Simulated Experimental Study on the Removal of Methylene Blue-Cu(II) Composite Pollution by Magnetized Vaterite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Preparation of V-M and Structure Analysis
2.2.2. Factors Influencing the Removal of MB-Cu Composite Pollution
- A.
- Effects of the initial quantity of V-M and concentration of H2O2
- B.
- Effect of the initial pH
- C.
- Effect of the initial concentrations of pollutants
- D.
- The recycling condition of the Cu(II) immobilized by V-M
2.2.3. Analysis of the Pollutant Removal Mechanism
- A.
- The role of OH
- B.
- Adsorption isotherm and adsorption kinetic analysis
3. Results and Discussion
3.1. Characterization of V-M
3.1.1. Structural Analysis and Characterization
3.1.2. Magnetic Performance of V-M
3.2. Factors Influencing the Removal of MB-Cu Composite Contamination
3.2.1. Effects of the Initial Quantity of V-M and Concentration of H2O2
3.2.2. Effect of the Initial pH
3.2.3. Effect of the Initial Concentrations of Pollutants
3.2.4. The Recycling Condition of the Cu(II) Immobilized by V-M
3.3. Analysis of the Removal Mechanism
3.3.1. The Role of ·OH
3.3.2. Analysis of Pollutant Removal Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Li, D.; Lu, X.; Sheng, J.; Zheng, X.; Xiao, X. Flocculation of combined contaminants of dye and heavy metal by nano-chitosan flocculants. J. Environ. Manag. 2021, 299, 113589. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Song, H.-W.; Mishra, S.; Zhang, W.; Zhang, Y.-L.; Zhang, Q.-R.; Yu, Z.-G. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Chemosphere 2023, 318, 137894. [Google Scholar] [CrossRef] [PubMed]
- Fajarwati, F.; Anugrahwati, M.; Yanti, I.; Safitri, R.; Yuanita, E. Adsorption study of methylene blue and eriochrome black T dyes on activated carbon and magnetic carbon composite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 599, 012025. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Okundaye, B.; Simbi, I.; Ama, O.M.; Darmokoesoemo, H.; Widyaningrum, B.A.; Osibote, O.A. Biosorption of methylene blue using clove leaves waste modified with sodium hydroxide. Results Chem. 2023, 5, 100778. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, G.; Li, P.; Gao, J.; Lv, B.; Li, D. A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation. Chemosphere 2010, 80, 410–415. [Google Scholar] [CrossRef]
- Wu, K.; Shi, M.; Pan, X.; Zhang, J.; Zhang, X.; Shen, T.; Tian, Y. Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing Bacillus thuringiensis: Degradation products and pathway. Enzym. Microb. Technol. 2022, 156, 109999. [Google Scholar] [CrossRef]
- Qi, J.; Li, X.; Zheng, H.; Li, P.; Wang, H. Simultaneous removal of methylene blue and copper(II) ions by photoelectron catalytic oxidation using stannic oxide modified iron(III) oxide composite electrodes. J. Hazard. Mater. 2015, 293, 105–111. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Xiao, D.; Han, D. In vitro effects of brominated flame retardants, selected metals and their mixtures on ethoxyresorufin-O-deethylase activity in Mossambica tilapia liver. Ecotoxicol. Environ. Saf. 2018, 161, 350–355. [Google Scholar] [CrossRef]
- Cai, G.-B.; Zhao, G.-X.; Wang, X.-K.; Yu, S.-H. Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J. Phys. Chem. C 2010, 114, 12948–12954. [Google Scholar] [CrossRef]
- Cao, C.-Y.; Li, P.; Qu, J.; Dou, Z.-F.; Yan, W.-S.; Zhu, J.-F.; Wu, Z.-Y.; Song, W.-G. High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres. J. Mater. Chem. 2012, 22, 19898–19903. [Google Scholar] [CrossRef]
- Islam, M.S.; San Choi, W.; Nam, B.; Yoon, C.; Lee, H.-J. Needle-like iron oxide@ CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chem. Eng. J. 2017, 307, 208–219. [Google Scholar] [CrossRef]
