Next Article in Journal
Characterization of Kinetics-Controlled Morphologies in the Growth of Silver Crystals from a Primary Lead Melt
Next Article in Special Issue
The Geology and Mineral Chemistry of Beryl Mineralization, South Eastern Desert, Egypt: A Deeper Insight into Genesis and Distribution
Previous Article in Journal
Analysis of the Source Apportionment and Pathways of Heavy Metals in Soil in a Coal Mining Area Based on Machine Learning and an APCS-MLR Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Geochemical Characteristics, Zircon U-Pb Ages and Lu-Hf Isotopes of Pan-African Pegmatites from the Larsemann Hills, Prydz Bay, East Antarctica and Their Tectonic Implications

1
Polar Research Institute of China, Shanghai 200136, China
2
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100044, China
*
Author to whom correspondence should be addressed.
Minerals 2024, 14(1), 55; https://doi.org/10.3390/min14010055
Submission received: 30 November 2023 / Revised: 29 December 2023 / Accepted: 29 December 2023 / Published: 31 December 2023

Abstract

:
Prydz Bay is an important part of the Pan-African high-grade tectonic mobile belt. The focus of this investigation, by applying zircon LA-ICP-MS U-Pb geochronology, zircon Lu-Hf isotope systematics, and whole-rock geochemistry, is on Pan-African pegmatites in the Larsemann Hills of Prydz Bay, East Antarctica, their association with country rocks, and the formation conditions. Based on the obtained results, it is concluded that the pegmatites exhibit elevated levels of silica and alkali and possess peraluminous features. These pegmatites originated during the late Neoproterozoic–Early Cambrian (Pan-African) event, specifically in the D2–D4 stages. The D2 stage occurred between 546 and 562 Ma, followed by D3-stage pegmatites around 534 Ma. The pegmatites from the D2–D3 stages are considered to originate from Paleoproterozoic crustal materials, while there are at least two phases of pegmatites in the D4 stage (~517 Ma and ~521 Ma). The D4-1 pegmatite (~521 Ma) suggested both Paleo–Mesoproterozoic crustal origin, perhaps connected to extension. The D4-2 pegmatite (~517 Ma) originated from the crust layers. In the Larsemann Hills, Pan-African pegmatites formed in a recurring regime of tension. Therefore, the obtained data elucidate that a Pan-African stretching process might have occurred in Prydz Bay.

1. Introduction

Prydz Bay in East Antarctica is renowned for its role in deciphering the Earth’s tectonic evolution during the Precambrian. This region has experienced both the Grenvillian orogeny (~1000 Ma) tectono-thermal event and the Early Paleozoic Pan-African (~530 Ma) tectono-thermal event. There are varying opinions on the P-T trajectory of the metamorphic process, with some proposing that it comprises two distinct high-grade metamorphic events [1,2,3,4,5,6,7,8,9]. Two contradictory perspectives exist regarding the tectonic attributes of the two metamorphic events in the Prydz belt. The clockwise P-T trajectory of the tectonic belt suggests the occurrence of a Pan-African collisional orogenic process. The Prydz belt is directly linked to the ultimate convergence of the East Gondwana paleocontinent during the early Paleozoic [1,10,11,12,13,14,15,16,17,18,19,20,21]. The Prydz belt is a complex metamorphic belt that underwent several metamorphic stages, with the Grenville metamorphism being the most prominent. This metamorphism is linked to the collisional orogenic event that occurred during the formation of the Rodinia supercontinent. Similarly, Pan-African metamorphism is considered the result of the intracontinental adjustment effects of the East Gondwana collisional orogeny [6,22,23,24,25,26,27,28,29,30,31,32,33,34].
The Larsemann Hills experienced significant magmatic activity and intense crustal melting activity around 500 Ma, prompting a comprehensive investigation into their crustal evolution [35,36]. During Pan-African magmatic activity, a notable abundance of granitic rocks formed, exhibiting high differentiation and originating from the crystallization of residual magmas with increased volatility [37,38,39,40,41,42]. It is essential to emphasize that pegmatites can achieve complete crystallization and differentiation only under specific conditions [42]. This holds particular significance during petrogenesis and mineralization, aiding in the identification of material sources and the understanding of geotectonic evolution [43].
The Larsemann Hills are defined by the presence of numerous coarse-grained, light-colored pegmatite veins. These pegmatites were formed at different stages during the Larsemann Hills’ deformational history and are found either as flat bodies or as separate lenses that generally occupy structurally controlled positions, such as at fold hinges, in shear zones, and at boudin necks [2]. It is necessary to further strengthen the comprehensive correlation analysis among pegmatite veins, country rocks, and their tectonic context. Previous studies on the absolute age, and isotopic composition of Pan-African pegmatites are rare. This research focuses on Pan-African pegmatites in the Larsemann Hills, employing lithological and geochemical analyses. LA-(MC)-ICP-MS techniques are utilized for zircon dating, trace element analysis, and Lu-Hf isotope analysis. Through these studies, the pegmatite formation process can be effectively elucidated, shedding light on the nature of deep melting host rocks, clarifying the genesis of zircons in pegmatites, constraining the time of anatexis, and exploring the diagenetic relationship between the metamorphic evolution of Pan-African ultra-high-temperature rocks in the Larsemann Hills [7]. Additionally, examining the formation age and magmatic genesis of Pan-African pegmatites in the Larsemann Hills can provide a better understanding of the magmatic activity and structural features of Prydz Bay.

2. Geological Background

The Larsemann Hills, located in Prydz Bay, East Antarctica, constitute one of the three bedrock outcrops in the area (Figure 1). These hills are vital for the study of the late Precambrian high-grade metamorphic terrane of the region [44,45,46]. The terrain encompasses high amphibolite facies to granulite facies to psammitic and pelitic paragneiss, along with a small quantity of pyroxene-bearing mafic granulite and leucogranitic orthogneiss [6,41,46,47].
The Brattstrand paragneiss stands as the primary rock formation, comprising various metasedimentary units. Within these units, certain types are recognized for their high levels of boron (B), exemplified by tourmaline quartzite and a suite of borosilicate minerals like grandidierite, kornerupine, and tourmaline [3,49,50]. This paragneiss exhibits significant features of partial melting, resulting in the formation of diverse gneiss and migmatites that feature mixtures of sillimanite and cordierite [2,5,18,24,36,51]. The Søstrene orthogneiss, primarily composed of a mafic–felsic magmatic complex, is typically preserved in pelitic granulite in lens-, lentil-, and sausage-shaped forms. Following its peak in metamorphism, an actual occurrence of deep melting took place, leading to the formation of multiple pegmatites, migmatites, and garnet-containing granites. These occurrences were distributed among syenite granites and monzonitic granites [6,24,52] (Figure 1). The granite is syn- and post-tectonic, and the elongated rock aligns with the overall distribution of gneiss in the surrounding rock where it is emplaced [12,53].
The distribution of the different rock types has a NE–SE direction. Most of the sequence is represented by metamorphic lithotypes. The primary tectonic line in the Larsemann Hills follows a NEE–SWW direction, while the eastern Mirror peninsula aligns NNW–SSE, forming a complex compound syncline that wraps in a NEE direction [54]. Wang’s [55] research categorizes the deformation in the Larsemann Hills into four phases. The first phase of regional deformation (D1) occurred during the Grenvillian orogeny associated with the peak metamorphic event (M1). The second phase of deformation (D2) resulted in tightly closed asymmetric folds. The third phase of deformation (D3) exhibited significant tensor ruptures that cut through the asymmetric folds formed in D2. Subsequently, magma intruded along tensional fracture surfaces, creating granite veins. Finally, in the D4 stage, a set of nearly equidistant and densely arranged upright broken cleavages developed (Table 1).

3. Analytical Methods

3.1. Major and Trace Elements

The samples were subjected to dissolution in a mixture of HNO3 and HF. Major element analyses were performed using X-ray fluorescence (XRF), while the analysis of trace elements was performed utilizing a Perkin-Elmer Sciex Elan 6000 ICP-MS instrument [56]. All experiments were carried out at the laboratory of Hebei Regional Geology and Mineral Resources Survey and Research Institute, China (Langfang, China).

3.2. Zircon U-Pb Dating

The samples were crushed by conventional methods, and zircons were subsequently separated using a conventional flotation method. Zircon particles with bipyramidal–prismatic and transparent properties were handpicked under a binocular lens for further analysis. The chosen zircon grains were affixed to double-sided adhesive and, after undergoing the epoxy resin fixation, curing, and surface polishing process, were subjected to zircon micrography and cathodoluminescence photography. Cathodoluminescence (CL) imaging on the zircon grains was performed using a JEOL scanning electron microscope (SEM) equipped with a Gatan CL detector (Oxford, UK) at Nanjing Hongchuang Geological Exploration Technology Service Co., Ltd. in China (Nanjing, China). U-Pb zircon geochronology was carried out using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at Beijing Createch Test Technology Co., Ltd. in China (Beijing, China). Laser sampling utilized an ESINWR 193 nm laser ablation system, and ion signal intensity was determined using an Anlyitik Jena PQMS Elite ICP-MS instrument, 91500, and GJ-1 was used as the standard materials for calibration, with operating conditions consistent with Zong et al. [9]. All errors were reported within 1 standard deviation (σ). Offline raw data selection and integration of background and analyte signals, as well as time drift correction and quantitative calibration for U-Pb dating, were performed using ICPMSDataCal (V10. 0) [57]. Age calculations and concordance plots were generated using Isoplot /Ex_ver3 [58].

3.3. Zircon Lu-Hf Isotope Analysis

Laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was employed for the in situ analysis of zircon Hf isotopes at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan). The analyses were carried out using Neptune Plus MC-ICP-MS in combination with a GeoLas 2005 ArF-excimer laser ablation system (German Thermo Fisher Science, Dreieich, Germany).

4. Petrography and Mineralogy

Five samples were collected from various locations (Figure 1), including granitic pegmatite (Z1220-23-2) and plagioclase pegmatite (Z1218-6) from Broknes Peninsula, syenite pegmatite (Z1229-42-4) from Mirror Peninsula, plagioclase pegmatite (Z1230-45-2) from Manning Island, and granitic pegmatite (Z1231-50-1) from Stornes Peninsula.
The granitic pegmatite (Z1220-23-2) outcrop, with a gray-white appearance, spans tens of centimeters, displaying a penetrating invasion (Figure 2a). The primary rock-forming minerals include quartz (30%–35%), K-feldspar (20%–25%), plagioclase (20%–25%), biotite (~10%), and magnetite (~5%). K-feldspar displays a self-shaped and semi-self-shaped plate-column structure (Figure 2b), with Carlsbad twinning. In contrast, plagioclase exhibits a plate-columnar shape and polysynthetic twinning. The quartz structure is irregularly granular with wavy extinction. Biotite is distributed within the pores of other minerals, exhibiting a relatively high degree of self-shaping. The plagioclase pegmatite (Z1218-6) outcrop is a few tens of centimeters wide, is light yellow, and forms a vein of penetrating intrusion (Figure 2c), surrounded by semi-pelitic gneiss. The primary rock-forming minerals are plagioclase (70%–75%), quartz (20%–25%), microcline (5%–10%), garnet (~5%), and biotite (~2%). Feldspar and garnet appear as large crystals, typically exceeding 5 mm. Plagioclase shows obvious polysynthetic twinning, while microcline exhibits apparent tartan twinning. Additionally, small black mica particles are distributed in the interstices of other minerals as sheets (Figure 2d).
The syenite pegmatite (Z1229-42-4) is exposed over a width ranging from tens of centimeters to several meters. It exhibits a flesh-red color and forms a vein throughout the intrusion. The surrounding rock consists of pelitic gneiss (Figure 2e), characterized by coarse-grained minerals with varying granulometry mostly exceeding 3 mm, displaying a medium–coarse-grained texture and massive structure. The primary rock-forming minerals include K-feldspar (70%–75%), quartz (20%–25%), garnet (~10%), biotite (~5%), and sillimanite (~2%). K-feldspar is euhedral and semi-euhedral plate-columnar, with Carlsbad twinning. Notably, and a substantial number of fibrous sillimanite crystals develop in the contact zone between K-feldspar and garnet (Figure 2f).
The granitic pegmatite (Z1231-50-1) is exposed over a width of approximately 4 m, appearing grayish-white and predominantly lenticular in shape. It intrudes along the loose parts between pelitic gneiss layers (Figure 2g). Most minerals exhibit a highly crystalline structure, with uneven sizes, typically larger than 3 mm. Plagioclases display a medium-grained texture and an overall massive structure. The principal rock-forming minerals include microcline (60%–65%), quartz (20%–25%), plagioclase (20%–25%), biotite (~5%), and magnetite (~2%). Tartan twinning is observed in microcline, and plagioclase with polysynthetic twinning is abundant. Quartz occurs as irregular grains with obvious wavy extinction (Figure 2h).
The exposed width of the plagioclase pegmatite (Z1230-45-2) spans tens of meters, and the rock sample from the outcrop appears reddish due to weathering. Plagioclases, affected by weathering, take on a reddish color, which can be mistaken for K-feldspar in the field. These plagioclases are layered and intrude along the softer portions of the interlayer (Figure 2i), with psammitic gneiss as the enclosing rock. The minerals display a large geometric form, a uniform grain size, mostly 5 mm, and massive structures. The primary rock-forming minerals are plagioclase (60%–65%), microcline (20%–25%), quartz (15%–20%), biotite (~5%), garnet (~5%), and magnetite (~2%). The most representative mineral plagioclase is lamellar and columnar with a polysynthetic twin (Figure 2j).

5. Results

5.1. Major and Trace Elements

The samples Z1229-42-4 and Z1230-45-2 plot the intersection between the Shoshonite and high K (calc-alkaline) series’ fields (Table 2; Figure 3a). The remaining samples (Z1220-23-2, Z1218-6, and Z1231-50-1) fall into the Shoshonite series field. The aluminum saturation index (A/CNK) for all the samples falls within the range of the aluminum saturation series (Figure 3b). The results from the standard mineral calculations indicate the presence of standard corundum molecules (Table 2), classifying all pegmatites as peraluminous magmatic rocks.
The samples show a strong differentiation in the distribution of rare-earth elements (REEs), with clear differentiation between light and heavy REEs’ separation (Figure 4a). The plagioclase pegmatites, specifically Z1218-6 and Z1230-45-2, exhibit less-enriched light rare-earth elements (LREEs), with a notable positive Eu anomaly. The normalized values for the Eu anomaly are 3.94 and 6.90, respectively, determined by using the ratio of 2EuN/(SmN + GdN) [62] (Figure 4a). In the case of samples Z1220-23-2, Z1229-42-4, and Z1231-50-1, the chondrite-normalized REE patterns highlight a negative Eu anomaly. This suggests that the granitic melt underwent crystallization and separation, resulting in a highly evolved magmatic system. In the primitive mantle-normalized trace element plot, the high-field-strength elements (HFSE) such as Ba, Nb, Sr, P, and Ti are depleted, while elements like Rb, K, Th, and U, known as large-ion lithophile elements (LILE), appear to be more abundant (Figure 4b). This implies that the source material could be from ancient island arc material [62].

