.1.1. Bathymetry
3.1.2. Sub Bottom Profiler
3.1.3. Side Scan Sonar
3.1.4. Bathythermograph Acquisition System (XBT and XSV)
3.1.5. Moving Vessel Profiler (MVP)
3.1.6. Thermosalinograph
3.2. Biological and Geological Sampling (Box Core)
3.2.1. Epifauna and Infauna Characterization
3.2.2. Microbiological, eDNA, and Geological Sampling
Microbial Analysis
eDNA Analysis
Mineralogical Analysis
Elemental Analysis
Grain Size Analysis
3.3. Macro- and Megafauna Characterization through Bottom Imaging
4. Preliminary Results
4.1. Geophysics
4.1.1. Bathymetry
4.1.2. Sub-Bottom Profiler
4.1.3. Side Scan Sonar
4.1.4. Temperature, Salinity and Speed of Sound in Water (XBT, XSV, MVP and Thermosalinograph)
4.2. Biological and Geological Sampling (Box Core)
4.2.1. Epifauna and Infauna Characterization
4.2.2. Microbiological and eDNA
4.2.3. Mineralogical, Elemental, and Grain Size Analysis
4.2.4. Macro- and Megafauna Characterization through Bottom Imaging
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Basilone, L.; Roberts, G.G.; Maia de Almeida, N.; Fernandes, V.; de Souza, A.C.B.; Alves, D.P.V.; Jovane, L. Cretaceous to Recent tectono-sedimentary history and subsidence of the Barreirinhas, Ceará and Potiguar Basins, Brazilian Equatorial Margin. Basin Res. 2023, 36, e12810. [Google Scholar] [CrossRef]
- Soares Junior, A.V.; Costa, J.B.S.; Hasui, Y. Evolução da Margem Atlântica Equatorial do Brasil: Três fases distensivas. Geociências 2008, 27, 427–437. [Google Scholar]
- Jovane, L.; Figueiredo, J.J.P.; Alves, D.P.V.; Iacopini, D.; Giorgioni, M.; Vannucchi, P.; Moura, D.S.; Bezerra, F.H.R.; Vital, H.; Rios, I.L.A.; et al. Seismostratigraphy of the Ceará Plateau: Clues to Decipher the Cenozoic Evolution of Brazilian Equatorial Margin. Front. Earth Sci. 2016, 4, 90. [Google Scholar] [CrossRef]
- McQuate, G.T.; Hayden, B.P. Determination of intertropical convergence zone rainfall in northeastern Brazil using infrared satellite imagery. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 1984, 34, 319–328. [Google Scholar] [CrossRef]
- Wang, X.F.; Auler, A.S.; Edwards, R.L.; Cheng, H.; Cristalli, P.S.; Smart, P.L.; Richards, D.A.; Shen, C.C. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 2004, 432, 740–743. [Google Scholar] [CrossRef] [PubMed]
- McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 2014, 390, 69–79. [Google Scholar] [CrossRef]
- Stramma, L.; England, M. On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res. Ocean 1999, 104, 20863–20883. [Google Scholar] [CrossRef]
- Talley, L.D. Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Geophys. Mono. Ser. 1999, 112, 1–22. [Google Scholar] [CrossRef]
- Arz, H.W.; Gerhardt, S.; Pätzold, J.; Röhl, U. Millennial-scale changes of surface-and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high-latitude climate during the Holocene. Geology 2001, 29, 239–242. [Google Scholar] [CrossRef]
- von der Heydt, A.; Dijkstra, H.A. The effect of gateways on ocean circulation in the late Oligocene and early Miocene. Paleoceanography 2006, 21, PA1011. [Google Scholar] [CrossRef]
- Pérez-Díaz, L.; Eagles, G. South Atlantic paleobathymetry since early Cretaceous. Sci. Rep. 2017, 7, 11819. [Google Scholar] [CrossRef]
- Uenzelmann-Neben, G.; Weber, T.; Grützner, J.; Thomas, M. Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic—A twofold reconstruction. Tectonophysics 2017, 716, 225–240. [Google Scholar] [CrossRef]
- Alves, D.P.V.; Maselli, V.; Iacopini, D.; Viana, A.R.; Jovane, L. Oceanographic exchanges between the Southern and Northern Atlantic during the Cenozoic inferred from mixed contourite-turbidite systems in the Brazilian Equatorial Margin. Mar. Geol. 2023, 456, 106975. [Google Scholar] [CrossRef]
