New Insights into the Role of Thiol Collectors in Malachite Flotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Micro-Flotation Experiments
2.3. Adsorption Amount Determinations
2.4. Inorganic Carbon Measurement
2.5. Contact Angle Test
2.6. Solubility Test
2.7. FTIR Spectra
3. Results and Discussion
3.1. Micro-Flotation Experiments
3.2. Adsorption Amount Measurements
3.3. Inorganic Carbon Measurement
3.4. Contact Angle Test
3.5. Solubility Test
3.6. FTIR Spectra
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Liu, W.; Tan, Q.Y.; Li, J.H.; Qin, W.Q.; Yang, C.R. The impact of China’s import ban on global copper scrap flow network and the domestic copper sustainability. Resour. Conserv. Recycl. 2021, 169, 105525. [Google Scholar] [CrossRef]
- Eheliyagoda, D.; Wei, F.; Shan, G.J.; Albalghiti, E.; Zeng, X.L.; Li, J.H. Examining the Temporal Demand and Sustainability of Copper in China. Environ. Sci. Technol. 2019, 53, 13812–13821. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Price, D.; Ralston, J.; Smith, R. Collectorless flotation of sulphide minerals. Miner. Process. Extr. Metall. Rev. 1987, 2, 203–234. [Google Scholar] [CrossRef]
- Cheng, X.; Iwasaki, I. Pulp potential and its implications to sulfide flotation. Miner. Process. Extr. Metall. Rev. 1992, 11, 187–210. [Google Scholar] [CrossRef]
- Prior, T.; Giurco, D.; Mudd, G.; Mason, L.; Behrisch, J. Resource depletion, peak minerals and the implications for sustainable resource management. Glob. Environ. Chang.-Hum. Policy Dimens. 2012, 22, 577–587. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Chang.-Hum. Policy Dimens. 2016, 39, 305–315. [Google Scholar] [CrossRef]
- Singer, D.A. Future copper resources. Ore Geol. Rev. 2017, 86, 271–279. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Z.J.; Yang, J.M.; Yuan, Z.W.; Chen, Y. The future of copper in China—A perspective based on analysis of copper flows and stocks. Sci. Total Environ. 2015, 536, 142–149. [Google Scholar] [CrossRef]
- Wu, D.; Ma, W.; Mao, Y.; Deng, J.; Wen, S. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator. Sci. Rep. 2017, 7, 2086. [Google Scholar] [CrossRef]
- Ying, L.J.; Chen, Y.C.; Wang, D.H.; Tang, J.X.; Chen, Z.H.; Wang, C.H. A Preliminary Review of Metallogenic Regularity of Copper Deposits in China. Acta Geol. Sin.-Engl. Ed. 2015, 89, 251–269. [Google Scholar]
- Liu, G.; Huang, Y.; Qu, X.; Xiao, J.; Yang, X.; Xu, Z. Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation. Colloids Surf. A Physicochem. Eng. Asp. 2016, 503, 34–42. [Google Scholar] [CrossRef]
- Fuerstenau, M.C.; Jameson, G.J.; Yoon, R.-H. Froth Flotation: A Century of Innovation; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 2007; pp. 425–464. [Google Scholar]
- Nagaraj, D.; Farinato, R. Evolution of flotation chemistry and chemicals: A century of innovations and the lingering challenges. Miner. Eng. 2016, 96, 2–14. [Google Scholar] [CrossRef]
- Feng, Q.C.; Yang, W.H.; Wen, S.M.; Wang, H.; Zhao, W.J.; Han, G. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol. 2022, 32, 1351–1364. [Google Scholar] [CrossRef]
- Lee, K.; Archibald, D.; McLean, J.; Reuter, M.A. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Miner. Eng. 2009, 22, 395–401. [Google Scholar] [CrossRef]
- Rao, S.; Finch, J. Base metal oxide flotation using long chain xanthates. Int. J. Miner. Process. 2003, 69, 251–258. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Wen, S.; Cao, Q. Copper sulfide species formed on malachite surfaces in relation to flotation. J. Ind. Eng. Chem. 2017, 48, 125–132. [Google Scholar] [CrossRef]
- Lenormand, J.; Salman, T.; Yoon, R. Hydroxamate flotation of malachite. Can. Metall. Q. 1979, 18, 125–129. [Google Scholar] [CrossRef]
- Li, Z.; Rao, F.; García, R.E.; Li, H.; Song, S. Partial replacement of sodium oleate using alcohols with different chain structures in malachite flotation. Miner. Eng. 2018, 127, 185–190. [Google Scholar] [CrossRef]
- Soto, H.; Laskowski, J. Redox conditions in the flotation of malachite with sulphidizing agent. Trans. Inst. Min. Metall. C Miner. Process. Extract. Metall. 1973, 82, C153–C157. [Google Scholar]