5.2. U-Pb Geochronology and Hf Isotope Systematics

5.2.1. Zircon U-Pb Ages

The zircons from the granitic pegmatite (Z1220-23-2) have well-defined shapes, appearing as either short or long columns with a length of approximately 50 μm along the length/width ratio, ranging from 1:1 to 3:1. Cathodoluminescence (CL) examination reveals internal oscillatory zoning in magmatic zircons, and some zircons contain slight core inclusions (e.g., 28 and 35) (Figure 5a). CL images do not show evidence of fluid action in the process and later stage of zircon crystallization [65]. Thirty U-Pb dating analyses were conducted on the zircon grains, including 11 white zircons with ages ranging from 615 to 1116 Ma, showing dispersed ages of 206Pb/238U. These zircons are considered inherited grains derived from the surrounding rocks during pegmatite crystallization. The inherited zircons experienced Pb losses after the Pan-African tectono-thermal events, resulting in their distribution in beads on the concordia diagram [6,24,33,66]. The newly formed magma zircons exhibit a distinct light gray color and show prominent growth zoning, with the weighted average age of 206Pb/238U at 517 ± 4 Ma (MSWD = 0.057, n = 9) (Figure 6a, Table 3).
The zircons found in the plagioclase pegmatite (Z1218-6) exhibit predominantly round or columnar shapes, with a length ranging from about 80 to 150 μm along the length/width ratio of 1:1–2:1. Cathodoluminescence (CL) images reveal a lack of developed zircon growth zones (Figure 5b). The color of the zircons is grayish black, and some zircons exhibit tiny cores. A total of 68 analyses were performed on the zircon grains. Among them, 24 zircons are distributed in a string of beads (Figure 6c), with individual 206Pb/238U ages ranging from 524 to 850 Ma. In CL imaging, these zircons generally appear dark, and the banding is not apparent, indicating that they are inherited grains derived from the surrounding rocks during pegmatite crystallization, while Pb loss is explained to a certain extent by the influence of the Pan-African events. According to the concordia diagram for 206Pb/238U and 207Pb/235U, the weighted average age of 206Pb/238U is determined to be 521 ± 4 Ma (MSWD = 1.4, n = 25) (Figure 6c,d, Table 3).
The zircons in the syenite pegmatite (Z1229-42-4) exhibit irregular and incomplete shapes, with diameters ranging from approximately 50 to 150 μm. Cathodoluminescence (CL) images reveal the development of oscillatory zoning in zircon particles (Figure 5c). Most zircons display darker cores and lighter edges. A total of 35 analyses were conducted on zircon grains, and 16 zircon ages exhibit a bead-like distribution (Figure 6e), with 206Pb/238U ages ranging from 535 to 988 Ma. The darker cores and the lack of apparent banding in CL imaging suggest the inherited nature of these grains was derived from the surrounding rocks during crystallization, with some Pb loss due to the influence of the Pan-African events. For the 206Pb/238U and 207Pb/235U ages’ concordia diagram, the weighted average age of 206Pb/238U is determined as 534 ± 7 Ma (MSWD = 0.63, n = 19) (Figure 6e,f, Table 3).
In the granitic pegmatite (Z1230-50-1), zircons are observed as granular or columnar, with particle sizes ranging from 100 to 200 μm and a length/width ratio of 1:1–3:1. Cathodoluminescence (CL) images show that some zircon grains exhibit a nucleus–edge structure, featuring a wide inherited nucleus and a slight accretive edge (Figure 5d). Most zircons are lighter, displaying pronounced oscillatory bands and darker edges. A total of 44 U-Pb measurements were conducted on zircon grains, and the 206Pb/238U and 207Pb/235U ratios exhibit good concordance (Figure 6g, Table 3). The weighted average age of the 206Pb/238U peak in the zircon core is 546 ± 6 Ma (MSWD = 0.076, n = 15) (Figure 6h). The 206Pb/238U age of the zircon accretive edge ranges from 463 to 534 Ma, indicating apparent traces of fluid action during later stages, likely representing the new metamorphic edge of pegmatite zircon after the transformation of subsequent thermal events.
Most of the zircons found in the plagioclase pegmatite (Z1230-45-2) exhibit a round shape, with sizes ranging from approximately 80 to 150 μm. Cathodoluminescence (CL) images reveal that the oscillating bands of zircons are not clearly apparent, and inclusions are developed in most zircon cores. The color of the core is lighter, while the color of neogenic zircons is darker. The images indicate signs of fluid alteration during and after the crystallization of zircons (Figure 5e). A total of 44 U-Pb measurements were performed on zircon grains. The concentrated age of new magmatic zircons without Pb loss is 562 ± 6 Ma (MSWD = 0.076, n = 20) (Figure 6i,j, Table 3). The zircon core exhibits a beaded age distribution, suggesting that the zircon core was influenced by the superposition of late tectonic-thermal events. This influence is primarily attributed to varying degrees of resetting from both the Pan-African tectonic-thermal events and Grenville tectonic-thermal events.
All the zircons of the five samples (ΣREE, ppm) exhibit LREE depletion and the left-dip characteristics of HREE enrichment (Figure 7a–e). The majority of surveyed sites have zircons that display obvious negative Eu anomalies and positive Ce anomalies, and most have test data with Th/U values between 0.1 and 1 (Table 4), indicative of magmatic zircon characteristics. In the zircon-type discrimination diagram, most zircons within the pegmatites fall within the range associated with magmatic zircons–alteration zircons (Figure 8a,b) [67].

5.2.2. Lu-Hf Isotopes in Zircon

In the sample Z1220-23-2, the εHf(t) values are negative and range from −15 to −1, with a corresponding tDM2 range of 2202–2453 Ma. In the case of Z1218-6, the εHf(t) ranges from −2.13 to 6.32, with its corresponding tDM2 falling between 1101 and 1619 Ma. Z1230-42-4 exhibits εHf(t) values from −0.46 to −16.52, and its corresponding tDM2 ranges from 1528 to 2534 Ma. For Z1230-50-1, the εHf(t) is negative (−7.46 to −11.67), and the corresponding tDM2 falls within the range of 1975–2211 Ma. Finally, in the case of Z1230-45-2, εHf(t) ranges from −9 to −3, and its corresponding tDM2 is within the range of 1738–2092 Ma (Figure 9 and Table 5).

6. Discussion

The nature of the Prydz Pan-African tectonic belt remains a subject of debate due to research limitations on the unified East Gondwana landmass. There are conflicting opinions among researchers, with some suggesting that it is a collisional orogenic belt [11,13,16,19,20,21]. Others express concerns about the lack of direct indicators for specific facies, such as ophiolites, island arc accretion complexes, and high-pressure metamorphic rocks [24,26,29,34].
Based on the trace element composition of Pan-African pegmatites in the Larsemann Hills (Figure 6, Table 1), it is evident that pegmatite samples from the D2–D4 stage are enriched in large-ion lithophile elements (LILE) and depleted in high-field-strength elements (HFSE). The scarcity of P and Ti reflects the separation and crystallization of apatite and Ti-rich minerals. The loss of Nb and Ta may be linked to the separation and crystallization of rutile, or it could be attributed to crustal material contamination in the source area. Samples Z1220-23-2, Z1229-42-4, and Z1231-50-1 exhibit moderate negative Eu anomalies, potentially connected to separate plagioclase crystallization. In contrast, samples Z1230-45-2 and Z1218-6, being plagioclase pegmatites, show varying degrees of positive Eu anomalies.
The pegmatites in the Larsemann Hills studied in this paper are characterized as peraluminous and contain minerals such as garnet that also exhibit peraluminous characteristics. A comprehensive analysis reveals that the residual phases in the pegmatites are plagioclase and garnet. Plagioclase becomes unstable when the pressure exceeds 1.5 GPa [69]. Therefore, the formation pressure of the pegmatites is inferred to be less than 1.5 GPa, corresponding to a magmatic depth of less than 40 km [70]. The results indicate that the five samples are classified as I- and S-type granites (Figure 10a) and fractionated I-, S-, and M-type granites (Figure 10b) [71], aligning with volcanic arc granites (VAG) and syn-collisional granites (syn-COLG) (Figure 11a). They are linearly projected near the boundary between volcanic arc granite (VAG) and syn-collisional granite (syn-COLG) (Figure 11b) [72].
Zircon, a key mineral for U–Pb geochronology, is a stable mineral [74,75], and its Lu-Hf isotopes are extensively used in geochemical studies to understand the origin of magma and specific magmatic processes. Previous studies have shown that the genesis of magmatic rocks has two modes: (1) the partial melting of preexisting crustal material, in which the εHf(t) value of the zircons in magmatic rocks is lower than that in chondrite; (2) new crustal material or partially melted mantle material, in which the zircon εHf(t) value of magmatic rocks is higher than that of chondrite [9]. This provides conclusive evidence for identifying source areas [76]. The tDM2 age of zircon can offer a more precise reflection of the average retention age of the source material [77].
These features indicate a magmatic origin for the investigated zircons based on their shape, CL images, REE distribution patterns, and Th/U ratios. According to the zircon U-Pb data of the analyzed samples, it can be inferred that the Pan-African pegmatites in the Larsemann Hills formed at least 519–562 Ma, predating the emplacement of Progress granite at 514–516 Ma [12]. The chronological order of the formation of geological units, as indicated by the zircon U-Pb ages in this study, is consistent with the field investigation results reported by [78] and Ren (personal communication). Therefore, it is unlikely that the genesis of the Larsemann Hills’ Pan-African pegmatites is the result of the differentiation and crystallization of Progress granitic magma, Lines 370–372, from the petrographic descriptions and field relations; some pegmatites contain sillimanite and contact with metapelites, indicating a possible origin as a result of partial melting of the metapelites. The 176Lu/177Hf ratios of all zircons are less than 0.002, indicating that zircons have accumulated less radiogenic Hf during the evolution process after rock body formation. Thus, the zircon 176Lu/177Hf ratio can be used to elucidate genetic information during rock body formation [79]. Additionally, the fLu/Hf values range from −1.00 to −0.94, smaller than the fLu/Hf values of silico-aluminous crust (−0.72) and the fLu/Hf values of mafic crust (−0.34) [76]. Therefore, the TDM2 age more clearly reflects the time when the source material was obtained from the depleted mantle.
In the granitic pegmatite (Z1220-23-2) and the plagioclase pegmatite (Z1218-6) of the D4 phase of the Larsemann Hills, the εHf(t) values of zircons in the granitic pegmatite (Z1220-23-2), which formed at ~517 Ma(D4-2), range from −15.27 to −11.39, indicating values lower than chondrite (Figure 9). The granitic pegmatite (Z1220-23-2) primarily originates from the reworked Brattstrand paragneiss [78], and its corresponding tDM2 is 2202 to 2453 Ma, suggesting a partial provenance relationship with the Paleoproterozoic crust. The εHf(t) values of the zircons in the plagioclase pegmatite (Z1218-6), formed at ~521 Ma(D4-2), range from −2.13 to 6.32. The positive εHf(t) values indicate the presence of juvenile zircons. Their corresponding tDM2 is 1101–1619Ma, indicating that the plagioclase pegmatite (Z1218-6) is derived from a magma formed by the mixing of Mesoproterozoic crust-derived magma and mantle-derived magma. The εHf(t) values of zircons from the ~534 Ma granitic pegmatite (Z1229-42-4), formed in the D3 stage, range from −16.52 to −0.46. Although all εHf (t) values are negative, there is extensive variation. The corresponding tDM2 is 1528–2534Ma, indicating that granitic pegmatite (Z1229-42-4) primarily results from the partial melting of Paleoproterozoic crustal material. In the granitic pegmatite (Z1230-50-1) formed at 562 ± 6 Ma (the D2 stage) in the Larsemann Hills, the zircon εHf(t) of the granitic pegmatite (Z1230-50-1) ranges from −11.67 to −7.52 (Figure 9). The corresponding tDM2 is 1975–2211 Ma, suggesting that the granitic pegmatite (Z1220-50-1) primarily results from the partial melting of Paleoproterozoic crustal material. In the plagioclase pegmatite (Z1230-45-2), formed at 546 ± 6 Ma(D2), the εHf(t) value of the zircons in the plagioclase pegmatite (Z1230-45-2) ranges from −9.20 to −3.43, indicating a lower value than that of chondrite in both the zircon U-Pb age and εHf(t) diagrams. The corresponding tDM2 is 1738–2084 Ma, suggesting that the plagioclase pegmatite (Z1230-45-2) primarily originates from the partial melting of Paleoproterozoic ancient crustal material. It is inferred that the D2–D4 pegmatites have multiple different source areas, with D2–D3 pegmatites mainly derived from Paleoproterozoic crustal material. The D4-stage pegmatite exhibits characteristics of both Paleo–Mesoproterozoic crustal material sources and mantle material sources. The D4-1 pegmatite (~521 Ma) suggests both Paleo–Mesoproterozoic crustal and mantle origin. This aligns with the formation age and structural attributes of the Pan-African post-collisional granite in Prydz Bay [12]. The D4-2 pegmatite (~517 Ma) originates from the crust layers.
Combining rock geochemical and zircon characteristics, the Pan-African pegmatites in the Larsemann Hills likely originated from the Pan-African high-grade tectonic mobile belt of the Gondwana paleocontinent (Figure 12a), forming the D2–4 stage pegmatites (562–517 Ma). This was followed by lithospheric thinning (Figure 12b). These results provide new insights into the origin of pegmatites in the D2–D4 stage and effectively confirm the presence of a critical Gondwana paleocontinental extension zone near Prydz Bay.

7. Conclusions

Based on petrography, U-Pb geochronology, Lu-Hf isotopes, and major and trace element data on the pegmatites from the Larsemann Hills, the following conclusions were obtained:
  • According to geological and geochronological data, the pegmatites in the Larsemann Hills formed during the Pan-African D2–D4 stage. The D2 pegmatite formed between 546 and 562 Ma, the D3 pegmatite around 534 Ma, and the D4 pegmatite between 517 and 521 Ma. These pegmatites were formed during the Pan-African tectono-thermal event in an environment marked by an extension. It is plausible that a prominent breakup zone may be situated near the Larsemann Hills.
  • The Pan-African-period pegmatites discovered in the Larsemann Hills have different sources of material. Pegmatites from the D2–D3 period are considered to primarily originate from Paleoproterozoic crustal materials. In contrast, pegmatites from the D4-1 stage (~521 Ma) have sources from both Paleo–Mesoproterozoic crustal material sources and mantle material sources. Pegmatites from the D4-2 stage (~517 Ma) have sources that originated from the crust layers.

