Fluorescence-Based Image Analysis of Seepage Behavior in Drip Irrigation: Exploring Varied Fractal Grading in Media Permeability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Materials
2.3. Experimental Procedure
2.4. Image Analysis
3. Results and Discussion
3.1. Liquid Moistening Characteristics in Dry Ore Heap
3.2. Flow Characteristics of Moistened Ore Heap
3.3. Percolation Area Analysis
3.4. Flow Channels in Ore Heap
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oxley, A.; Smith, M.E.; Caceres, O. Why heap leach nickel laterites? Miner. Eng. 2016, 88, 53–60. [Google Scholar] [CrossRef]
- Petersen, J. Heap leaching as a key technology for recovery of values from low-grade ores–A brief overview. Hydrometallurgy 2016, 165, 206–212. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Franzidis, J.-P.; Petersen, J. Heap Leaching Technology—Current State, Innovations, and Future Directions: A Review. Miner. Process. Extr. Metall. Rev. 2016, 37, 73–119. [Google Scholar] [CrossRef]
- Wang, L.-M.; Yin, S.-H.; Wu, A.-X. Visualization of flow behavior in ore-segregated packed beds with fine interlayers. Int. J. Miner. Metall. Mater. 2020, 27, 900–909. [Google Scholar] [CrossRef]
- Ilankoon, I.; Neethling, S. The effect of particle porosity on liquid holdup in heap leaching. Miner. Eng. 2013, 45, 73–80. [Google Scholar] [CrossRef]
- Yang, B.-H.; Wu, A.-X.; Jiang, H.-C.; Chen, X.-S. Evolvement of permeability of ore granular media during heap leaching based on image analysis. Trans. Nonferrous Met. Soc. China 2008, 18, 426–431. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Granata, G. Effects of grain size gradation on the porosity of packed heap leach beds. Hydrometallurgy 2018, 179, 238–244. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Becker, M.; Mainza, A.; Franzidis, J.-P.; Petersen, J. Large particle effects in chemical/biochemical heap leach processes—A review. Miner. Eng. 2011, 24, 1172–1184. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Liu, Z.; Zhou, N. Fractal characteristics of crushed particles of coal gangue under compaction. Powder Technol. 2017, 305, 12–18. [Google Scholar] [CrossRef]
- Moradi, I.; Irannajad, M. Fractal dimension of crushing products: Effects of feed size distribution and feed rate. Part. Sci. Technol. 2021, 39, 877–886. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1. [Google Scholar]
- Tyler, S.W.; Wheatcraft, S.W. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Ding, D.-X.; Fu, H.-Y.; Ye, Y.-J.; Hu, N.; Li, G.-Y.; Song, J.-B.; Wang, Y.-D. A fractal kinetic model for heap leaching of uranium ore with fractal dimension of varied particle size distribution. Hydrometallurgy 2013, 136, 85–92. [Google Scholar] [CrossRef]
- Turcotte, D.L. Fractals and fragmentation. J. Geophys. Res. Solid Earth 1986, 91, 1921–1926. [Google Scholar] [CrossRef]
- Ilankoon, I.; Neethling, S. Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity. Miner. Eng. 2016, 86, 130–139. [Google Scholar] [CrossRef]
- Xue, Z.; Gan, D.; Zhang, Y.; Liu, Z.; Duan, X.; Huang, M. Liquid spread mechanisms in high-temperature underground stope leaching. Miner. Eng. 2020, 156, 106497. [Google Scholar] [CrossRef]
- Fagan, M.A.; Ngoma, I.E.; Chiume, R.A.; Minnaar, S.; Sederman, A.J.; Johns, M.L.; Harrison, S.T. MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms. Hydrometallurgy 2014, 150, 210–221. [Google Scholar] [CrossRef]
- Fernando, W.A.M.; Ilankoon, I.; Rabbani, A.; Chong, M.N. Applicability of pore networks to evaluate the inter-particle flow in heap leaching. Hydrometallurgy 2020, 197, 105451. [Google Scholar] [CrossRef]