- Hoshino, T.; Doi, H.; Uramoto, G.I.; Wörmer, L.; Adhikari, R.R.; Xiao, N.; Morono, Y.; D’Hondt, S.; Hinrichs, K.U.; Inagaki, F. Global diversity of microbial communities in marine sediment. Proc. Natl. Acad. Sci. USA 2020, 117, 27587–27597. [Google Scholar] [CrossRef] [PubMed]
- Polimene, L.; Sailley, S.; Clark, D.; Mitra, A.; Allen, J.I. Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration. J. Plankton Res. 2017, 39, 180–186. [Google Scholar] [CrossRef]
- Lesser, M.P.; Slattery, M.; Leichter, J.J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 2009, 375, 1–8. [Google Scholar] [CrossRef]
- Aylesworth, L.; Phoonsawat, R.; Suvanachai, P.; Vincent, A.C.J. Generating spatial data for marine conservation and management. Biodivers. Conserv. 2017, 26, 383–399. [Google Scholar] [CrossRef]
- Manea, E.; Bianchelli, S.; Fanelli, E.; Danovaro, R.; Gissi, E. Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci. Total Environ. 2020, 715, 136884. [Google Scholar] [CrossRef] [PubMed]
- Oppel, S.; Bolton, M.; Carneiro, A.P.B.; Dias, M.P.; Green, J.A.; Masello, J.F.; Phillips, R.A.; Owen, E.; Quillfeldt, P.; Beard, A.; et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 2018, 98, 37–46. [Google Scholar] [CrossRef]
- Curtin, T.B. Physical observations in the plume region of the Amazon River during peak discharge—I. Water masses. Cont. Shelf Res. 1986, 6, 73–86. [Google Scholar] [CrossRef]
- Cavan, E.L.; Laurenceau-Cornec, E.C.; Bressac, M.; Boyd, P.W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 2019, 176, 102125. [Google Scholar] [CrossRef]
- Francini-Filho, R.B.; Asp, N.E.; Siegle, E.; Hocevar, J.; Lowyck, K.; D’Avila, N.; Vasconcelos, A.A.; Baitelo, R.; Rezende, C.E.; Omachi, C.Y.; et al. Perspectives on the Great Amazon Reef: Extension, Biodiversity, and Threats. Front. Mar. Sci. 2018, 5, 142. [Google Scholar] [CrossRef]
- Cruz, A.M.; Reis, A.T.; Suc, J.P.; Silva, C.G.; Praeg, D.; Granjeon, D.; Rabineau, M.; Popescu, S.M.; Gorini, C. Neogene evolution and demise of the Amapá carbonate platform, Amazon continental margin, Brazil. Mar. Pet. Geol. 2019, 105, 185–203. [Google Scholar] [CrossRef]
- Milliman, J.D.; Summerhayes, C.P.; Barreto, H.T. Quaternary sedimentation on the Amazon continental margin: A model. Geol. Soc. Am. Bull. 1975, 86, 610–614. [Google Scholar] [CrossRef]
- Figueiredo, J.; van der Ven, P.; Soares, E. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 2009, 37, 619–622. [Google Scholar] [CrossRef]
- Gorini, C.; Haq, B.U.; Reis, A.T.dos; Silva, C.G.; Cruz, A.; Soares, E.; Grangeon, D. Late Neogene sequence stratigraphic evolution of the Foz do Amazonas Basin, Brazil. Terra Nova 2014, 26, 179–185. [Google Scholar] [CrossRef]
- Maslin, M.A.; Durham, E.; Burns, S.J.; Platzman, E.; Grootes, P.; Greig, S.E.J.; Nadeau, M.-J.; Schleicher, M.; Pflaumann, U.; Lomax, B.; et al. Paleoreconstruction of the Amazon River freshwater and sediment discharge using sediments recovered at site 942 on the Amazon Fan. J. Quat. Sci. 2000, 15, 419–434. [Google Scholar] [CrossRef]
- Barreto, L.A.; Milliman, J.D.; Amaral, C.A.B.; Francisconi, O. Upper continental margin sedimentation off Brazil, northern Brazil. Contr. Sedimentol. 1975, 4, 11–43. [Google Scholar]
- Giresse, P.; Loncke, L.; Heuret, A.; Longueville, F.; Casanova, A.; Sadaoui, M. Beachrocks of the last low sea level, substrate of the Great Amazon Reef system along the outer Guiana shelf. Geo-Mar. Lett. 2023, 43, 10. [Google Scholar] [CrossRef]