- Wierzba, S.; Makuchowska-Fryc, J.; Kłos, A.; Ziembik, Z.; Ochędzan-Siodłak, W. Role of calcium carbonate in the process of heavy metal biosorption from solutions: Synergy of metal removal mechanisms. Sci. Rep. 2022, 12, 17668. [Google Scholar] [CrossRef]
- Jiang, Y.; Ran, J.; Mao, K.; Yang, X.; Zhong, L.; Yang, C.; Feng, X.; Zhang, H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicol. Environ. Saf. 2022, 236, 113464. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Zhou, C.; Xing, M.; Zhou, Y. Oxidation of emerging organic contaminants by in-situ H2O2 fenton system. Green Energy Environ. 2023, 9, 417–434. [Google Scholar] [CrossRef]
- Su, R.; Dai, X.; Wang, H.; Wang, Z.; Li, Z.; Chen, Y.; Luo, Y.; Ouyang, D. Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Int. J. Environ. Res. Public Health 2022, 19, 12354. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Cheng, S.; Su, T.; Zuo, G.; Zhao, W.; Qi, X.; Wei, W.; Dong, W. Fenton-like catalyst Fe3O4@ polydopamine-MnO2 for enhancing removal of methylene blue in wastewater. Colloids Surf. B Biointerfaces 2019, 181, 226–233. [Google Scholar] [CrossRef]
- Ma, C.; Feng, S.; Zhou, J.; Chen, R.; Wei, Y.; Liu, H.; Wang, S. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue. Appl. Catal. B Environ. 2019, 259, 118015. [Google Scholar] [CrossRef]
- Wang, P.; Shen, T.; Li, X.; Tang, Y.; Li, Y. Magnetic mesoporous calcium carbonate-based nanocomposites for the removal of toxic Pb(II) and Cd(II) ions from water. ACS Appl. Nano Mater. 2020, 3, 1272–1281. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Y.; Zhong, Y.; Guan, Y.; Chen, Q.; Du, W.; Liu, G. Biological calcium carbonate enhanced the ability of biochar to passivate antimony and lead in soil. Environ. Sci. Process. Impacts 2023, 25, 1365–1373. [Google Scholar] [CrossRef]
- Jin, B.; Wang, S.; Lei, Y.; Jia, H.; Niu, Q.; Dapaah, M.F.; Gao, Y.; Cheng, L. Green and effective remediation of heavy metals contaminated water using CaCO3 vaterite synthesized through biomineralization. J. Environ. Manag. 2024, 353, 120136. [Google Scholar] [CrossRef]
- Paul, D.; Singhania, A.; Das, G. Catalytic activities of the vaterite and the calcite based solid supported catalysts for spontaneous Fenton-like dye degradation: A comparative study. J. Environ. Chem. Eng. 2022, 10, 107558. [Google Scholar] [CrossRef]
- Cui, L.; Yang, C.; Wei, L.; Li, T.; Chen, X. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biol. Control 2020, 141, 104156. [Google Scholar] [CrossRef]
- Dikshit, R.; Jain, A.; Dey, A.; Kumar, A. Microbially induced calcite precipitation using Bacillus velezensis with guar gum. PLoS ONE 2020, 15, e0236745. [Google Scholar] [CrossRef]
- Huang, S.; Liu, R.; Sun, M.; Li, X.; Guan, Y.; Lian, B. Transcriptome expression analysis of the gene regulation mechanism of bacterial mineralization tolerance to high concentrations of Cd2+. Sci. Total Environ. 2022, 806, 150911. [Google Scholar] [CrossRef]
- He, G.; Wang, C.; Cao, J.; Fan, L.; Zhao, S.; Chai, Y. Carboxymethyl chitosan-kaolinite composite hydrogel for efficient copper ions trapping. J. Environ. Chem. Eng. 2019, 7, 102953. [Google Scholar] [CrossRef]
- Almeida, C.; Debacher, N.; Downs, A.; Cottet, L.; Mello, C. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloïd Interface Sci. 2009, 332, 46–53. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, F.; Zeng, G.; Li, X.; Gu, Y.; Shi, L.; Liu, W.; Shi, Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 2017, 173, 199–206. [Google Scholar] [CrossRef]
- Badsha, M.A.; Lo, I.M. An innovative pH-independent magnetically separable hydrogel for the removal of Cu(II) and Ni(II) ions from electroplating wastewater. J. Hazard. Mater. 2020, 381, 121000. [Google Scholar] [CrossRef]