Author Contributions

Conceptualization, S.Z. and Y.C.; methodology, S.Z.; software, S.Z.; validation, Y.C. and L.R.; formal analysis, S.Z.; investigation, S.Z., H.Z., S.C. and W.W.; resources, Y.C.; datacuration, S.Z.; writing—original draft preparation, S.Z.; writing—review and editing, Y.C., L.R. and S.L.; visualization, S.Z.; supervision, Y.C.; project administration, Y.C.; funding acquisition, Y.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Key Research and Development Program of China (2022YFC2807405) and the Natural Science Foundation of China (Grant nos. 41530209, 41876227, 91958216).

Data Availability Statement

Data is contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Carson, C.J.; Dirks, P.H.G.M.; Hand, M.; Sims, J.P.; Wilson, C.J.L. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geol. Mag. 1995, 132, 151–170. [Google Scholar] [CrossRef]
  2. Dirks, P.; Carson, C.; Wilson, C. The deformational history of the Larsemann Hills, Prydz Bay: The importance of the Pan-African (500 Ma) in East Antarctica. Antarct. Sci. 1993, 5, 179–192. [Google Scholar] [CrossRef]
  3. Grew, E.S.; Carson, C.J.; Christy, A.G.; Boger, S.D. Boron- and phosphate-rich rocks in the Larsemann Hills, Prydz Bay, East Antarctica: Tectonic Implications. Geol. Soc. Lond. Spec. Publ. 2013, 383, 73–94. [Google Scholar] [CrossRef]
  4. Liu, X.H.; Tong, L.X.; Li, J.L.; Zhao, Y.; Ren, L.D.; Wang, Y.B. Tectonic evolution of East Antarctica shield during Mesoproterozoic and Early Palaeozoic. In Program and Extended Abstracts, Conference on Geology across Taiwan Strait; China Geological Association Press: Taipei, Taiwan, 1995; Volume 2, pp. 165–169. (In Chinese) [Google Scholar]
  5. Ren, L.; Zhao, Y.; Liu, X.; Chen, T. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica. In Recent Progress in Antarctic Earth Science; Yoshida, Y., Kaminuma, K., Shiraishi, K., Eds.; Terrapub: Tokyo, Japan, 1992; pp. 145–153. [Google Scholar]
  6. Tong, L.; Liu, Z.; Li, Z.-X.; Liu, X.; Zhou, X. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications. Precambrian Res. 2019, 326, 385–398. [Google Scholar] [CrossRef]
  7. Wang, W.R.Z.; Zhao, Y.; Wei, C.J.; Daczko, N.R.; Liu, X.C.; Xiao, W.J.; Zhang, Z.Y. High-Ultrahigh Temperature Metamorphism in the Larsemann Hills: Insights into the Tectono-thermal Evolution of the Prydz Bay Region, East Antarctica. J. Petrol. 2022, 63, egac002. [Google Scholar] [CrossRef]
  8. Zhao, Y.; Song, B.; Wang, Y.; Ren, L.; Li, J.; Chen, T. Geochronology of the late granite in the Larsemann Hills, East Antarctica. In Recent Progress in Antarctic Earth Science; Yoshida, Y., Kaminuma, K., Shiraishi, K., Eds.; Terra Scientific Publishing: Tokyo, Japan, 1992; pp. 155–161. [Google Scholar]
  9. Zong, S.; Ren, L.; Wu, M. Grenville-age metamorphism in the Larsemann Hills: P-T evolution of the felsic orthogneiss in the Broknes Peninsula, East Antarctica. Int. Geol. Rev. 2020, 63, 866–881. [Google Scholar] [CrossRef]
  10. Boger, S.D. Antarctica—Before and after Gondwana. Gondwana Res. 2011, 19, 335–371. [Google Scholar] [CrossRef]
  11. Boger, S.D.; Wilson, C.; Fanning, C.M. Early Paleozoic tectonism within the East Antarctic craton, The final suture between east and west Gondwana? Geology 2001, 29, 463–466. [Google Scholar] [CrossRef]
  12. Carson, C.J.; Fanning, C.M.; Wilson, C.J.L. Timing of the progress granite, Larsemann hills, Additional evidence for early Palaeozoic orogenesis within the east Antarctic Shield and implications for Gondwana assembly. Aust. J. Earth Sci. 1996, 43, 539–553. [Google Scholar] [CrossRef]
  13. Fitzsimons, I.C.W. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional. Geology 2000, 28, 879–882. [Google Scholar] [CrossRef]
  14. Fitzsimons, I.C.W. Metapelitic migmatites from Brattstrand bluffs, east Antarctica—Metamorphism, melting, and exhumation of the mid crust. J. Petrol. 1996, 37, 395–414. [Google Scholar] [CrossRef]
  15. Harley, S.L. Archaean-cambrian crustal development of East Antarctica: Metamorphic characteristics and tectonic implications. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup; Yoshida, M., Windley, B.F., Dasgupta, S., Eds.; Geological Society, London, Special Publications: London, UK, 2003; Volume 206, pp. 203–230. [Google Scholar]
  16. Hensen, B.J.; Zhou, B. East Gondwana amalgamation by Pan-African collision? Evidence from Prydz Bay, east Antarctica. In The Antarctic Region: Geological Evolution and Processes; Ricci, C.A., Ed.; Terra Antarctica Publishing: Siena, Italy, 1997; pp. 115–119. [Google Scholar]
  17. Hu, J.; Liu, X.; Zhao, Y.; Xu, G.; Ren, L. Advances in the Study of the Orogeny and Structural Deformation of Prydz Tectonic Belt in East Antarctica. Acta Geosci. Snica 2008, 29, 343–354, (In Chinese with English Abstract). [Google Scholar]
  18. Liu, X.C.; Zhao, Y.; Liu, X.; Hu, J.M.; Xu, G. Evolution of high-grade metamorphism in the Prydz Belt, East Antarctica. Earth Sci. Front. 2007, 14, 056–063, (In Chinese with English Abstract). [Google Scholar]
  19. Liu, X.C.; Zhao, Y.; Song, B.; Liu, J.; Cui, J. SHRIMP U–Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly. Gondwana Res. 2009, 16, 342–361. [Google Scholar] [CrossRef]
  20. Liu, X.H.; Zhao, Y.; Tong, L.X.; Ren, L.D. The East Antarctic Block in the Tectonic Evolution of the Rodinia-Gondwana Super Continents. Chin. J. Polar Res. 2002, 24, 35–40, (In Chinese with English Abstract). [Google Scholar]
  21. Zhao, Y.; Liu, X.H.; Liu, X.C.; Song, B. Pan-African Events in Prydz Bay, East Antarctica, and Their Implications for East Gondwana tectonics; Geological Society, London, Special Publications: London, UK, 2003; Volume 206, pp. 231–245. [Google Scholar]
  22. Dirks, P.H.G.M.; Hand, M. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica. J. Geol. Soc. Aust. 1995, 42, 157–172. [Google Scholar] [CrossRef]
  23. Dirks, P.H.G.M.; Wilson, C.J.L. Crustal evolution of the East Antarctic mobile belt in Prydz Bay: Continental collision at 500 Ma? Precambrian Res. 1995, 75, 189–207. [Google Scholar] [CrossRef]
  24. Grew, E.S.; Edward, S.; Carson, C.J.; Christy, A.G.; Maas, R.; Yaxley, G.M.; Boger, S.D.; Fanning, C.M. New constraints from U–Pb, Lu–Hf, and Sm–Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica. Precambrian Res. 2012, 206, 87–108. [Google Scholar] [CrossRef]
  25. Kelsey, D.; Hand, M.; Clark, C.; Wilson, C. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850 °C) polymetamorphic granulites from Prydz Bay, East Antarctica. J. Geol. Soc. 2007, 164, 667–683. [Google Scholar] [CrossRef]
  26. Phillips, G.; Wilson, C.J.L.; Phillips, D.; Szczepanski, S.K. Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: Implications for East Gondwana. J. Geol. Soc. 2007, 164, 771–784. [Google Scholar] [CrossRef]
  27. Ren, L.; Li, C.; Wang, Y.; Liu, P. On Constraining the Pan-African High-grade Metamorphism Time 0f The Larsemann Hills, East Antarctica. Chin. J. Polar Res. 2016, 28, 451–461, (In Chinese with English Abstract). [Google Scholar]
  28. Tong, L.; Jahn, B.-M.; Liu, X.; Liang, X.; Xu, Y.-G.; Ionov, D. Ultramafic to mafic granulites from the Larsemann Hills, East Antarctica: Geochemistry and tectonic implications. J. Asian Earth Sci. 2017, 145, 679–690. [Google Scholar] [CrossRef]
  29. Tong, L.; Liu, X.; Wang, Y.; Liang, X. Metamorphic P–T paths of metapelitic granulites from the Larsemann Hills, East Antarctica. Lithos 2014, 192–195, 102–115. [Google Scholar] [CrossRef]
  30. Tong, L.; Wilson, C.J.L. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica. Precambrian Res. 2006, 149, 1–20. [Google Scholar] [CrossRef]
  31. Tong, L.; Wilson, C.; Liu, X. A high-grade event of ~1100 Ma preserved within the ~500 Ma mobile belt of the Larsemann Hills, east Antarctica: Further evidence from 40Ar-39Ar dating. Terra Antarct. 2002, 9, 73–86. [Google Scholar]
  32. Tong, L.; Liu, X.; Zhang, L.; Chen, H.; Chen, F. The Ar-Ar ages of hornblendes in Grt-Pl-bearing amphibolite from the Larsemann Hils, East Antarctica, and their geological implication. Adv. Polar Sci. 1998, 9, 79–91. [Google Scholar]
  33. Wang, Y.; Liu, D.; Chung, S.; Tong, L.; Ren, L. SHRIMP zircon age constraints from the Larsmann Hills region, Prydz Bay, for a Late Mesoproterozoic to Early Neoproterozoic tectono-thermal event in East Antarctica. Am. J. Sci. 2008, 308, 573–617. [Google Scholar] [CrossRef]
  34. Wilson, C.J.L.; Quinn, C.; Tong, L.; Phillips, D. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by Ar/Ar thermochronology. Antarct. Sci. 2007, 19, 339–353. [Google Scholar] [CrossRef]
  35. Li, M. Geochronology and Geochemistry of Granitoids from the Prydz Belt, East Antarctica, and Their Tectonic Implications. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2006. [Google Scholar]
  36. Stüwe, K.; Braun, H.; Peer, H. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Aust. J. Earth Sci. 1989, 36, 219–241. [Google Scholar] [CrossRef]
  37. Jahns, R.; Burnham, C. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol. 1969, 64, 843–864. [Google Scholar] [CrossRef]
  38. London, D. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos 2005, 80, 281–303. [Google Scholar] [CrossRef]
  39. Ren, L. Discussion on the origin of sillimanite. Acta Petrol. Mineral. 2022, 41, 437–445, (In Chinese with English Abstract). [Google Scholar]
  40. Ren, L.; Zong, S.; Wang, Y.; Li, C. Distribution domains of the Pan-African event in East Antarctica and adjacent areas. Adv. Polar Sci. 2018, 29, 87–107. [Google Scholar]
  41. Spreitzer, S.K.; Walters, J.B.; Cruz-Uribe, A.; Williams, M.L.; Yates, M.G.; Jercinovic, M.J.; Grew, E.S.; Carson, C.J. Monazite petrochronology of polymetamorphic granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica. J. Metamorph. Geol. 2021, 39, 1205–1228. [Google Scholar] [CrossRef]
  42. Spreitzer, S.K. In Situ Dating of Multiple Events in Granulite-Facies Rocks of the Larsemann Hills, Prydz Bay, East Antarctica Using Electron Microprobe Analysis of Monazite. Master’s Thesis, University of Maine, Orono, ME, USA, 2017. [Google Scholar]
  43. Liu, F.; Robinson, P.T.; Gerdes, A.; Xue, H.; Liu, P.; Liou, J.G. Zircon U–Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos 2010, 117, 247–268. [Google Scholar] [CrossRef]