- Nittrouer, C.A.; DeMaster, D.J. The Amazon shelf setting: Tropical, energetic, and influenced by a large river. Cont. Shelf Res. 1996, 16, 553–573. [Google Scholar] [CrossRef]
- Aller, J.Y.; Stupakoff, I. The distribution and seasonal characteristics of benthic communities on the Amazon shelf as indicators of physical processes. Cont. Shelf Res. 1996, 16, 717–751. [Google Scholar] [CrossRef]
- Santos Filho, J.R.D.; Anjos, J.V.M.; Silva, C.G.; Filho, A.K.D.B.; Dias, G.T.M.; Figueiredo, A.G.; Cecílio, A.B. Resizing the extension of the mesophotic “reefs” in the Brazilian equatorial margin using bioclastic facies and seabed morphology. Res. Sq. 2022, preprint. [Google Scholar]
- Moura, R.L.; Amado-Filho, G.M.; Moraes, F.C.; Brasileiro, P.S.; Salomon, P.S.; Mahiques, M.M.; Bastos, A.C.; Almeida, M.G.; Silva, J.M., Jr.; Araujo, B.F.; et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2016, 2, e1501252. [Google Scholar] [CrossRef] [PubMed]
- Banha, T.N.S.; Luiz, O.J.; Asp, N.E.; Pinheiro, H.T.; Magris, R.A.; Cordeiro, R.T.S.; Mahiques, M.M.; Mies, M.; Giglio, V.J.; Omachi, C.Y.; et al. The Great Amazon Reef System: A fact. Front. Mar. Sci. 2022, 9, 1088956. [Google Scholar] [CrossRef]
- Wiesebron, M.L. Blue Amazon: Thinking the defense of Brazilian maritime territory. Austral Braz. J. Strategy Int. Relat. 2013, 2, 101–124. [Google Scholar]
- Diesing, M.; Mitchell, P.J.; O’Keeffe, E.; Gavazzi, G.O.A.M.; Bas, T.L. Limitations of predicting substrate classes on a sedimentary complex but morphologically simple seabed. Remote Sens. 2020, 12, 3398. [Google Scholar] [CrossRef]
- Trzcinska, K.; Janowski, L.; Nowak, J.; Rucinska-Zjadacz, M.; Kruss, A.; von Deimling, J.S.; Pocwiardowski, P.; Tegowski, J. Spectral features of dual-frequency multibeam echosounder data for benthic habitat mapping. Mar. Geol. 2020, 427, 106239. [Google Scholar] [CrossRef]
- Kågesten, G. Geological Seafloor Mapping with Backscatter Data from a Multibeam Echo Sounder. Ph.D. Thesis, Gothenburg University, Göteborg, Sweden, 2008. [Google Scholar]
- Bakker, J.; Wangensteen, O.S.; Baillie, C.; Buddo, D.; Chapman, D.D.; Gallagher, A.J.; Guttridge, T.L.; Hertler, H.; Mariani, S. Biodiversity assessment of tropical shelf eukaryotic communities via pelagic eDNA metabarcoding. Ecol. Evol. 2019, 9, 14341–14355. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, E.; Bylemans, J.; Goodman, S.J.; Lombardi, R.; Carr, I.; Castellano, L.; Galimbert, A.; Galli, P. Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates. Environ. DNA 2020, 2, 460–476. [Google Scholar] [CrossRef]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef] [PubMed]
- Shinzato, C.; Narisoko, H.; Nishitsuji, K.; Nagata, T.; Satoh, N.; Inoue, J. Novel mitochondrial DNA markers for scleractinian corals and generic-level environmental DNA metabarcoding. Front. Mar. Sci. 2021, 8, 758207. [Google Scholar] [CrossRef]
- Seeck, O.H.; Murphy, B. X-Ray Diffraction: Modern Experimental Techniques, 1st ed.; Jenny Stanford Publishing: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Melo Júnior, A.S. Análise Quantitativa Do Material Particulado na Região de Campinas Através das Técnicas de Microfluorescência de Raios-X e Reflexão Total Usando Radiação Síncrotron. Ph.D. Thesis, Unicamp, Campinas, SP, Brazil, 2007. [Google Scholar]
- Beckhoff, B.; Kanngießer, H.B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Camargo, M.G. Sysgran: Um Sistema de Código Aberto para Análises Granulométricas do Sedimento. Rev. Bras. Geociências 2006, 36, 371–378. [Google Scholar] [CrossRef]