- Ilankoon, I.; Neethling, S. Inter-particle liquid spread pertaining to heap leaching using UV fluorescence based image analysis. Hydrometallurgy 2019, 183, 175–185. [Google Scholar] [CrossRef]
- Citarella, D.; Cupola, F.; Tanda, M.G.; Zanini, A. Evaluation of dispersivity coefficients by means of a laboratory image analysis. J. Contam. Hydrol. 2015, 172, 10–23. [Google Scholar] [CrossRef]
- Yin, S.-H.; Wang, L.-M.; Xun, C.; Wu, A.-X. Effect of ore size and heap porosity on capillary process inside leaching heap. Trans. Nonferrous Met. Soc. China 2016, 26, 835–841. [Google Scholar] [CrossRef]
- Odidi, M.D.; Fagan-Endres, M.A.; Harrison, S.T.L. Moisture absorption rates via capillary suction within packed beds—The effect of material and fluid properties with implications for heap leaching operations. Hydrometallurgy 2023, 215, 105975. [Google Scholar] [CrossRef]
- Bouffard, S.C.; Dixon, D.G. Investigative study into the hydrodynamics of heap leaching processes. Metall. Mater. Trans. B 2001, 32, 763–776. [Google Scholar] [CrossRef]
- Wu, A.; Yin, S.; Yang, B.; Wang, J.; Qiu, G. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy 2007, 87, 124–132. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Zhang, K.; Zhang, M.; Xu, G.; Chen, Z. Permeability evolution and particle size distribution of saturated crushed sandstone under compression. Geofluids 2018, 2018, 6043420. [Google Scholar] [CrossRef]
- Wu, A.X.; Yao, G.H.; Huang, M.Q. Influence factors of permeability during heap leaching of complex copper oxide ore. Adv. Mater. Res. 2012, 347, 1037–1043. [Google Scholar] [CrossRef]
- Dixon, D.G. Heap leach modeling–the current state of the art. Hydrometallurgy 2003, 1, 289–314. [Google Scholar]
- Raju, P.D.R.; Neelima, G. Image segmentation by using histogram thresholding. Int. J. Comput. Sci. Eng. Technol. 2012, 2, 776–779. [Google Scholar]
- Tobias, O.J.; Seara, R. Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans. Image Process. 2002, 11, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, N.; Destouni, G. Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock. Water Resour. Res. 1997, 33, 471–483. [Google Scholar] [CrossRef]
- Tokunaga, T.K.; Wan, J. Water film flow along fracture surfaces of porous rock. Water Resour. Res. 1997, 33, 1287–1295. [Google Scholar] [CrossRef]
Fractal dimension | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
Pile height (cm) | 24.1 | 23.4 | 23.1 | 22.5 | 22.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Huang, J.; Li, X.; Yuan, W.; Liu, H.; Gan, M.; Wang, J.; Zhang, Y. Fluorescence-Based Image Analysis of Seepage Behavior in Drip Irrigation: Exploring Varied Fractal Grading in Media Permeability. Minerals 2024, 14, 482. https://doi.org/10.3390/min14050482
Wang X, Huang J, Li X, Yuan W, Liu H, Gan M, Wang J, Zhang Y. Fluorescence-Based Image Analysis of Seepage Behavior in Drip Irrigation: Exploring Varied Fractal Grading in Media Permeability. Minerals. 2024; 14(5):482. https://doi.org/10.3390/min14050482
Chicago/Turabian StyleWang, Xiaolong, Junjie Huang, Xiang Li, Wenbin Yuan, Hongchang Liu, Min Gan, Jun Wang, and Yansheng Zhang. 2024. "Fluorescence-Based Image Analysis of Seepage Behavior in Drip Irrigation: Exploring Varied Fractal Grading in Media Permeability" Minerals 14, no. 5: 482. https://doi.org/10.3390/min14050482
APA StyleWang, X., Huang, J., Li, X., Yuan, W., Liu, H., Gan, M., Wang, J., & Zhang, Y. (2024). Fluorescence-Based Image Analysis of Seepage Behavior in Drip Irrigation: Exploring Varied Fractal Grading in Media Permeability. Minerals, 14(5), 482. https://doi.org/10.3390/min14050482