  44. Black, L.; Harley, S.; Sun, S.; McCulloch, M. The Rayner Complex of East Antarctica: Complex isotopic systematics within a Proterozoic mobile belt. J. Metamorph. Geol. 1987, 5, 1–26. [Google Scholar] [CrossRef]
  45. Sheraton, J.W.; Black, L.P.; McCulloch, M.T. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: The extent of proterozoic reworking of Qrchaean continental crust in East Antarctica. Precambrian Res. 1984, 26, 169–198. [Google Scholar] [CrossRef]
  46. Wang, Y.; Zhao, Y.; Ren, L.; Chen, T.; Liu, X.; Tong, L. Geochemical characteristics and medium pressure granulite facies metamorphism of mafic granulite rocks from the Larsemann Hills, East Antarctica. Antarct. Res. 1994, 6, 4–14, (In Chinese with English Abstract). [Google Scholar]
  47. Yu, L.J.; Liu, X.H.; Zhao, Y.; Ju, Y.T.; Liu, X.C. Metamorphism of mafic granulites in the Grove Mountains, East Antarctica. Acta Petrol. Sin. 2002, 18, 501–506, (In Chinese with English Abstract). [Google Scholar]
  48. Zong, S.; Ren, L.; Wu, M.; Xu, H.; Zhu, S. Whole-Rock Geochemistry, Zircon U-Pb geochronology, and Lu-Hf isotopic constraints on metasedimentary rocks (Paragneisses) in Stornes Peninsula, Larsemann Hills, East Antarctica. Int. Geol. Rev. 2023, 65, 317–333. [Google Scholar] [CrossRef]
  49. MacGregor, J.; Grew, E.S.; De Hoog, J.C.M.; Harley, S.L.; Kowalski, P.M.; Yates, M.G.; Carson, C.J. Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: Evidence for a non-marine evaporite source. Geochim. Cosmochim. Acta 2013, 123, 261–283. [Google Scholar] [CrossRef]
  50. Ren, L.; Liu, X.H. Occurrence of the assemblage grandidierite, kornerupine, and tourmaline in Antarctica. Antarct. Res. 1993, 6, 1205–1208, (In Chinese with English Abstract). [Google Scholar]
  51. Fitzsimons, I. The Brattstrand Paragneiss and the Søstrene Orthogneiss: A review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay. In The Antarctic Region; Geological Evolution and Processes; International Symposium on Antarctic Earth Sciences; Terra Antartica: Siena, Italy, 1997; pp. 121–130. [Google Scholar]
  52. Carson, C.J.; Powell, R.; Wilson, C.J.L.; Dirks, P.H.G.M. Partial melting during tectonic exhumation of a granulite terrane: An example from the Larsemann Hills, East Antarctica. J. Metamorph. Geol. 2010, 15, 105–126. [Google Scholar] [CrossRef]
  53. Li, M.; Liu, X.; Zhao, Y. Zircon U-Pb ages and geochemistry of granitoids from Prydz Bay, East Antarctica, and their tectonic significance. Acta Geol. Sin. 2007, 23, 1055–1066, (In Chinese with English Abstract). [Google Scholar]
  54. Hu, J.; Wang, W.; Zhao, Y.; Liu, X.C.; Chen, H.; Dong, X. Sequence and tectonic deformation process of the metamorphic complex in the Larsemann Hills, East Antarctica. J. Geomech. 2021, 27, 719–735, (In Chinese with English Abstract). [Google Scholar]
  55. Wang, Y. Studies on the Geochronology, Geochemistry of the High-Grade Gneiss of the Larsemann Hills and its Adjacent Region, East Antarctica. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2002. [Google Scholar]
  56. Jin, X.; Zhu, H. Determination of 43 Trace Elements in Rock Samples by Double Focusing High-Resolution Inductively Coupled Plasma-Mass Spectrometry. Chin. J. Anal. Chem. 2000, 5, 563–567. (In Chinese) [Google Scholar]
  57. Liu, Y.; Zhao, C.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 51, 537–571. [Google Scholar] [CrossRef]
  58. Ludwig, K.R. ISOPLOT 3.0: Special Publication 4.70. Computer Program; BerkeleyGeochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
  59. Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area. North. Turk. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
  60. Middlemost, E.A.K. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology; Longman: Harlow Essex, UK, 1985. [Google Scholar]
  61. Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
  62. Chen, Y.; Niu, Y.; Xue, Q.; Gao, Y.; Castillo, P. An iron isotope perspective on back-arc basin development: Messages from Mariana Trough basalts. Earth Planet. Sci. Lett. 2021, 572, 117–133. [Google Scholar] [CrossRef]
  63. Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
  64. McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
  65. Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 25–104. [Google Scholar] [CrossRef]
  66. Block, S. Paleoproterozoic juvenile crust formation and stabilization in the south-eastern West African Craton (Ghana); New insights from U-Pb-Hf zircon data and geochemistry. Precambrian Res. 2016, 287, 1–30. [Google Scholar] [CrossRef]
  67. Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
  68. Hoskin, P.W.O. Trace element composition of hydrothermal zircon and the alteration of hadean zircon from the Jack Hill, Australia. Geochim. Et Cosmochica Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
  69. Sen, C.; Dunn, T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib. Mineral. Petrol. 1994, 117, 394–409. [Google Scholar] [CrossRef]
  70. Wu, Q.; Niu, M.; Zhu, G.; Wang, T.; Fei, L. Zircon U-Pb age, petrogenesis of the Changgang A-type granites in the Lujiang segment of the Tan-Lu fault zone and their implication. Acta Petrol. Sin. 2016, 32, 1031–1048, (In Chinese with English Abstract). [Google Scholar]
  71. Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
  72. Chen, S.C.; Yu, J.J.; Bi, M.F. Extraction of fractionated interstitial melt from a crystal mush system generating the Late Jurassic high-silica granites from the Qitianling composite pluton, South China: Implications for greisen-type tin mineralization. Lithos Int. J. Mineral. Petrol. Geochem. 2021, 382–383, 105952. [Google Scholar] [CrossRef]
  73. Pearce, J.A.; Harris, N.B.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
  74. Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital zircon analysis of the sedimentary record. Rev. Mineral. Geochem. 2003, 53, 277–303. [Google Scholar] [CrossRef]
  75. Gehrels, G. Detrital zircon U-Pb geochronology applied to tectonics. Annu. Rev. Earth Planet. Sci. 2014, 42, 127–149. [Google Scholar] [CrossRef]
  76. Wu, F.; Li, X.; Zheng, Y.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English Abstract). [Google Scholar]
  77. Wu, F.; Li, X.; Yang, J.; Zheng, Y. Discussions on the petrogenesis of granites. Acta Geol. Sin. 2007, 23, 1217–1238, (In Chinese with English Abstract). [Google Scholar]
  78. Maas, R.; Grew, E.S.; Carson, C.J. Isotopic constraints (Pb, Rb-Sr, Sm-Nd) on the sources of early Cambrian pegmatites with boron and beryllium minerals in the Larsemann Hills, Prydz Bay, Antarctica. Can. Mineral. 2015, 53, 249–272. [Google Scholar] [CrossRef]
  79. Amelin, Y.; Lee, D.-C.; Halliday, A. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta 2000, 64, 4205–4225. [Google Scholar] [CrossRef]
Figure 1. The geological map of the Larsemann Hills, Prydz Bay, East Antarctica, and the sample locations show major lithological units [6,24,28,33,48]. Insert shows the position of the Larsemann Hills in Prydz Bay. Abbreviations: LH (Larsemann Hills), AIS (Amery Ice Shelf), VH (Vestfold Hills), RI (Rauer Islands), RG (Rauer Group), DG (Dalkoy granite), MKG (Munro Kerr granite), PG (Progress granite), LG (Landing granite), AG (Amanda granite).
Figure 1. The geological map of the Larsemann Hills, Prydz Bay, East Antarctica, and the sample locations show major lithological units [6,24,28,33,48]. Insert shows the position of the Larsemann Hills in Prydz Bay. Abbreviations: LH (Larsemann Hills), AIS (Amery Ice Shelf), VH (Vestfold Hills), RI (Rauer Islands), RG (Rauer Group), DG (Dalkoy granite), MKG (Munro Kerr granite), PG (Progress granite), LG (Landing granite), AG (Amanda granite).
Minerals 14 00055 g001
Figure 2. Field photographs (a,c,e,g,i) show the relationships between pegmatite and their surrounding rocks; microphotographs (b,d,f,h,j) show the contact relationship between rock-forming minerals. The mineral abbreviations is: Qtz (quartz), Bi (biotite), Kfs (K-feldspar), Pl (plagioclase), Grt (garnet), Mgt (magnetite), Mc (microcline).
Figure 2. Field photographs (a,c,e,g,i) show the relationships between pegmatite and their surrounding rocks; microphotographs (b,d,f,h,j) show the contact relationship between rock-forming minerals. The mineral abbreviations is: Qtz (quartz), Bi (biotite), Kfs (K-feldspar), Pl (plagioclase), Grt (garnet), Mgt (magnetite), Mc (microcline).
Minerals 14 00055 g002
Figure 3. K2O-SiO2 ((a) solid line after Peccerillo and Taylor, 1976 [59]; dashed line after Middlemost, 1985 [60]) and A/CNK-A/NK ((b), A/NK = Al2O3/(Na2O + K2O), A/CNK = Al2O3/(CaO + Na2O + K2O) after Maniar and Piccoli, 1989 [61]) plots for pegmatites from Larsemann Hills.
Figure 3. K2O-SiO2 ((a) solid line after Peccerillo and Taylor, 1976 [59]; dashed line after Middlemost, 1985 [60]) and A/CNK-A/NK ((b), A/NK = Al2O3/(Na2O + K2O), A/CNK = Al2O3/(CaO + Na2O + K2O) after Maniar and Piccoli, 1989 [61]) plots for pegmatites from Larsemann Hills.
Minerals 14 00055 g003
Figure 4. Chondrite-normalized REE patterns ((a) normalization values after Sun and McDonough, 1989 [63]) and primitive mantle normalized trace element patterns ((b), normalization values after McDonough and Sun, 1995 [64]) for pegmatites from Larsemann Hills.
Figure 4. Chondrite-normalized REE patterns ((a) normalization values after Sun and McDonough, 1989 [63]) and primitive mantle normalized trace element patterns ((b), normalization values after McDonough and Sun, 1995 [64]) for pegmatites from Larsemann Hills.
Minerals 14 00055 g004
Figure 5. The CL images of representative zircons from the samples (ae) (The red solid circles represent the U-Pb test points. The green solid circles represent the Hf test points.).
Figure 5. The CL images of representative zircons from the samples (ae) (The red solid circles represent the U-Pb test points. The green solid circles represent the Hf test points.).
Minerals 14 00055 g005
Figure 6. Zircon U–Pb concordia diagrams and age histograms of the (a,b) granitic pegmatite (Z1220-23-2), (c,d) plagioclase pegmatite (Z1218-6), (e,f) the syenite pegmatite (Z1229-42-4), (g,h) the plagioclase pegmatite (Z1230-45-2), and (i,j) the granitic pegmatite (Z1231-50-1).5.2.2. Trace Elements in Zircon.