- Gupta, V.K.; Agarwal, S.; Bharti, A.K.; Sadegh, H. Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal. J. Mol. Liq. 2017, 230, 667–673. [Google Scholar] [CrossRef]
- Atar, N.; Olgun, A.; Wang, S. Adsorption of cadmium (II) and zinc (II) on boron enrichment process waste in aqueous solutions: Batch and fixed-bed system studies. Chem. Eng. J. 2012, 192, 1–7. [Google Scholar] [CrossRef]
- Tseng, R.-L.; Wu, F.-C. Analyzing concurrent multi-stage adsorption process of activated carbon with a favorable parameter of Langmuir equation. J. Taiwan Inst. Chem. Eng. 2009, 40, 197–204. [Google Scholar] [CrossRef]
- Alyüz, B.; Veli, S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 2009, 167, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-J.; Ma, F.; Li, F.-C.; Zhang, C.-H.; Chen, J.-N. Vaterite induced by Lysinibacillus sp. GW-2 strain and its stability. J. Struct. Biol. 2017, 200, 97–105. [Google Scholar] [CrossRef]
- Stoia, M.; Istratie, R.; Păcurariu, C. Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. J. Therm. Anal. Calorim. 2016, 125, 1185–1198. [Google Scholar] [CrossRef]
- Argun, M.E.; Dursun, S. A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresour. Technol. 2008, 99, 2516–2527. [Google Scholar] [CrossRef]
- Liu, H.; Huang, H.; Nie, W.; Sun, M.; Li, X.; Lian, B. Facilitated mechanism of biological vaterite stability mediated by Bacillus velezensis and its secretions. ACS Earth Space Chem. 2023, 7, 2019–2030. [Google Scholar] [CrossRef]
- Khanjani, M.; Westenberg, D.J.; Kumar, A.; Ma, H. Tuning polymorphs and morphology of microbially induced calcium carbonate: Controlling factors and underlying mechanisms. ACS Omega 2021, 6, 11988–12003. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Muñoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 2007, 71, 1197–1213. [Google Scholar] [CrossRef]
- Wang, X.; Meng, L.; Hu, M.; Gao, L.; Lian, B. The competitive and selective adsorption of heavy metals by struvite in the Pb(II)-Cd(II)-Zn(II) composite system and its environmental significance. Water Res. 2024, 250, 121087. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Zhang, L.; Yu, C.; Lian, B. Synthesis of biogenic high-magnesium calcite and its experimental immobilization effect on Cd2+. Geomicrobiol. J. 2021, 38, 482–493. [Google Scholar] [CrossRef]
- Li, H.; Yao, Q.-Z.; Wang, F.-P.; Huang, Y.-R.; Fu, S.-Q.; Zhou, G.-T. Insights into the formation mechanism of vaterite mediated by a deep-sea bacterium Shewanella piezotolerans WP3. Geochim. Cosmochim. Acta 2019, 256, 35–48. [Google Scholar] [CrossRef]
- Liu, R.; Lian, B. Non-competitive and competitive adsorption of Cd2+, Ni2+, and Cu2+ by biogenic vaterite. Sci. Total Environ. 2019, 659, 122–130. [Google Scholar] [CrossRef]
- Noginova, N.; Chen, F.; Weaver, T.; Giannelis, E.; Bourlinos, A.; Atsarkin, V. Magnetic resonance in nanoparticles: Between ferro-and paramagnetism. J. Phys. Condens. Matter 2007, 19, 246208. [Google Scholar] [CrossRef]
- Akköz, Y.; Coşkun, R.; Delibaş, A. Preparation and characterization of sulphonated bio-adsorbent from waste hawthorn kernel for dye (MB) removal. J. Mol. Liq. 2019, 287, 110988. [Google Scholar] [CrossRef]
- Kannamba, B.; Reddy, K.L.; AppaRao, B. Removal of Cu(II) from aqueous solutions using chemically modified chitosan. J. Hazard. Mater. 2010, 175, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Lim, W.T.; Park, J.Y.; Kim, Y.H. Effect of pH on Fenton and Fenton-like oxidation. Environ. Technol. 2009, 30, 183–190. [Google Scholar] [CrossRef]