- Sasaki, S. Hydrogen peroxide treatment on typical Hokkaido soils. Soil Sci. Plant Nutr. 1961, 6, 106–113. [Google Scholar] [CrossRef]
- Rau, G.H.; Mearns, A.J.; Young, D.R.; Olson, R.J.; Schafer, H.A.; Kaplan, I.R. Animal 13C/12C correlates with trophic level in pelagic food webs. Ecology 1983, 64, 1314–1318. [Google Scholar] [CrossRef]
- Jackson, D.; Harkness, D.D.; Mason, C.F.; Long, S.P. Spartina anglica as a carbon source for salt-marsh invertebrates: A study using δ13C values. Oikos 1986, 46, 163–170. [Google Scholar] [CrossRef]
- Clark, E.; Stoll, M.J.; Alburn, T.K.; Petzold, R. Mound-building and feeding behavior of the two stripe goby, Valenciennea helsdingenii, in the south Red Sea. Environ. Biol. Fishes 2000, 5, 131–141. [Google Scholar] [CrossRef]
- Scott, W.B.; Scott, M.G. Atlantic fishes of Canada. Can. Bull. Fish. Aquat. Sci. 1988, 219, 731. [Google Scholar]
Area | Site ID | Lat | Long | Depth (m) | Intact or Wash | Infauna | Geology | Bacteria | eDNA CENPES |
---|---|---|---|---|---|---|---|---|---|
1 | 1a | 04°58.276’ N | 050°28.280’ W | 208 | Int | Partial | 3 tubes | X | X |
1 | 1b | 04°58.276’ N | 050°28.280’ W | 208 | Int | Total | |||
1 | 2a | 04°58.668’ N | 050°27.873’ W | 206 | Int | Partial | X | ||
1 | 2b | 04°58.668’ N | 050°27.873’ W | 206 | Int | Partial | 3 tubes | X | |
1 | 3a | 04°58.876’ N | 050°27.345’ W | 209 | Int | Partial | 3 tubes | X | X |
1 | 3b | 04°58.876’ N | 050°27.345’ W | 209 | Int | Total | |||
1 | 3c | 04°58.876’ N | 050°27.345’ W | 209 | Wash | Partial | |||
2 | 4a | 05°04.459’ N | 050°26.076’ W | 295 | Wash | Partial | |||
2 | 4b | 05°04.459’ N | 050°26.076’ W | 295 | Wash | Partial | |||
2 | 5a | 05°04.839’ N | 050°26.358’ W | 306 | Wash | Partial | |||
2 | 5b | 05°04.822’ N | 050°26.347’ W | 309 | Wash | Partial | |||
2 | 6a | 05°04.915’ N | 050°26.544’ W | 294 | Int | Partial | 3 tubes | X | X |
2 | 6b | 05°04.915’ N | 050°26.544’ W | 294 | Intact | Total | |||
3 | 7a | 05°17.244’ N | 050°37.964’ W | 290 | Intact | Partial | 3 tubes | X | X |
3 | 7b | 05°17.244’ N | 050°37.964’ W | 290 | Intact | Total |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovane, L.; Azevedo, A.Q.; Marcon, E.H.; Castro, F.C.C.e.; Neto, H.M.C.d.B.; Cavalcanti, G.d.H.; Lima, F.A.; Waters, L.G.; Silva, C.F.d.; Souza, A.C.; et al. Mesophotic Hardground Revealed by Multidisciplinary Cruise on the Brazilian Equatorial Margin. Minerals 2024, 14, 702. https://doi.org/10.3390/min14070702
Jovane L, Azevedo AQ, Marcon EH, Castro FCCe, Neto HMCdB, Cavalcanti GdH, Lima FA, Waters LG, Silva CFd, Souza AC, et al. Mesophotic Hardground Revealed by Multidisciplinary Cruise on the Brazilian Equatorial Margin. Minerals. 2024; 14(7):702. https://doi.org/10.3390/min14070702
Chicago/Turabian StyleJovane, Luigi, Allana Q. Azevedo, Eduardo H. Marcon, Fernando Collo Correa e Castro, Halesio Milton C. de Barros Neto, Guarani de Hollanda Cavalcanti, Fabíola A. Lima, Linda G. Waters, Camila F. da Silva, André C. Souza, and et al. 2024. "Mesophotic Hardground Revealed by Multidisciplinary Cruise on the Brazilian Equatorial Margin" Minerals 14, no. 7: 702. https://doi.org/10.3390/min14070702
APA StyleJovane, L., Azevedo, A. Q., Marcon, E. H., Castro, F. C. C. e., Neto, H. M. C. d. B., Cavalcanti, G. d. H., Lima, F. A., Waters, L. G., Silva, C. F. d., Souza, A. C., Sant’Anna, L. G., Fonseca, T. S., Silva, L., Merschmann, M. A. d. C., Dias, G. P., Das, P., Jonck, C. R., Lizárraga, R. G. M., Freitas, D. C. d., ... Sumida, P. Y. G. (2024). Mesophotic Hardground Revealed by Multidisciplinary Cruise on the Brazilian Equatorial Margin. Minerals, 14(7), 702. https://doi.org/10.3390/min14070702