Figure 6. Zircon U–Pb concordia diagrams and age histograms of the (a,b) granitic pegmatite (Z1220-23-2), (c,d) plagioclase pegmatite (Z1218-6), (e,f) the syenite pegmatite (Z1229-42-4), (g,h) the plagioclase pegmatite (Z1230-45-2), and (i,j) the granitic pegmatite (Z1231-50-1).5.2.2. Trace Elements in Zircon.
Minerals 14 00055 g006
Figure 7. Chondrite-normalized REE patterns (normalization values after Sun and McDonough, 1989 [63] and Hoskin, 2005 [68]) of the new magmatic zircons from the samples. (a) Z1220-23-2; (b) Z1218-6; (c) Z1229-42-4; (d) Z1230-50-1; (e) Z1230-45-2.
Figure 7. Chondrite-normalized REE patterns (normalization values after Sun and McDonough, 1989 [63] and Hoskin, 2005 [68]) of the new magmatic zircons from the samples. (a) Z1220-23-2; (b) Z1218-6; (c) Z1229-42-4; (d) Z1230-50-1; (e) Z1230-45-2.
Minerals 14 00055 g007
Figure 8. Discriminant diagrams of zircons for pegmatites in the Larsemann Hills in (a,b) [67].
Figure 8. Discriminant diagrams of zircons for pegmatites in the Larsemann Hills in (a,b) [67].
Minerals 14 00055 g008
Figure 9. U-Pb age-εHf(t) variation.
Figure 9. U-Pb age-εHf(t) variation.
Minerals 14 00055 g009
Figure 10. 104 Ga/Al vs. Ce (a), Zr + Nb + Ce + Y vs. (K2O + Na2O)/CaO (b) classification diagrams [71] of Pan-African pegmatites in Larsemann Hills.
Figure 10. 104 Ga/Al vs. Ce (a), Zr + Nb + Ce + Y vs. (K2O + Na2O)/CaO (b) classification diagrams [71] of Pan-African pegmatites in Larsemann Hills.
Minerals 14 00055 g010
Figure 11. Discrimination diagrams of the tectonic environment of granitic pegmatites in the Larsemann Hills (a,b). Abbreviations: syn-collision granite (syn-COLG), volcanic arc granite (VAG), with plate granite (WPG), and normal and anomalous ocean ridge granite (ORG) (based on Pearce et al., 1984 [73]).
Figure 11. Discrimination diagrams of the tectonic environment of granitic pegmatites in the Larsemann Hills (a,b). Abbreviations: syn-collision granite (syn-COLG), volcanic arc granite (VAG), with plate granite (WPG), and normal and anomalous ocean ridge granite (ORG) (based on Pearce et al., 1984 [73]).
Minerals 14 00055 g011
Figure 12. Simplified geological map of Prydz Bay in East Antarctica (a) (modified after Ren et al. [40]). Simplified evolution of Pan-African pegmatites in Prydz Bay (b).
Figure 12. Simplified geological map of Prydz Bay in East Antarctica (a) (modified after Ren et al. [40]). Simplified evolution of Pan-African pegmatites in Prydz Bay (b).
Minerals 14 00055 g012
Table 1. Main geological events in the Larsemann Hills and adjacent areas of East Antarctica (after Wang, 2002 [55]).
Table 1. Main geological events in the Larsemann Hills and adjacent areas of East Antarctica (after Wang, 2002 [55]).
Pan-African periodD4: Further stretching on the basis of D3
(development of nearly equidistant dense upright cleavages)
D3: N–S stretching event
D2: WNW thrust event
M2: Granulite facies’ metamorphism
Grenville periodD1-2: Act II of slow return stage
Syntectonic perilla granite intrusion
D1-1: (S1 foliation of Bt-Sil-Qtz in Grt)
M1: Granulite facies’ metamorphism
Metasedimentary rocks
Mafic–felsic composite gneiss
Table 2. Whole-rock major elements.
Table 2. Whole-rock major elements.
SampleZ1220-23-2Z1229-42-4Z1231-50-1Z1230-45-2Z1218-6
SiO256.33 74.70 70.96 72.14 64.46
Al2O322.38 12.59 16.00 15.40 19.06
TiO20.18 0.02 0.16 0.17 0.10
Fe2O34.56 0.42 0.33 0.19 0.06
FeO9.42 3.70 0.34 0.78 0.27
CaO0.24 0.53 1.03 1.38 0.62
MgO0.66 0.42 0.41 0.38 0.14
K2O4.17 5.27 6.53 5.56 12.01
Na2O0.73 1.28 3.36 3.17 2.61
MnO0.05 0.37 0.00 0.01 0.00
P2O50.14 0.07 0.12 0.06 0.09
LOI0.51 0.52 0.53 0.56 0.31
Total99.64 99.92 99.92 99.89 99.78
A/NK3.91 1.61 1.27 1.37 1.10
A/CNK3.85 1.47 1.13 1.13 1.05
Na2O + K2O4.90 6.55 9.89 8.73 14.62
K2O/Na2O5.70 4.13 1.94 1.75 4.60
Quartz29.27 42.60 24.08 28.79 1.92
Anorthite0.26 2.15 4.35 6.53 2.49
Albite6.26 10.87 28.69 27.06 22.22
K-feldspar24.94 31.34 38.85 33.09 71.37
Corundum16.75 4.02 1.83 1.79 0.86
Hypersthene15.13 8.19 1.13 1.98 0.64
Ilmenite0.35 0.04 0.31 0.33 0.20
Magnetite6.69 0.61 0.48 0.28 0.08
Apatite0.33 0.17 0.28 0.14 0.22
Li 28.10 10.82 11.23 22.03 9.60
Be4.41 0.56 0.43 1.06 0.45
Sc1.17 7.09 4.22 1.50 1.22
V27.65 2.19 15.27 13.27 8.00
Cr4.01 6.80 6.61 6.24 4.33
Co34.30 5.14 2.66 2.56 0.86
Ni30.12 5.45 5.38 3.42 1.57
Cu 6.07 4.20 9.68 3.83 7.41
Zn 14.63 8.60 8.16 17.63 11.75
Ga15.92 14.39 15.65 16.16 17.51
Rb 308.55 225.78 249.80 229.91 429.46
Sr 20.30 78.86 118.08 142.36 202.40
Y1.91 21.72 18.73 2.78 1.65
Zr 88.52 84.28 33.73 17.04 20.68
Nb 6.61 2.01 2.96 4.67 2.76
Mo1.81 0.21 0.39 0.01 0.49
La21.80 177.72 75.21 18.29 13.64
Ce46.49 36.50 28.76 27.77 19.90
Pr5.37 29.73 16.19 2.69 1.87
Nd17.63 98.04 58.42 7.84 6.10
Sm3.39 21.65 12.45 1.09 1.07
Eu0.29 1.41 1.58 1.36 2.30
Gd2.33 18.29 9.35 1.03 0.97
Tb0.26 2.85 1.10 0.13 0.10
Dy0.86 20.62 4.76 0.62 0.41
Ho0.11 4.99 0.75 0.10 0.06
Er0.32 15.72 1.85 0.22 0.17
Tm0.05 2.83 0.23 0.03 0.03
Yb0.31 16.97 1.19 0.13 0.16
Lu0.05 2.01 0.14 0.02 0.02
Hf 3.10 3.62 1.18 0.54 0.55
Ta0.45 0.11 0.16 0.20 0.13
Pb 55.74 45.65 22.26 42.16 65.22
Th 19.62 117.52 58.52 2.87 5.52
U 2.46 14.85 2.07 0.61 0.61
ΣREE99.25 739.34 342.21 61.32 46.80
LREE/HREE22.21 7.77 16.68 25.91 23.40
LaN/YbN51.22 7.51 45.51 99.38 60.95
δEu0.31 0.22 0.45 3.94 6.90
Table 3. LA-ICP-MS zircon U-Pb data of the samples.
Table 3. LA-ICP-MS zircon U-Pb data of the samples.
SpotsThUTh/U207Pb/206Pb207Pb/206Pb207Pb/235U207Pb/235U206Pb/238U206Pb/238U207Pb/206Pb207Pb/206Pb207Pb/235U207Pb/235U206Pb/238U206Pb/238U
ppmppm RatioRatioRatioAge (Ma)Age (Ma)Age (Ma)
Z1220-23-2
3114.6 985.0 0.1164 0.0623 0.0019 0.6835 0.0259 0.0794 0.0016 687 65 529 16 492 10
491.8 438.7 0.2092 0.0586 0.0013 0.6752 0.0163 0.0837 0.0013 554 55 524 10 518 8
5204.7 652.3 0.3138 0.0608 0.0019 0.6993 0.0230 0.0836 0.0015 632 69 538 14 517 9
7119.5 449.2 0.2659 0.0562 0.0017 0.6412 0.0186 0.0829 0.0012 461 67 503 12 514 7
8131.7 134.0 0.9827 0.0782 0.0022 1.7650 0.0530 0.1642 0.0034 1154 57 1033 19 980 19
952.9 110.1 0.4799 0.0779 0.0027 1.7552 0.0526 0.1653 0.0031 1146 69 1029 19 986 17
10571.1 893.4 0.6393 0.0759 0.0019 1.8397 0.0510 0.1768 0.0041 1094 50 1060 18 1050 22
11102.0 137.5 0.7414 0.0789 0.0023 2.0391 0.0554 0.1890 0.0037 1169 51 1129 19 1116 20
12104.0 411.7 0.2527 0.0580 0.0014 0.6683 0.0176 0.0838 0.0015 528 56 520 11 519 9
14123.3 450.9 0.2734 0.0571 0.0013 0.6766 0.0180 0.0859 0.0011 494 52 525 11 531 7
15117.7 471.1 0.2498 0.0606 0.0015 0.7242 0.0213 0.0867 0.0014 633 56 553 13 536 8
16243.3 593.9 0.4097 0.0595 0.0013 0.6983 0.0182 0.0855 0.0016 583 16 538 11 529 10
17323.9 515.9 0.6279 0.0709 0.0014 1.2571 0.0362 0.1287 0.0030 955 36 827 16 780 17
19192.3 503.6 0.3818 0.0579 0.0012 0.7114 0.0172 0.0891 0.0014 528 46 546 10 550 8
20153.2 151.0 1.0148 0.0716 0.0017 1.5690 0.0547 0.1582 0.0037 976 47 958 22 947 21
21133.3 469.6 0.2838 0.0577 0.0011 0.7014 0.0150 0.0883 0.0012 517 43 540 9 545 7
22208.8 581.0 0.3593 0.0563 0.0013 0.6689 0.0170 0.0862 0.0012 465 55 520 10 533 7
2320.9 158.5 0.1316 0.0711 0.0019 1.6118 0.0414 0.1647 0.0017 961 54 975 16 983 9
24111.0 575.5 0.1928 0.0560 0.0012 0.6430 0.0128 0.0833 0.0008 454 46 504 8 516 5
26137.6 477.4 0.2883 0.0546 0.0011 0.6296 0.0137 0.0838 0.0011 394 44 496 9 519 6
2768.2 377.8 0.1806 0.0576 0.0013 0.6649 0.0157 0.0837 0.0010 517 44 518 10 518 6
28135.8 477.6 0.2843 0.0552 0.0010 0.6380 0.0162 0.0836 0.0012 420 34 501 10 518 7
29100.5 799.0 0.1258 0.0565 0.0010 0.6890 0.0163 0.0884 0.0014 472 39 532 10 546 8
3089.9 124.1 0.7242 0.0646 0.0019 0.8886 0.0281 0.1002 0.0016 761 64 646 15 615 10
31160.0 461.7 0.3465 0.0572 0.0013 0.6591 0.0150 0.0837 0.0010 502 50 514 9 518 6
32114.4 135.5 0.8445 0.0615 0.0016 0.9371 0.0307 0.1105 0.0021 657 50 671 16 676 12
3479.4 118.8 0.6682 0.0762 0.0019 1.4539 0.0381 0.1387 0.0021 1102 50 912 16 837 12
3562.4 317.5 0.1965 0.0732 0.0019 1.8212 0.0579 0.1809 0.0037 1020 53 1053 21 1072 20
Z1218-6
1185.8 346.9 0.5356 0.0596 0.0014 0.6575 0.0147 0.0799 0.0012 591 50 513 9 496 7
275.7 158.6 0.4772 0.0594 0.0016 0.6550 0.0184 0.0798 0.0010 589 59 512 11 495 6
3146.8 240.5 0.6103 0.0578 0.0012 0.6746 0.0154 0.0845 0.0012 520 46 523 9 523 7
471.4 176.1 0.4052 0.0642 0.0017 0.8176 0.0209 0.0923 0.0012 750 52 607 12 569 7
615.7 37.7 0.4156 0.0640 0.0040 0.7480 0.0470 0.0848 0.0016 743 132 567 27 525 9
844.7 98.5 0.4541 0.0614 0.0019 0.6752 0.0228 0.0797 0.0011 654 67 524 14 494 7
9158.8 245.5 0.6468 0.0586 0.0015 0.6888 0.0175 0.0855 0.0012 550 53 532 11 529 7
10100.6 185.4 0.5428 0.0607 0.0012 0.7716 0.0154 0.0923 0.0013 628 75 581 9 569 7
1133.8 56.3 0.6006 0.0609 0.0029 0.6962 0.0308 0.0835 0.0016 635 101 537 18 517 9
12135.6 285.4 0.4753 0.0606 0.0013 0.7113 0.0191 0.0848 0.0013 633 72 545 11 525 8
1311.9 26.1 0.4544 0.0568 0.0031 0.7019 0.0391 0.0896 0.0015 483 116 540 23 553 9
14190.7 258.9 0.7364 0.0589 0.0015 0.7037 0.0194 0.0864 0.0011 565 54 541 12 534 7
15124.5 180.5 0.6898 0.0577 0.0013 0.7077 0.0163 0.0891 0.0014 517 52 543 10 550 8
1642.7 97.7 0.4370 0.0575 0.0020 0.6600 0.0263 0.0830 0.0013 509 78 515 16 514 8
1825.4 50.5 0.5021 0.0557 0.0029 0.6297 0.0314 0.0824 0.0014 439 115 496 20 510 8
1947.5 104.0 0.4563 0.0552 0.0023 0.6194 0.0254 0.0816 0.0015 420 93 490 16 505 9
2055.2 116.5 0.4736 0.0606 0.0021 0.8114 0.0303 0.0968 0.0016 628 74 603 17 596 9
2152.9 121.3 0.4359 0.0647 0.0021 0.9604 0.0362 0.1074 0.0027 765 67 683 19 658 16
2213.7 31.1 0.4397 0.0553 0.0029 0.6325 0.0344 0.0833 0.0020 433 149 498 21 516 12
23428.7 1393.1 0.3077 0.0649 0.0009 1.0037 0.0161 0.1119 0.0014 770 28 706 8 684 8
2460.2 86.8 0.6931 0.0648 0.0025 0.7348 0.0292 0.0823 0.0013 769 86 559 17 510 8
2577.2 135.3 0.5703 0.0592 0.0016 0.7116 0.0194 0.0872 0.0011 572 61 546 11 539 7
2638.6 68.3 0.5655 0.0610 0.0026 0.7992 0.0331 0.0951 0.0014 639 91 596 19 586 8
28151.9 259.7 0.5849 0.0711 0.0015 1.0851 0.0253 0.1104 0.0014 961 43 746 12 675 8
29127.6 199.4 0.6396 0.0600 0.0016 0.7025 0.0211 0.0848 0.0013 611 58 540 13 525 8
3212.2 26.2 0.4636 0.0597 0.0045 0.6509 0.0506 0.0790 0.0019 591 163 509 31 490 11
3399.1 119.7 0.8280 0.0671 0.0021 0.9798 0.0370 0.1057 0.0024 843 65 694 19 648 14
3431.5 66.2 0.4756 0.0714 0.0023 1.1113 0.0305 0.1133 0.0015 970 65 759 15 692 9