- Eberhardt, M.K.; Ramirez, G.; Ayala, E. Does the reaction of copper(I) with hydrogen peroxide give hydroxyl radicals? A study of aromatic hydroxylation. J. Org. Chem. 1989, 54, 5922–5926. [Google Scholar] [CrossRef]
- Lv, K.; Xu, Y. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: The difference in the production of reactive species. J. Phys. Chem. B 2006, 110, 6204–6212. [Google Scholar] [CrossRef] [PubMed]
- Zan, F.; Huo, S.; Xi, B.; Zhao, X. Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae. Front. Environ. Sci. Eng. 2012, 6, 51–58. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, K.; Liu, Q.; Guo, F.; Xiong, Z.; Li, Y.; Wang, Q. A bifunctional adsorbent of silica gel-immobilized Schiff base derivative for simultaneous and selective adsorption of Cu(II) and SO42−. Sep. Purif. Technol. 2018, 191, 61–74. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, R.-Y.; Yu, J.-X.; Wang, H.-S.; Guo, Q.-Y.; Liu, K.-Q.; Chen, H.-D.; Chi, R.-A. Sequential recovery of Cu(II), Cr(III), and Zn(II) from electroplating sludge leaching solution by an on-line biosorption method with dosage controlling. J. Clean. Prod. 2022, 337, 130427. [Google Scholar] [CrossRef]
- Wong, P.; Lam, K.; So, C. Removal and recovery of Cu(II) from industrial effluent by immobilized cells of Pseudomonas putida II-11. Appl. Microbiol. Biotechnol. 1993, 39, 127–131. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Y.; Chen, Y.; Qian, H. Extraction and recycling utilization of metal ions (Cu2+, Co2+ and Ni2+) with magnetic polymer beads. Chem. Eng. J. 2012, 200, 104–112. [Google Scholar] [CrossRef]
- Luo, H.; Zeng, Y.; He, D.; Pan, X. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chem. Eng. J. 2021, 407, 127191. [Google Scholar] [CrossRef]
- Xue, X.; Hanna, K.; Abdelmoula, M.; Deng, N. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Appl. Catal. B Environ. 2009, 89, 432–440. [Google Scholar] [CrossRef]
- Hadi, P.; To, M.-H.; Hui, C.-W.; Lin, C.S.K.; McKay, G. Aqueous mercury adsorption by activated carbons. Water Res. 2015, 73, 37–55. [Google Scholar] [CrossRef]
- Flyunt, R.; Leitzke, A.; Mark, G.; Mvula, E.; Reisz, E.; Schick, R.; von Sonntag, C. Determination of •OH, O2•−, and hydroperoxide yields in ozone reactions in aqueous solution. J. Phys. Chem. B 2003, 107, 7242–7253. [Google Scholar] [CrossRef]
- Horváth, K.; Vajda, P.; Felinger, A. Multilayer adsorption in liquid chromatography–The surface heterogeneity below an adsorbed multilayer. J. Chromatogr. A 2017, 1505, 50–55. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Heiba, H.F.; Taha, A.A.; Mostafa, A.R.; Mohamed, L.A.; Fahmy, M.A. Preparation and characterization of novel mesoporous chitin blended MoO3-montmorillonite nanocomposite for Cu(II) and Pb(II) immobilization. Int. J. Biol. Macromol. 2020, 152, 554–566. [Google Scholar] [CrossRef]
- Castro, L.; Blázquez, M.L.; González, F.; Muñoz, J.A.; Ballester, A. Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 2018, 179, 44–51. [Google Scholar] [CrossRef]
- Verma, A.; Singh, A.; Bishnoi, N.R.; Gupta, A. Biosorption of Cu (II) using free and immobilized biomass of Penicillium citrinum. Ecol. Eng. 2013, 61, 486–490. [Google Scholar] [CrossRef]
- Bourliva, A.; Michailidis, K.; Sikalidis, C.; Filippidis, A.; Betsiou, M. Erratum to: Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: Study in mono-and multi-metal systems. Environ. Earth Sci. 2015, 73, 5445. [Google Scholar] [CrossRef]
- Mallakpour, S.; Khadem, E. Chitosan/CaCO3-silane nanocomposites: Synthesis, characterization, in vitro bioactivity and Cu(II) adsorption properties. Int. J. Biol. Macromol. 2018, 114, 149–160. [Google Scholar] [CrossRef]