- Jones, M.; Woodcock, J. Optimization and control of laboratory sulphidization of oxidized copper ores with an ion selective electrode. Proc. Australas. Inst. Min. Metall. 1978, 266, 11–19. [Google Scholar]
- Liu, S.; Zhong, H.; Liu, G.; Xu, Z. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N, N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation. J. Colloid Interface Sci. 2018, 512, 701–712. [Google Scholar] [CrossRef]
- Castro, S.; Goldfarb, J.; Laskowski, J. Sulphidizing reactions in the flotation of oxidized copper minerals, I. Chemical factors in the sulphidization of copper oxide. Int. J. Miner. Process. 1974, 1, 141–149. [Google Scholar] [CrossRef]
- Ren, Y.; Xiong, K. Research on the Adsorption and Desorption Characteristics of Xanthate on Malachite Surface. Metal Mine 2014, 12, 112–115. [Google Scholar]
- Wen, S.M. Research test on stability of xanthate layer absorbed onto surface of malachite. Chin. Min. Mag. 2001, 10, 58–60. [Google Scholar]
- Wen, S.M.; Zhang, W.B.; Li, B.R. Effect of Vulcanization on Xanthate Adsorption Activity on Copper Oxide Surface and Stability of Adsorption Layer; Nonferrous Metals (Mineral Processing Section): Beijing, China, 1997; pp. 17–20. [Google Scholar]
- Du, P. Study on Parameterization and Surface Adsorption of Malachite. Master’s Thesis, Guangxi University, Nanning, China, 2020. [Google Scholar]
- Castro, S.; Gaytan, H.; Goldfarb, J. The stabilizing effect of Na2S on the collector coating of chrysocolla. Int. J. Miner. Process. 1976, 3, 71–82. [Google Scholar] [CrossRef]
- Sun, Q.Y. Research on Crystal Chemical Gene Characteristics and Flotation Mechanism of Copper Minerals. Ph.D. Thesis, Northeastern University, Shenyang, China, 2019. [Google Scholar]
- Deng, T.; Chen, J. Treatment of oxidized copper ores with emphasis on refractory ores. Miner. Process. Extr. Metall. Rev. 1991, 7, 175–207. [Google Scholar] [CrossRef]
- Lee, J.; Nagaraj, D.; Coe, J. Practical aspects of oxide copper recovery with alkyl hydroxamates. Miner. Eng. 1998, 11, 929–939. [Google Scholar] [CrossRef]
- Liu, D.; Wang, D.; Xian, Y.; Tian, X.; Wen, S. Enhancement of xanthate adsorption on chrysocolla surface via sodium diethyldithiocarbamate (DDTC) modification. Physicochem. Probl. Miner. Process. 2022, 58, 152599. [Google Scholar] [CrossRef]
- Zhuo, Q.M.; Wang, P.P.; Shen, P.L.; Wang, P.H.; Tian, Y.Q.; Chen, D.C.; Deng, J.S.; Liu, W.L. Microscale exploration of the sulfidization flotation theory in malachite. Appl. Surf. Sci. 2024, 642, 158631. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Z.; Liu, G.Y.; Huang, Y.G.; Zhang, Z.Y. Selective Flotation of Copper Oxide Minerals with A Novel Amino-Triazole-Thione Surfactant: A Comparison to Hydroxamic Acid Collector. Miner. Process. Extr. Metall. Rev. 2020, 41, 96–106. [Google Scholar] [CrossRef]
- Zhang, X.R.; Lu, L.; Li, Y.H.; Zhu, Y.G.; Han, L.; Li, C.B. Flotation separation performance of malachite from calcite with new chelating collector and its adsorption mechanism. Sep. Purif. Technol. 2021, 255, 117732. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Wen, S. Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation. J. Alloys Compd. 2018, 744, 301–309. [Google Scholar] [CrossRef]
Thiol Collector | EX | BX | PX | DDTC | DDTP |
---|---|---|---|---|---|
Ksp(PLMeX2) | 24.20 | 26.20 | 27.00 | 30.85 | 16.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Chen, S.; Li, H.; Qin, W. New Insights into the Role of Thiol Collectors in Malachite Flotation. Minerals 2024, 14, 483. https://doi.org/10.3390/min14050483
Yang C, Chen S, Li H, Qin W. New Insights into the Role of Thiol Collectors in Malachite Flotation. Minerals. 2024; 14(5):483. https://doi.org/10.3390/min14050483
Chicago/Turabian StyleYang, Congren, Siying Chen, Haodong Li, and Wenqing Qin. 2024. "New Insights into the Role of Thiol Collectors in Malachite Flotation" Minerals 14, no. 5: 483. https://doi.org/10.3390/min14050483
APA StyleYang, C., Chen, S., Li, H., & Qin, W. (2024). New Insights into the Role of Thiol Collectors in Malachite Flotation. Minerals, 14(5), 483. https://doi.org/10.3390/min14050483