3657.6 126.0 0.4575 0.0603 0.0020 0.7858 0.0252 0.0947 0.0016 617 70 589 14 583 9
38136.9 278.8 0.4909 0.0579 0.0016 0.7381 0.0238 0.0920 0.0013 528 61 561 14 568 7
39260.2 275.5 0.9442 0.0670 0.0016 1.0839 0.0248 0.1175 0.0013 835 51 746 12 716 7
4016.2 35.7 0.4539 0.0540 0.0038 0.6004 0.0393 0.0819 0.0017 369 155 477 25 507 10
41165.9 285.8 0.5804 0.0576 0.0015 0.6530 0.0201 0.0819 0.0012 522 59 510 12 508 7
4259.4 80.5 0.7381 0.0632 0.0025 0.9055 0.0541 0.1021 0.0034 717 83 655 29 627 20
43102.6 155.4 0.6602 0.0608 0.0017 0.7955 0.0292 0.0948 0.0024 632 66 594 16 584 14
4458.5 101.0 0.5786 0.0586 0.0020 0.7366 0.0277 0.0911 0.0016 554 77 560 16 562 9
4520.7 55.8 0.3717 0.0557 0.0028 0.6434 0.0314 0.0842 0.0012 439 111 504 19 521 7
47152.8 233.4 0.6549 0.0591 0.0024 0.6889 0.0279 0.0847 0.0012 569 87 532 17 524 7
4877.3 138.2 0.5590 0.0677 0.0028 0.9202 0.0365 0.0991 0.0018 861 86 662 19 609 11
4981.9 180.2 0.4542 0.0672 0.0018 1.1317 0.0357 0.1221 0.0022 843 56 769 17 743 12
50194.5 357.0 0.5448 0.0667 0.0012 1.3011 0.0426 0.1410 0.0034 829 44 846 19 850 19
5196.2 270.7 0.3555 0.0638 0.0016 0.9577 0.0276 0.1087 0.0015 744 54 682 14 665 9
5220.3 42.4 0.4781 0.0583 0.0039 0.6809 0.0417 0.0861 0.0016 543 146 527 25 532 9
53101.8 147.4 0.6904 0.0598 0.0014 0.7410 0.0208 0.0898 0.0016 598 55 563 12 554 10
5480.8 165.5 0.4884 0.0573 0.0018 0.6468 0.0195 0.0820 0.0012 506 69 507 12 508 7
55170.0 262.6 0.6471 0.0596 0.0014 0.7369 0.0202 0.0895 0.0014 591 20 561 12 553 8
56115.0 230.5 0.4989 0.0619 0.0013 0.8252 0.0188 0.0967 0.0014 672 42 611 10 595 8
57123.9 159.8 0.7751 0.0591 0.0017 0.7218 0.0194 0.0890 0.0015 572 63 552 11 549 9
5945.6 62.7 0.7274 0.0605 0.0028 0.7575 0.0381 0.0910 0.0019 620 102 573 22 561 11
6072.4 87.4 0.8287 0.0595 0.0022 0.7304 0.0278 0.0891 0.0015 587 80 557 16 550 9
6146.4 112.1 0.4141 0.0551 0.0020 0.6302 0.0223 0.0831 0.0012 417 81 496 14 514 7
62109.7 211.3 0.5191 0.0563 0.0015 0.6338 0.0167 0.0816 0.0010 465 59 498 10 505 6
63124.8 313.7 0.3978 0.0578 0.0015 0.6831 0.0191 0.0856 0.0012 524 62 529 12 530 7
64130.8 209.2 0.6254 0.0626 0.0017 0.9466 0.0256 0.1097 0.0015 694 57 676 13 671 9
6622.4 30.3 0.7403 0.0653 0.0043 0.8326 0.0553 0.0926 0.0018 783 139 615 31 571 11
67156.8 244.6 0.6411 0.0585 0.0018 0.6510 0.0187 0.0812 0.0014 546 67 509 12 503 8
6895.6 147.6 0.6481 0.0636 0.0025 0.9304 0.0377 0.1060 0.0013 728 83 668 20 649 7
70136.0 275.9 0.4931 0.0612 0.0017 0.6954 0.0191 0.0825 0.0010 656 61 536 11 511 6
71111.2 233.1 0.4770 0.0593 0.0021 0.6449 0.0203 0.0794 0.0012 576 78 505 13 493 7
7255.7 126.7 0.4391 0.0573 0.0026 0.6474 0.0287 0.0823 0.0011 502 106 507 18 510 6
7359.8 115.7 0.5173 0.0669 0.0023 1.0517 0.0360 0.1142 0.0017 835 72 730 18 697 10
7545.2 109.3 0.4139 0.0561 0.0028 0.6338 0.0297 0.0824 0.0014 457 109 498 18 510 8
76156.2 376.4 0.4149 0.0588 0.0014 0.6959 0.0181 0.0859 0.0012 567 52 536 11 531 7
7775.0 128.8 0.5828 0.0649 0.0017 1.0205 0.0270 0.1142 0.0013 770 56 714 14 697 8
7857.9 132.3 0.4374 0.0612 0.0022 0.6512 0.0206 0.0776 0.0012 656 76 509 13 482 7
7962.2 147.5 0.4214 0.0595 0.0023 0.6760 0.0251 0.0826 0.0011 587 116 524 15 511 6
8066.5 87.4 0.7607 0.0623 0.0025 0.8365 0.0343 0.0975 0.0012 683 87 617 19 600 7
8129.4 71.4 0.4119 0.0636 0.0033 0.6520 0.0340 0.0747 0.0011 728 111 510 21 465 7
Z1230-42-4
195.3 609.7 0.1562 0.0620 0.0017 0.7070 0.0235 0.0834 0.0026 674 60 543 14 516 15
292.5 1488.9 0.0621 0.0652 0.0014 0.7392 0.0198 0.0823 0.0022 781 44 562 12 510 13
3107.4 928.6 0.1156 0.0600 0.0016 0.7208 0.0222 0.0870 0.0017 606 57 551 13 538 10
581.9 717.2 0.1142 0.0652 0.0014 1.0492 0.0417 0.1161 0.0029 789 51 729 21 708 17
640.8 1388.0 0.0294 0.0724 0.0018 1.4369 0.0337 0.1441 0.0023 998 54 904 14 868 13
893.7 936.7 0.1001 0.0624 0.0011 0.9007 0.0205 0.1047 0.0018 687 37 652 11 642 11
9146.0 671.0 0.2175 0.0591 0.0011 0.7180 0.0218 0.0878 0.0020 572 43 550 13 543 12
1051.1 4929.3 0.0104 0.0714 0.0012 1.3557 0.0338 0.1374 0.0025 969 36 870 15 830 14
11131.2 534.6 0.2454 0.0612 0.0016 0.8244 0.0233 0.0978 0.0017 656 57 610 13 602 10
1325.7 2180.6 0.0118 0.0709 0.0013 1.2310 0.0401 0.1252 0.0031 955 39 815 18 761 18
1441.9 2646.0 0.0158 0.0633 0.0012 0.9297 0.0255 0.1066 0.0026 717 44 667 13 653 15
1651.0 2411.9 0.0212 0.0672 0.0010 1.0058 0.0193 0.1086 0.0021 844 31 707 10 665 12
1925.1 774.8 0.0324 0.0660 0.0015 0.9405 0.0204 0.1036 0.0019 806 42 673 11 636 11
2075.4 604.4 0.1248 0.0671 0.0017 0.8645 0.0265 0.0933 0.0021 840 56 633 14 575 13
21114.0 1121.2 0.1016 0.0664 0.0023 0.9864 0.0393 0.1081 0.0032 817 70 697 20 662 18
229.3 1249.1 0.0075 0.0809 0.0018 1.8551 0.0713 0.1656 0.0054 1220 43 1065 25 988 30
2595.2 872.9 0.1091 0.0632 0.0009 0.9464 0.0211 0.1084 0.0020 722 31 676 11 664 12
27269.0 1076.3 0.2499 0.0591 0.0010 0.6908 0.0166 0.0844 0.0015 572 5 533 10 523 9
2874.3 723.3 0.1028 0.0658 0.0020 0.7368 0.0248 0.0823 0.0028 798 58 561 15 510 17
298.5 1024.2 0.0083 0.0653 0.0023 0.7719 0.0342 0.0864 0.0036 787 73 581 20 534 21
30175.9 925.9 0.1899 0.0574 0.0013 0.7322 0.0208 0.0930 0.0026 506 55 558 12 573 15
3294.4 837.4 0.1127 0.0650 0.0026 0.8114 0.0460 0.0910 0.0045 772 83 603 26 561 27
3368.5 707.4 0.0969 0.0582 0.0018 0.7370 0.0254 0.0934 0.0035 539 67 561 15 576 21
3419.8 291.1 0.0681 0.0587 0.0018 0.6705 0.0212 0.0846 0.0032 567 73 521 13 524 19
3584.6 740.8 0.1142 0.0610 0.0015 0.6821 0.0191 0.0816 0.0023 643 53 528 12 506 14
3939.4 933.6 0.0422 0.0652 0.0013 0.7901 0.0189 0.0877 0.0016 789 47 591 11 542 10
4021.6 255.5 0.0846 0.0573 0.0018 0.6406 0.0163 0.0820 0.0021 502 67 503 10 508 13
41133.1 853.0 0.1561 0.0594 0.0013 0.7270 0.0184 0.0891 0.0023 583 48 555 11 550 13
42384.4 1346.1 0.2855 0.0797 0.0032 1.6907 0.0774 0.1531 0.0031 1191 80 1005 29 918 17
4452.8 645.7 0.0817 0.0593 0.0011 0.6766 0.0157 0.0825 0.0015 589 39 525 10 511 9
4691.0 799.9 0.1138 0.0552 0.0010 0.6582 0.0147 0.0863 0.0015 420 36 514 9 534 9
4787.1 875.0 0.0996 0.0593 0.0011 0.8239 0.0178 0.1006 0.0019 589 39 610 10 618 11
5015.9 238.0 0.0666 0.0613 0.0017 0.6939 0.0191 0.0823 0.0015 650 61 535 11 510 9
5242.6 557.2 0.0764 0.0605 0.0014 0.7218 0.0184 0.0866 0.0017 620 82 552 11 535 10
5357.3 494.3 0.1159 0.0590 0.0012 0.7004 0.0159 0.0859 0.0014 569 44 539 9 531 8
Z1230-50-1
233.3 969.1 0.0344 0.0581 0.0008 0.7145 0.0161 0.0890 0.0017 532 30 547 10 550 10
3773.3 191.2 4.0453 0.0623 0.0022 0.7724 0.0419 0.0884 0.0021 683 79 581 24 546 13
4600.4 277.6 2.1626 0.0613 0.0016 0.7760 0.0232 0.0918 0.0017 650 56 583 13 566 10
5522.2 258.8 2.0176 0.0573 0.0016 0.6956 0.0207 0.0879 0.0011 502 63 536 12 543 7
665.8 756.5 0.0870 0.0638 0.0012 0.7788 0.0212 0.0884 0.0020 744 38 585 12 546 12
7455.3 305.3 1.4910 0.0626 0.0025 0.6432 0.0335 0.0744 0.0023 694 85 504 21 463 14
8421.5 173.6 2.4276 0.0633 0.0023 0.6919 0.0293 0.0791 0.0015 717 76 534 18 491 9
929.8 1063.2 0.0280 0.0633 0.0014 0.7418 0.0187 0.0852 0.0017 717 46 563 11 527 10
10432.1 145.6 2.9674 0.0618 0.0018 0.6973 0.0210 0.0821 0.0015 733 62 537 13 508 9
1183.5 821.2 0.1017 0.0590 0.0011 0.7160 0.0240 0.0879 0.0024 565 41 548 14 543 14
1221.5 1260.1 0.0171 0.0610 0.0024 0.6366 0.0295 0.0755 0.0016 639 83 500 18 469 10
13205.7 190.4 1.0805 0.0655 0.0021 0.7751 0.0332 0.0853 0.0019 791 66 583 19 528 11
15461.8 248.3 1.8597 0.0573 0.0017 0.7238 0.0275 0.0920 0.0025 502 65 553 16 568 15
1616.6 685.5 0.0242 0.0594 0.0010 0.7019 0.0148 0.0859 0.0016 589 39 540 9 531 9
17325.5 120.7 2.6973 0.0613 0.0024 0.7208 0.0274 0.0862 0.0017 650 83 551 16 533 10
18334.2 561.5 0.5953 0.0635 0.0020 0.6752 0.0264 0.0771 0.0020 724 69 524 16 479 12
20243.7 91.0 2.6771 0.0653 0.0026 0.8290 0.0335 0.0926 0.0021 783 85 613 19 571 12
21222.5 102.6 2.1681 0.0555 0.0018 0.6738 0.0279 0.0880 0.0023 432 69 523 17 543 13
22287.8 94.3 3.0503 0.0612 0.0022 0.7174 0.0282 0.0849 0.0013 656 76 549 17 525 8
2335.2 900.8 0.0391 0.0628 0.0015 0.6880 0.0231 0.0795 0.0022 702 52 532 14 493 13
24191.8 337.3 0.5686 0.0607 0.0021 0.7772 0.0309 0.0931 0.0020 628 76 584 18 574 12
26434.6 148.7 2.9229 0.0589 0.0022 0.7183 0.0261 0.0892 0.0018 565 80 550 15 551 11
2739.8 1033.5 0.0385 0.0585 0.0012 0.6668 0.0173 0.0829 0.0019 546 44 519 11 513 11
28141.7 142.9 0.9912 0.0602 0.0030 0.6289 0.0266 0.0767 0.0017 613 107 495 17 476 10
29953.5 386.4 2.4681 0.0658 0.0014 0.7952 0.0205 0.0878 0.0018 1200 51 594 12 542 11
30160.5 261.0 0.6150 0.0619 0.0021 0.7563 0.0266 0.0892 0.0021 672 72 572 15 551 13
31235.5 159.3 1.4788 0.0573 0.0017 0.6461 0.0212 0.0820 0.0019 506 65 506 13 508 11
33273.4 199.8 1.3679 0.0571 0.0017 0.7111 0.0225 0.0906 0.0017 494 67 545 13 559 10
34148.3 293.0 0.5062 0.0574 0.0015 0.7227 0.0263 0.0910 0.0022 506 57 552 16 561 13
35319.2 108.2 2.9513 0.0647 0.0024 0.8896 0.0280 0.1020 0.0031 765 79 646 15 626 18
36153.5 1062.0 0.1445 0.0616 0.0012 0.8003 0.0219 0.0942 0.0021 661 43 597 12 580 13
37549.1 147.2 3.7311 0.0544 0.0023 0.6202 0.0247 0.0834 0.0015 387 96 490 15 516 9
3842.4 1128.3 0.0376 0.0620 0.0023 0.7210 0.0348 0.0837 0.0019 674 78 551 21 518 11
39425.8 119.2 3.5726 0.0630 0.0032 0.8078 0.0450 0.0926 0.0022 709 107 601 25 571 13
40108.8 1002.6 0.1085 0.0643 0.0016 0.8029 0.0208 0.0903 0.0015 754 249 598 12 557 9
41410.6 130.6 3.1444 0.0596 0.0020 0.7223 0.0274 0.0876 0.0018 591 70 552 16 541 11
42380.0 277.8 1.3682 0.0576 0.0015 0.7019 0.0230 0.0882 0.0018 522 57 540 14 545 11
4398.7 1048.1 0.0942 0.0629 0.0012 0.7722 0.0234 0.0887 0.0021 702 39 581 13 548 12
4452.5 1179.3 0.0446 0.0632 0.0020 0.7604 0.0325 0.0864 0.0017 717 63 574 19 534 10
4542.1 1078.4 0.0391 0.0582 0.0011 0.6793 0.0146 0.0844 0.0013 539 45 526 9 522 8
46160.0 1000.8 0.1599 0.0575 0.0011 0.7237 0.0181 0.0909 0.0017 522 39 553 11 561 10
47333.1 157.4 2.1168 0.0615 0.0027 0.7567 0.0382 0.0884 0.0020 657 92 572 22 546 12
48244.2 99.2 2.4621 0.0556 0.0022 0.6813 0.0331 0.0888 0.0028 435 87 528 20 548 16
4925.1 1035.9 0.0242 0.0598 0.0013 0.7271 0.0154 0.0884 0.0017 594 44 555 9 546 10
50513.3 162.4 3.1598 0.0584 0.0019 0.6873 0.0258 0.0850 0.0017 546 72 531 16 526 10
Z1230-45-2
196.2 601.8 0.1598 0.0655 0.0023 0.8150 0.0383 0.0901 0.0033 791 70 605 21 556 20
236.2 2220.2 0.0163 0.0600 0.0014 0.7305 0.0185 0.0889 0.0022 611 48 557 11 549 13
3195.3 1026.2 0.1903 0.0573 0.0012 0.6644 0.0149 0.0844 0.0016 502 46 517 9 523 10