- Park, J.-H.; Ok, Y.S.; Kim, S.-H.; Cho, J.-S.; Heo, J.-S.; Delaune, R.D.; Seo, D.-C. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 2016, 142, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.-H.; Kim, J.-O.; Cho, D.-W.; Kumar, R.; Baek, S.H.; Kurade, M.B.; Jeon, B.-H. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase. Chemosphere 2016, 160, 126–133. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Y.; Liu, X.; Guan, Y.; Chen, L.; Lian, B. Adsorption of Ni2+ and Cu2+ using bio-mineral: Adsorption isotherms and mechanisms. Geomicrobiol. J. 2018, 35, 742–748. [Google Scholar] [CrossRef]
- Li, X.; Tang, X.; Fang, Y. Using graphene oxide as a superior adsorbent for the highly efficient immobilization of Cu(II) from aqueous solution. J. Mol. Liq. 2014, 199, 237–243. [Google Scholar] [CrossRef]
- Dev, V.V.; Baburaj, G.; Antony, S.; Arun, V.; Krishnan, K.A. Zwitterion-chitosan bed for the simultaneous immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems. J. Clean. Prod. 2020, 255, 120309. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J. Hazard. Mater. 2010, 177, 676–682. [Google Scholar] [CrossRef]
- Zhang, W.; Ou, J.; Tang, M.; He, Q.; Long, A.; Luo, S.; Sun, S.; Wan, J.; Gao, Y.; Zhou, L. Physically-crosslinked activated CaCO3/polyaniline-polypyrrole-modified GO/alginate hydrogel sorbent with highly efficient removal of copper(II) from aqueous solution. Chem. Eng. J. 2022, 431, 133375. [Google Scholar] [CrossRef]
Methods or Adsorbents | Recycling Percentage | Reference |
---|---|---|
V-M | 85.82% | This study |
Immobilized Saccharomyces cerevisiae | 80% to 98.23% | [49] |
Silica-gel-immobilized ditopic Schiff base | 82% to 98% | [50] |
Leaching-biosorption circulation system | 90% | [51] |
Immobilized cells of Pseudomonas putida II-11 | More than 90% | [52] |
Magnetic polymer beads | 98% | [53] |
Metal Cation | Equations of Pseudo-First-Order Dynamics | Equations of Pseudo-Second-Order Dynamics | ||||
---|---|---|---|---|---|---|
Qe | K1 | R2 | Qe | K2 | R2 | |
Cu(II) | 58.2750 | 0.004 | 0.6398 | 58.2750 | 0.001 | 0.9773 |
Adsorbents | Qmax | References |
---|---|---|
Mesoporous chitin-blended MoO3-Montmorillonite nanocomposite | 19.03 | [60] |
Biogenic iron compounds | 25.42 | [61] |
Immobilized biomass of Penicillium citrinum | 29.68 | [62] |
Bentonite | 32.26 | [63] |
Chitosan/CaCO3-silane nanocomposites | 33.90 | [64] |
Sesame straw biochar | 55.00 | [65] |
Zirconium oxide immobilized alginate beads | 69.90 | [66] |
Amorphous CaCO3 | 69.93 | [67] |
Graphene oxide | 71.43 | [68] |
V-M | 76.38 | This study |
Zwitterion-chitosan bed | 123.50 | [69] |
Immobilized Saccharomyces cerevisiae | 144.90 | [70] |
Biogenic vaterite | 178.57 | [42] |
CaCO3/polyaniline-polypyrrole-modified GO/alginate | 291.20 | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Hu, M.; Cui, Y.; Wang, X.; Lian, B. Simulated Experimental Study on the Removal of Methylene Blue-Cu(II) Composite Pollution by Magnetized Vaterite. Minerals 2024, 14, 1142. https://doi.org/10.3390/min14111142
He X, Hu M, Cui Y, Wang X, Lian B. Simulated Experimental Study on the Removal of Methylene Blue-Cu(II) Composite Pollution by Magnetized Vaterite. Minerals. 2024; 14(11):1142. https://doi.org/10.3390/min14111142
Chicago/Turabian StyleHe, Xiaodan, Mingyang Hu, Yu Cui, Xingxing Wang, and Bin Lian. 2024. "Simulated Experimental Study on the Removal of Methylene Blue-Cu(II) Composite Pollution by Magnetized Vaterite" Minerals 14, no. 11: 1142. https://doi.org/10.3390/min14111142
APA StyleHe, X., Hu, M., Cui, Y., Wang, X., & Lian, B. (2024). Simulated Experimental Study on the Removal of Methylene Blue-Cu(II) Composite Pollution by Magnetized Vaterite. Minerals, 14(11), 1142. https://doi.org/10.3390/min14111142