5287.3 478.5 0.6005 0.0678 0.0015 1.1851 0.0334 0.1273 0.0033 865 46 794 16 773 19
6137.0 966.7 0.1417 0.0652 0.0025 0.8012 0.0258 0.0906 0.0023 789 80 598 15 559 13
955.3 1587.2 0.0348 0.0694 0.0024 1.0308 0.0478 0.1072 0.0027 909 76 719 24 656 16
1119.2 1248.7 0.0154 0.0641 0.0035 0.8099 0.0602 0.0911 0.0036 744 112 602 34 562 21
12481.6 842.8 0.5714 0.0689 0.0020 0.9402 0.0323 0.0992 0.0025 894 59 673 17 610 14
13351.2 642.1 0.5470 0.0743 0.0028 1.3025 0.0385 0.1284 0.0053 1050 77 847 17 779 30
1488.0 415.4 0.2118 0.0614 0.0016 0.8943 0.0237 0.1068 0.0027 654 56 649 13 654 16
1573.9 351.3 0.2102 0.0565 0.0016 0.7473 0.0229 0.0970 0.0026 478 63 567 13 597 16
17278.9 335.0 0.8327 0.0799 0.0031 1.7867 0.1192 0.1600 0.0059 1195 77 1041 43 957 33
18101.0 1962.1 0.0515 0.0612 0.0014 0.7723 0.0224 0.0914 0.0021 648 48 581 13 564 13
19138.3 382.8 0.3614 0.0611 0.0015 0.8144 0.0217 0.0967 0.0017 643 54 605 12 595 10
20116.2 718.4 0.1617 0.0694 0.0016 1.0429 0.0297 0.1090 0.0025 910 52 725 15 667 15
21345.0 545.8 0.6320 0.0645 0.0016 0.9699 0.0291 0.1089 0.0024 767 52 688 15 666 14
22288.4 605.1 0.4766 0.0676 0.0015 1.1497 0.0332 0.1226 0.0024 857 46 777 16 746 14
2345.5 3417.5 0.0133 0.0578 0.0010 0.7265 0.0197 0.0910 0.0024 520 42 555 12 561 14
2433.9 3659.8 0.0093 0.0586 0.0011 0.7492 0.0200 0.0923 0.0021 554 36 568 12 569 12
2581.5 421.4 0.1934 0.0638 0.0016 0.7767 0.0214 0.0883 0.0021 744 52 584 12 546 12
2644.7 4226.8 0.0106 0.0596 0.0011 0.7864 0.0229 0.0952 0.0024 587 41 589 13 587 14
2752.7 2809.1 0.0187 0.0613 0.0012 0.7803 0.0162 0.0927 0.0021 650 47 586 9 571 13
28108.0 938.7 0.1150 0.0634 0.0014 0.7723 0.0209 0.0879 0.0016 724 46 581 12 543 9
2996.7 220.4 0.4387 0.0589 0.0017 0.7525 0.0243 0.0925 0.0019 565 65 570 14 570 11
3044.2 2711.2 0.0163 0.0632 0.0013 0.7625 0.0156 0.0874 0.0016 717 47 575 9 540 9
3153.9 1525.3 0.0354 0.0578 0.0012 0.6945 0.0162 0.0869 0.0015 520 44 535 10 537 9
3261.8 1216.0 0.0508 0.0582 0.0012 0.7072 0.0188 0.0877 0.0017 600 44 543 11 542 10
33304.3 1711.8 0.1778 0.0706 0.0023 1.1169 0.0464 0.1139 0.0022 946 67 762 22 695 13
3434.4 3714.3 0.0093 0.0579 0.0012 0.7686 0.0184 0.0962 0.0019 524 44 579 11 592 11
35148.5 518.2 0.2865 0.0570 0.0013 0.6814 0.0188 0.0866 0.0018 500 52 528 11 536 11
36164.1 603.4 0.2720 0.0590 0.0014 0.6986 0.0193 0.0857 0.0015 565 47 538 12 530 9
3845.9 3938.2 0.0117 0.0623 0.0012 0.7650 0.0219 0.0887 0.0018 687 43 577 13 548 10
39117.8 377.5 0.3122 0.0580 0.0012 0.7615 0.0270 0.0946 0.0024 532 46 575 16 583 14
4071.2 6465.7 0.0110 0.0592 0.0011 0.8382 0.0185 0.1027 0.0019 576 8 618 10 630 11
42286.6 584.7 0.4901 0.0680 0.0022 0.9720 0.0513 0.1025 0.0031 878 101 690 26 629 18
4332.7 3076.5 0.0106 0.0622 0.0012 0.7830 0.0228 0.0916 0.0024 680 41 587 13 565 14
4454.7 2697.7 0.0203 0.0624 0.0015 0.7664 0.0232 0.0894 0.0021 687 52 578 13 552 12
4724.8 2720.1 0.0091 0.0639 0.0012 0.7982 0.0200 0.0910 0.0021 739 45 596 11 561 12
4935.4 3761.1 0.0094 0.0592 0.0011 0.7589 0.0195 0.0933 0.0022 572 6 573 11 575 13
50122.4 705.4 0.1735 0.0593 0.0012 0.7319 0.0174 0.0899 0.0019 589 10 558 10 555 11
5245.0 2438.6 0.0185 0.0669 0.0014 0.8554 0.0273 0.0928 0.0025 835 43 628 15 572 14
53124.0 539.7 0.2298 0.0663 0.0010 1.0573 0.0277 0.1155 0.0024 817 33 732 14 704 14
5534.4 3303.4 0.0104 0.0585 0.0009 0.7315 0.0174 0.0906 0.0017 550 31 557 10 559 10
57161.5 838.9 0.1925 0.0591 0.0010 0.6990 0.0179 0.0859 0.0019 569 37 538 11 531 12
Table 4. Zircon trace and REE (×10−6) analysis results for the pegmatites.
Table 4. Zircon trace and REE (×10−6) analysis results for the pegmatites.
SpotsThUTh/ULaCePrNdSmEuGdTbDyHoErTmYbLuYNb HfTaΣREELREEHREELREE/HREEδEuδCe
Z1220-23-2
491.8438.70.20920.01 1.15 0.07 1.35 5.93 0.06 27.52 9.10 67.64 12.76 27.88 3.45 23.15 2.98 395.48 1.30 12,459.67 0.53 183.04 8.57 174.47 0.05 0.01 15.63
5204.7652.30.31380.17 2.87 0.31 4.67 11.60 0.21 46.34 14.69 118.68 27.62 85.47 15.07 125.12 19.43 871.32 2.29 11,319.99 0.93 472.26 19.83 452.43 0.04 0.03 3.08
7119.5449.20.26590.01 1.42 0.10 1.93 7.20 0.06 29.31 8.85 68.00 12.35 25.97 3.37 21.99 3.10 380.54 1.26 11,882.43 0.51 183.65 10.72 172.93 0.06 0.01
12104411.70.25270.02 1.41 0.08 1.50 5.32 0.07 25.78 8.12 66.11 13.28 35.92 5.62 49.45 7.71 427.32 1.61 12,807.29 0.66 220.39 8.40 211.98 0.04 0.02 8.80
24111575.50.19280.02 1.43 0.08 1.66 6.93 0.10 35.44 12.11 95.80 18.14 41.82 5.13 31.26 3.80 592.94 1.77 13,645.61 0.89 253.72 10.22 243.50 0.04 0.02 8.98
26137.6477.40.28830.03 1.75 0.13 3.01 8.99 0.11 40.35 11.96 86.32 14.82 31.44 3.76 23.76 2.97 486.74 1.56 12,736.93 0.58 229.40 14.01 215.39 0.07 0.02 7.52
2768.2377.80.18060.01 0.88 0.05 0.92 3.39 0.02 16.90 5.51 45.30 8.90 21.33 2.90 18.43 2.44 286.98 1.22 13,837.74 0.53 126.98 5.26 121.71 0.04 0.01 8.95
28135.8477.60.28430.01 1.56 0.13 2.57 8.87 0.06 34.80 10.14 74.74 13.25 28.27 3.50 23.11 2.98 428.65 1.42 12,766.57 0.59 204.00 13.20 190.80 0.07 0.01 0.73
31160461.70.34650.02 1.86 0.17 3.32 11.28 0.12 41.35 11.68 81.62 14.04 29.66 3.82 23.93 3.29 458.63 1.39 13,047.11 0.52 226.16 16.77 209.39 0.08 0.02 8.82
Z1218-6
3146.77 240.47 0.61 0.11 1.42 0.04 0.25 0.36 0.24 2.00 0.97 13.00 5.20 28.39 7.20 83.97 15.94 180.37 0.31 7853.54 0.16 159.10 2.42 156.68 0.02 0.86 5.18
615.67 37.70 0.42 0.03 2.57 0.02 0.40 0.94 0.18 5.45 2.23 29.49 11.62 57.72 13.26 135.69 22.87 395.34 0.41 10,255.56 0.33 282.47 4.14 278.33 0.01 0.24 25.96
9158.82 245.53 0.65 0.05 2.07 0.02 0.25 0.40 0.15 2.94 1.21 17.27 7.10 36.98 8.98 100.76 19.27 241.55 0.49 8626.94 0.40 197.44 2.94 194.51 0.02 0.41 18.06
1133.83 56.32 0.60 0.24 2.87 0.08 0.66 0.78 0.14 4.24 1.59 21.61 8.52 41.28 9.36 99.63 17.47 284.17 0.47 9814.07 0.41 208.47 4.77 203.70 0.02 0.23 4.92
12135.65 285.36 0.48 0.75 3.27 0.47 2.55 1.03 0.12 1.98 0.60 9.33 4.31 24.96 6.67 83.69 18.05 144.99 0.34 9271.08 0.25 157.79 8.19 149.60 0.05 0.25 1.36
14190.67 258.92 0.74 0.13 2.58 0.05 0.43 0.36 0.23 2.23 0.90 13.68 5.63 27.74 7.26 81.93 15.09 186.91 0.26 8413.33 0.35 158.23 3.77 154.46 0.02 0.78 8.09
1642.72 97.74 0.44 0.01 2.14 0.02 0.26 0.47 0.19 3.23 1.26 16.95 7.07 35.78 9.18 101.17 19.35 233.79 0.52 10,150.70 0.62 197.09 3.10 193.99 0.02 0.46 30.05
1825.35 50.49 0.50 0.12 2.30 0.03 0.37 0.59 0.14 4.30 1.62 22.02 9.75 47.57 11.66 124.94 22.50 320.94 0.50 11,534.19 0.64 247.91 3.55 244.37 0.01 0.26 9.92
2213.69 31.14 0.44 0.01 2.70 0.04 0.46 1.17 0.22 8.16 2.80 39.33 15.76 71.50 15.25 153.99 25.82 490.56 1.00 10,439.30 0.83 337.20 4.58 332.61 0.01 0.22 96.23
2577.16 135.30 0.57 0.13 1.88 0.04 0.29 0.37 0.17 2.65 0.77 10.44 4.32 21.78 5.39 58.63 10.66 141.18 0.31 9228.96 0.26 117.52 2.89 114.63 0.03 0.53 6.84
29127.57 199.44 0.64 0.17 2.19 0.06 0.47 0.68 0.30 3.58 1.26 18.21 7.33 38.32 9.13 102.77 18.50 244.88 0.32 9840.19 0.13 202.97 3.87 199.10 0.02 0.59 5.35
3012.16 26.23 0.46 0.09 1.70 0.04 0.52 0.64 0.28 2.43 1.00 12.89 5.23 27.10 6.84 77.78 14.55 185.68 0.25 9047.11 0.21 151.08 3.27 147.81 0.02 0.67 6.82
4520.74 55.79 0.37 0.01 2.81 0.02 0.28 0.60 0.13 3.78 1.68 20.57 8.51 43.34 10.09 101.36 18.27 277.16 0.67 11,874.08 0.70 211.44 3.83 207.60 0.02 0.27
47152.85 233.39 0.65 0.17 1.71 0.05 0.39 0.49 0.32 3.31 1.34 19.20 7.81 41.40 10.18 111.93 21.70 258.06 0.32 10,556.61 0.34 219.99 3.13 216.86 0.01 0.77 4.38
5220.27 42.40 0.48 0.17 2.60 0.04 0.58 0.57 0.16 3.53 1.24 16.00 6.61 31.99 7.16 74.79 13.30 215.07 0.32 10,043.36 0.33 158.74 4.12 154.62 0.03 0.35 7.80
6146.44 112.15 0.41 0.01 1.66 0.00 0.10 0.29 0.07 2.35 0.93 13.03 5.74 30.22 7.27 80.66 15.59 189.64 0.58 10,171.51 0.69 157.95 2.15 155.80 0.01 0.28 13.30
63124.80 313.72 0.40 0.01 0.37 0.00 0.08 0.01 0.11 0.87 0.39 6.24 3.07 17.60 4.99 59.22 12.63 104.65 0.23 8413.70 0.15 105.59 0.57 105.02 0.01 7.37
70136.03 275.86 0.49 0.00 0.53 0.04 0.11 0.13 0.16 0.98 0.62 8.39 3.70 21.27 5.89 73.05 15.15 128.90 0.27 10,934.09 1.07 130.01 0.97 129.04 0.01 1.36 13.20
7255.65 126.74 0.44 0.03 2.41 0.03 0.20 0.49 0.24 3.53 1.46 20.94 8.74 43.62 11.80 126.13 25.31 291.27 0.56 10,539.55 0.77 244.92 3.39 241.53 0.01 0.57 21.06
7545.24 109.30 0.41 0.01 2.32 0.00 0.21 0.50 0.22 3.72 1.23 18.09 7.30 38.51 9.86 106.69 21.22 245.95 0.63 10,715.34 0.80 209.89 3.26 206.62 0.02 0.48 16.04
76156.15 376.39 0.41 0.01 0.42 0.00 0.04 0.16 0.06 1.28 0.53 8.29 3.96 22.51 6.14 73.72 16.23 130.49 0.13 9832.89 0.13 133.37 0.69 132.68 0.01 0.44 13.58
7962.16 147.49 0.42 0.01 1.24 0.00 0.00 0.25 0.06 1.27 0.70 10.10 4.12 22.21 5.65 68.95 12.96 141.20 0.38 10,409.56 0.54 127.52 1.56 125.96 0.01 0.33 0.69
Z1229-42-4
195.26 609.69 0.16 0.18 1.97 0.19 1.46 2.04 0.35 7.80 2.95 32.40 7.76 23.05 3.43 25.25 2.96 252.29 1.64 14,910.14 0.36 111.82 6.20 105.61 0.06 0.27 2.60
3107.40 928.63 0.12 0.23 2.61 0.25 2.27 5.05 0.73 23.57 6.29 45.58 9.98 27.72 5.10 40.12 5.48 300.34 0.47 14,425.48 0.36 174.99 11.15 163.85 0.07 0.21 2.69
9145.96 670.98 0.22 0.01 1.15 0.07 1.44 3.86 0.13 15.93 6.05 63.68 14.95 43.80 6.19 40.54 4.53 492.09 1.82 13,612.56 0.47 202.34 6.67 195.67 0.03 0.05 9.21
27268.98 1076.28 0.25 0.10 1.93 0.17 1.72 3.93 0.27 17.04 6.56 66.60 16.48 44.77 6.46 45.09 5.13 518.35 2.71 14,957.96 0.89 216.25 8.12 208.13 0.04 0.10 3.64
298.48 1024.15 0.01 0.62 8.64 0.49 2.70 1.95 1.00 9.23 4.84 89.91 41.33 245.53 75.97 977.27 172.67 1189.52 1.25 12,641.97 1.67 1632.14 15.40 1616.74 0.01 0.72 3.85
3419.81 291.15 0.07 0.06 0.99 0.09 0.82 1.70 0.18 9.37 4.08 48.43 13.35 43.24 7.12 57.61 7.13 431.49 1.21 12,921.65 0.54 194.16 3.84 190.33 0.02 0.14 3.50
3939.41 933.56 0.04 1.73 12.61 1.42 8.65 4.48 2.65 12.62 5.47 67.28 19.19 62.90 10.88 85.84 11.80 627.95 1.62 12,581.27 1.23 307.52 31.54 275.98 0.11 1.08 1.97
41133.13 852.95 0.16 0.51 5.04 0.61 3.72 3.13 0.87 10.92 3.66 39.70 10.14 30.42 4.74 36.37 4.35 322.35 2.10 12,948.01 0.54 154.18 13.88 140.30 0.10 0.45 2.23
4690.98 799.86 0.11 0.01 0.66 0.03 0.51 1.15 0.06 5.92 2.57 37.18 12.27 47.91 8.84 78.60 10.42 404.70 1.00 20,909.30 0.33 206.11 2.39 203.72 0.01 0.07
5242.56 557.24 0.08 0.04 0.78 0.04 0.37 1.06 0.11 4.58 2.12 25.45 7.63 29.70 6.48 45.22 11.36 252.04 1.18 21,894.37 0.27 134.95 2.40 132.55 0.02 0.16 4.85
5357.29 494.30 0.12 0.01 0.61 0.03 0.46 1.78 0.06 7.51 3.54 41.11 11.64 37.91 7.03 61.92 9.82 386.07 1.12 26,511.66 0.42 183.42 2.93 180.49 0.02 0.05
Z1230-50-1
233.30 969.08 0.03 0.80 6.79 0.39 2.22 2.23 0.50 14.14 7.27 90.31 23.87 72.38 11.87 94.27 13.96 741.31 1.49 12,742.33 1.24 340.98 12.93 328.05 0.04 0.27 2.99
3773.27 191.15 4.05 0.42 78.96 1.76 21.27 19.54 4.60 37.65 7.52 56.27 13.96 49.45 9.35 77.96 11.76 408.52 1.32 9634.46 0.35 390.47 126.55 263.92 0.48 0.52 22.46
5522.22 258.84 2.02 0.22 20.72 1.41 17.43 18.00 1.66 35.46 6.78 48.44 11.33 34.24 5.27 41.58 5.57 325.36 0.95 10,491.42 0.32 248.11 59.43 188.68 0.31 0.20 9.09
665.78 756.49 0.09 2.12 15.29 1.96 11.60 5.38 1.27 13.31 5.44 72.10 23.77 92.02 17.21 137.66 19.99 747.49 1.11 12,305.58 2.03 419.12 37.62 381.50 0.10 0.46 1.84
1183.53 821.16 0.10 0.01 4.50 0.12 1.55 2.71 0.30 13.74 6.87 88.39 26.95 94.18 15.73 112.19 15.86 865.69 1.94 12,240.86 1.27 383.11 9.19 373.92 0.02 0.15 28.97
21222.49 102.62 2.17 0.03 29.85 0.28 4.26 5.12 1.07 12.99 2.80 22.06 5.96 20.01 3.57 32.97 4.97 174.73 0.90 9904.65 0.33 145.93 40.60 105.33 0.39 0.40 84.18
26434.65 148.70 2.92 0.23 24.22 1.33 17.39 16.51 3.68 41.03 8.45 64.12 16.31 51.58 8.93 72.25 10.98 437.18 1.53 8874.09 0.53 337.00 63.36 273.63 0.23 0.43 10.75
29953.54 386.35 2.47 1.22 50.43 3.37 38.13 34.28 5.00 72.99 15.03 113.67 28.94 93.68 16.06 133.89 18.98 831.19 1.67 9442.87 0.59 625.68 132.43 493.25 0.27 0.31 6.09
30160.55 261.05 0.62 0.01 7.05 0.17 2.58 4.67 0.45 15.89 3.80 30.70 7.57 22.66 3.73 27.82 3.67 241.71 1.03 11,693.20 0.56 130.76 14.92 115.84 0.13 0.16 63.21
41410.59 130.58 3.14 0.28 44.53 1.38 19.48 17.39 3.41 34.73 6.42 50.80 13.45 43.36 7.81 62.23 9.40 370.72 0.91 8992.53 0.36 314.67 86.47 228.20 0.38 0.42 17.47
42380.01 277.75 1.37 0.01 12.91 0.37 6.26 8.84 0.54 23.43 5.05 37.65 8.73 26.69 4.32 31.02 4.13 262.81 1.40 10,809.46 0.51 169.93 28.93 141.00 0.21 0.12 47.21
4398.70 1048.06 0.09 1.26 15.93 0.63 3.64 3.07 0.76 11.48 4.66 58.06 18.34 75.76 15.69 143.76 22.83 550.80 2.43 11,817.06 1.84 375.87 25.29 350.58 0.07 0.39 4.37
47333.09 157.35 2.12 0.29 19.50 1.14 14.65 13.21 2.41 28.22 6.36 50.78 13.06 43.89 7.80 66.44 9.88 365.80 1.90 8342.74 0.53 277.64 51.19 226.45 0.23 0.38 8.37
48244.15 99.16 2.46 0.06 56.78 0.45 5.76 6.09 1.60 13.51 2.69 21.65 6.01 22.10 4.34 37.76 6.11 182.11 0.72 9189.56 0.23 184.92 70.75 114.17 0.62 0.54 86.80
4925.11 1035.92 0.02 0.04 1.70 0.07 0.35 0.79 0.14 4.95 3.07 46.18 16.76 77.58 19.73 213.69 38.07 567.60 1.60 11,485.24 1.92 423.11 3.09 420.02 0.01 0.21 7.61
Z1230-45-2
196.20 601.80 0.16 0.78 8.53 0.91 6.66 4.40 1.79 13.38 4.90 46.60 15.20 64.38 14.09 142.74 23.52 65.19 1.99 11,780.76 1.37 347.89 23.08 324.81 0.07 0.71 2.48
236.20 2220.20 0.02 1.66 10.88 1.55 8.64 4.61 2.57 11.18 4.78 54.98 12.71 29.86 3.54 20.55 2.00 58.70 1.12 11,513.59 1.49 169.51 29.91 139.60 0.21 1.10 1.67
6137.00 966.70 0.14 1.08 9.02 0.90 7.21 8.07 1.95 26.42 6.65 46.52 8.16 18.09 2.12 12.35 1.40 60.64 1.06 11,304.11 0.55 149.96 28.24 121.72 0.23 0.41 2.24
1119.20 1248.70 0.02 1.03 9.59 0.53 3.04 2.11 0.81 4.17 2.08 27.68 10.51 46.66 10.27 82.51 13.26 64.04 1.29 12,620.83 1.47 214.23 17.10 197.13 0.09 0.83 3.18
18101.00 1962.10 0.05 0.34 5.67 0.28 1.71 2.11 0.46 11.75 5.21 67.15 24.87 110.83 23.31 218.03 32.08 60.18 2.19 11,046.88 1.92 503.81 10.57 493.24 0.02 0.28 4.52
2345.50 3417.50 0.01 0.02 0.69 0.01 0.28 1.02 0.12 8.44 5.66 90.46 33.91 143.26 27.33 216.99 28.76 60.37 1.88 12,523.64 2.45 556.98 2.16 554.82 0.00 0.12 9.16
2433.90 3659.80 0.01 0.35 2.42 0.27 1.84 1.91 0.29 11.45 7.07 94.72 26.33 77.31 10.13 65.11 6.76 60.66 1.96 12,687.47 2.61 305.98 7.09 298.89 0.02 0.19 1.93
2581.50 421.40 0.19 0.38 5.04 0.49 3.91 4.71 1.14 14.00 4.09 28.77 5.36 12.53 1.54 9.47 1.03 63.89 0.67 11,396.00 0.49 92.44 15.67 76.77 0.20 0.43 2.86
2644.70 4226.80 0.01 4.54 22.90 3.22 15.69 6.19 7.71 15.27 7.64 123.30 48.93 224.05 50.05 457.94 74.07 60.21 2.52 12,297.49 2.79 1061.50 60.25 1001.25 0.06 2.43 1.47
2752.70 2809.10 0.02 8.47 62.02 4.91 25.85 10.74 5.42 17.33 6.35 84.09 31.90 141.34 29.09 256.42 36.71 58.99 2.38 12,160.40 3.50 720.64 117.41 603.23 0.19 1.21 2.36
2996.70 220.40 0.44 0.03 3.31 0.03 0.36 0.94 0.74 5.21 1.92 23.45 8.96 45.03 9.85 98.79 16.79 64.01 1.07 11,292.50 0.83 215.41 5.41 210.00 0.03 1.03 27.52
3845.90 3938.20 0.01 4.99 37.03 3.75 19.71 8.54 5.11 17.58 7.22 100.66 40.54 191.88 41.11 361.65 49.91 59.25 2.55 11,784.48 3.97 889.69 79.14 810.55 0.10 1.28 2.10
39117.80 377.50 0.31 0.03 2.09 0.06 1.57 2.94 0.10 11.32 2.85 20.49 3.81 7.91 0.94 5.05 0.53 65.16 0.83 12,162.60 0.55 59.69 6.79 52.90 0.13 0.05 11.98
4332.70 3076.50 0.01 6.70 76.65 4.72 24.27 10.41 6.83 19.60 7.62 81.98 19.04 46.40 5.18 28.50 2.88 60.21 1.51 12,578.78 1.94 340.80 129.59 211.21 0.61 1.46 3.34
4454.70 2697.70 0.02 7.54 75.55 5.90 30.34 13.10 7.23 18.19 6.41 80.41 25.82 98.31 18.45 159.73 21.17 59.46 1.52 12,907.12 1.88 568.15 139.66 428.49 0.33 1.43 2.78
4724.80 2720.10 0.01 4.83 70.91 2.63 12.38 5.05 3.87 11.21 4.57 64.24 21.26 76.91 14.00 105.63 13.16 58.60 1.15 11,268.17 1.87 410.67 99.68 310.99 0.32 1.57 4.87
4935.40 3761.10 0.01 0.01 0.29 0.00 0.14 0.83 0.04 8.39 4.61 81.76 35.19 165.35 35.80 296.12 39.17 60.33 1.91 12,739.59 3.23 667.67 1.30 666.37 0.00 0.05 0.93
50122.40 705.40 0.17 0.01 1.52 0.06 0.97 2.89 0.09 16.29 5.30 42.68 7.99 15.72 1.77 9.26 1.08 64.32 1.17 11,328.30 0.97 105.63 5.53 100.10 0.06 0.04 32.72
5245.00 2438.60 0.02 5.52 68.98 3.32 16.33 6.41 5.48 12.21 4.54 62.12 23.58 110.97 24.38 219.00 31.69 55.65 1.83 11,486.49 2.83 594.53 106.04 488.49 0.22 1.89 3.95
5534.40 3303.40 0.01 0.30 2.58 0.30 1.63 1.65 0.59 7.07 4.70 75.92 31.84 143.46 30.89 256.87 34.93 60.12 1.80 12,740.00 3.13 592.72 7.04 585.68 0.01 0.53 2.12
Table 5. Zircon Lu-Hf isotopic data of the samples.
Table 5. Zircon Lu-Hf isotopic data of the samples.
Sample176Yb/177Hf176Lu/177Hf176Hf/177HfAge (Ma)εHf (t)TDM1 (Ma)TDM2 (Ma)fLu/Hf
Z1220-23-2
40.001318 0.000015 0.000036 0.000001 0.282071 0.000014 518 −13.416212326−1.00
120.008493 0.000140 0.000304 0.000002 0.282129 0.000031 519 −11.3915532202−0.99
140.002127 0.000070 0.000062 0.000002 0.282011 0.000038 531 −15.2717042453−1.00
190.001566 0.000012 0.000045 0.000001 0.282070 0.000015 550 −12.7216232309−1.00
270.001262 0.000010 0.000035 0.000000 0.282094 0.000012 518 −12.5815902276−1.00
310.001949 0.000068 0.000056 0.000002 0.282058 0.000016 518 −13.8616392355−1.00
Z1218-6
30.006438 0.000027 0.000273 0.000002 0.282511 0.000019 522 2.210281346−0.99
90.011279 0.000126 0.000466 0.000005 0.282498 0.000026 528 1.7710521377−0.99
360.008736 0.000202 0.000374 0.000008 0.282415 0.000023 583 0.0811641527−0.99
370.010024 0.000094 0.000430 0.000004 0.282470 0.000032 531 0.8410901438−0.99
400.049057 0.000433 0.001851 0.000016 0.282433 0.000027 507 −1.4211841564−0.94
410.012529 0.000228 0.000534 0.000010 0.282627 0.000032 507 5.878741101−0.98
440.008471 0.000075 0.000339 0.000003 0.282605 0.000025 561 6.329001112−0.99
470.009077 0.000076 0.000397 0.000002 0.282390 0.000025 523 −2.1311981619−0.99
520.006321 0.000037 0.000242 0.000001 0.282493 0.000019 532 1.7510521380−0.99
Z1230-42-4
10.015971 0.000678 0.000449 0.000019 0.282231 0.000018 516 −7.9214191981−0.99
30.003249 0.000154 0.000092 0.000005 0.281972 0.000015 537 −16.5217572534−1.00
90.002353 0.000029 0.000061 0.000001 0.282324 0.000022 542 −3.9412791750−1.00
270.005329 0.000286 0.000150 0.000009 0.281992 0.000020 522 −16.1817342503−1.00
340.008197 0.000586 0.000187 0.000011 0.282167 0.000038 523 −9.9614972114−0.99
390.002116 0.000023 0.000052 0.000001 0.282423 0.000015 541 −0.4611431528−1.00
410.003061 0.000069 0.000089 0.000002 0.282221 0.000020 550 −7.4114191973−1.00
460.005436 0.000141 0.000158 0.000004 0.282194 0.000026 533 −8.7814592046−1.00
500.002255 0.000041 0.000063 0.000001 0.282353 0.000026 509 −3.6512391705−1.00
520.015970 0.000362 0.000654 0.000013 0.282017 0.000015 535 −15.1817222450−0.98
Z1219-50-1
20.008867 0.000159 0.000311 0.000007 0.282166 0.000014 550 −9.4315042103−0.99
40.008980 0.000324 0.000289 0.000010 0.282177 0.000016 566 −8.6914872066−0.99
80.004610 0.000077 0.000148 0.000003 0.282152 0.000019 490 −11.1815162167−1.00
110.007078 0.000018 0.000211 0.000003 0.282179 0.000017 543 −9.0914812074−0.99
260.006352 0.000222 0.000212 0.000007 0.282219 0.000020 550 −7.5214261980−0.99
310.011156 0.000299 0.000383 0.000010 0.282130 0.000020 508 −11.6715562211−0.99
330.002440 0.000014 0.000080 0.000000 0.282189 0.000022 558 −8.3714632040−1.00
390.004478 0.000076 0.000148 0.000002 0.282148 0.000022 570 −9.5915212125−1.00
420.003002 0.000016 0.000095 0.000000 0.282149 0.000018 545 −10.0715182138−1.00
470.005546 0.000076 0.000174 0.000002 0.282222 0.000020 546 −7.4614211975−0.99
500.006224 0.000056 0.000196 0.000001 0.282185 0.000019 526 −9.2514722070−0.99
Z1230-45-2
20.001276 0.000013 0.000028 0.000000 0.282194 0.000014 549 −8.3514542033−1.00
160.042659 0.000347 0.001306 0.000018 0.282241 0.000024 597 −6.1614381930−0.96
240.007720 0.000462 0.000235 0.000016 0.282214 0.000014 569 −7.3114351981−0.99
290.008848 0.000371 0.000335 0.000014 0.282324 0.000013 570 −3.4312881738−0.99
470.004942 0.000119 0.000128 0.000003 0.282169 0.000020 561 −9.0114922084−1.00
550.014009 0.000141 0.000432 0.000005 0.282168 0.000024 559 −9.215042092−0.99
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zong, S.; Cui, Y.; Ren, L.; Zhang, H.; Chen, S.; Wang, W.; Li, S. Geochemical Characteristics, Zircon U-Pb Ages and Lu-Hf Isotopes of Pan-African Pegmatites from the Larsemann Hills, Prydz Bay, East Antarctica and Their Tectonic Implications. Minerals 2024, 14, 55. https://doi.org/10.3390/min14010055

AMA Style

Zong S, Cui Y, Ren L, Zhang H, Chen S, Wang W, Li S. Geochemical Characteristics, Zircon U-Pb Ages and Lu-Hf Isotopes of Pan-African Pegmatites from the Larsemann Hills, Prydz Bay, East Antarctica and Their Tectonic Implications. Minerals. 2024; 14(1):55. https://doi.org/10.3390/min14010055

Chicago/Turabian Style

Zong, Shi, Yingchun Cui, Liudong Ren, Hao Zhang, Shaocong Chen, Weixuan Wang, and Shenggui Li. 2024. "Geochemical Characteristics, Zircon U-Pb Ages and Lu-Hf Isotopes of Pan-African Pegmatites from the Larsemann Hills, Prydz Bay, East Antarctica and Their Tectonic Implications" Minerals 14, no. 1: 55. https://doi.org/10.3390/min14010055

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop