Mineralogy and Geochemical Characteristics of Scheelite Deposit at Xuebaoding in Pingwu, Sichuan Province, China
Abstract
:1. Introduction
2. Regional Geological Setting
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Gemological Mineralogy Characteristics of Scheelite from Xuebaoding
4.1.1. Gemological Characteristics
4.1.2. Mineralogical Characteristics
4.1.3. Crystallization Degree
4.2. Geochemical Characteristics of Scheelite from Xuebaoding
4.2.1. Main Element Compositions
4.2.2. In Situ Trace Element Characteristics
4.2.3. In Situ Sr-Nd Isotope Characteristics
5. Discussion
5.1. Rare-Earth Patterns of Scheelite from Xuebaoding
5.2. The Metallogenic Age of Scheelite from Xuebaoding
5.3. Genesis Types of Scheelite from Xuebaoding
5.4. The Source of Ore-Forming Materials of Scheelite from Xuebaoding
6. Conclusions
- (1)
- Scheelite from Xuebaoding exhibits a weak dichroism in a light yellow tone, and the density decreases with increasing Mo content. In addition, L.W. displays inert fluorescence, while S.W. demonstrates moderate to strong blue white fluorescence. Clear color bands and ring structures are observed inside. The scheelite crystals possess crystallinity with a distinct granular structure, and the interference color falls into three categories: light blue, blue, and yellow. The mineral components are relatively concentrated, primarily composed of muscovite and illite as associated mineral along with minor amounts of fluorite and calcite.
- (2)
- The mass ratio of the main chemical components WO3 and CaO in scheelite closely approximates or exceeds the ideal value. The content of trace elements Si, Sr, and Fe is relatively high. The REE composition indicates a higher enrichment of LREE compared to HREE, with significant Eu negative anomalies and insignificant Ce anomalies. The formation age of scheelite can be traced back to the Early Jurassic period, with an age of 183 Ma.
- (3)
- The scheelite from Xuebaoding was formed in a low sodium environment, and the rare earth patterns exhibit the tetrad effect, which is influenced by the distribution coefficient of rare earths in the hydrothermal solution rather than crystal chemistry. The genesis type corresponds to A type granite, which serves as the host rock for scheelite ore. Sr-Nd isotopes indicate that the material source primarily originates in the upper crust, with some coming from the young crust.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.Y. Crystallography and Mineralogy; Geological Publishing House: Beijing, China, 2008; p. 284. (In Chinese) [Google Scholar]
- Palmer, M.C.; Scott, J.M.; Luo, Y.; Sakar, C.; Pearson, D.G. In-situ scheelite LASS-ICPMS reconnaissance Sm-Nd isotope characterisation and prospects for dating. J. Geochem. Explor. 2021, 224, 106760. [Google Scholar] [CrossRef]
- Poulin, R.S.; McDonald, A.M.; Kontak, D.J.; McClenaghan, M.B. On the relationship between cathodoluminescence and the chemical composition of scheelite from geologically diverse ore-deposit environments. Can. Mineral. 2016, 54, 1147–1173. [Google Scholar] [CrossRef]
- Poulin, R.S.; Kontak, D.J.; McDonald, A.; McClenaghan, M.B. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry. Can. Mineral. 2018, 56, 265–302. [Google Scholar] [CrossRef]
- Scanlan, E.J.; Scott, J.M.; Wilson, V.J.; Stirling, C.H.; Reid, M.R.; Roux, P.J. In situ 87Sr /86Sr of scheelite and calcite reveals proximal and distal fluid-rock interaction during orogenic W-Au mineralization, Otago Schist, New Zealand. Econ. Geol. 2018, 113, 1571–1586. [Google Scholar] [CrossRef]
- Song, G.X.; Xiong, Y.X. Advances and Prospects of Scheelite Genetic Mineralogy. Shandong Land Resour. 2021, 37, 1–9. [Google Scholar]
- Liu, Y. Mineralogical characteristics and genetic mechanism of the Xuebaoding deposit in northwestern Sichuan Province. Acta Petrol. Mineral. 2017, 36, 549–563. [Google Scholar]
- Wu, D.W.; Li, B.H.; Du, X.F.; Dong, X.Y.; Fu, T.Y.; Xu, L. Fluid inclusion study and its geological significance on Xuebaoding W-Sn-Be deposit, Sichuan. Miner. Depos. 2015, 34, 745–756. [Google Scholar]
- An, N.; Guo, Q.F.; Liao, L.B. Gemological and Spectroscopic Characteristics of Scheelite from Xuebaoding, Sichuan. In Proceedings of the China International Jewelry and Jewelry Academic Exchange Conference, Beijing, China, 13 November 2019; pp. 173–176. [Google Scholar]
- Liu, Y.; Deng, J.; Xing, Y.Y.; Jiang, S.Q. Vibrational Spectra of Scheelite and Its Color Genesis. Spectrosc. Spectr. Anal. 2008, 28, 121–124. [Google Scholar]
- Li, J.K.; Liu, S.B.; Wang, D.H.; Fu, X.F. Metallogenic epoch of Xuebaoding W-Sn-Be deposit in northwest Sichuan and its tectonic tracing significance. Miner. Depos. 2007, 26, 557–562. [Google Scholar]
- Cao, Z.M.; Li, Y.G.; Ren, J.G.; Li, B.H.; Xu, S.J.; Wang, R.C.; Zheng, L.C.Y.; Jin, T.B.Z.; Xiao, L.X.Y. Characteristics and tracing and dating of volatile ore-forming fluids in the Xuebaoding beryl scheelite vein deposit. Sci. China (Ser. D) 2002, 32, 64–72. [Google Scholar]
- Li, B.H.; Cao, Z.M.; Li, Y.G.; Yi, H.S. CO2 from Fluid Inclusions in Xuebaoding W-Sn-Be Deposit and Its Mineralization Significance. Miner. Depos. 2002, 21, 397–400. [Google Scholar]
- Zhu, X.X.; Liu, Y. Chemical Composition of Minerals in Xuebaoding W-Sn-Be Deposit, Sichuan Province: Constraints on One Genesis. Rock Miner. Anal. 2021, 40, 296–305. [Google Scholar]
- Zhang, B.L. System Gemology; Geological Publishing House: Beijing, China, 2006; pp. 523–524. (In Chinese) [Google Scholar]
- Li, M.R.; Wang, H.L.; Li, B.; Che, W.F.; Liang, D.Y.; Meng, Q.B. Mineralogical features, crystal structure, and floatability of the Mo-bearing scheelite. Acta Metall. Sin. 2022, 42, 213–221. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for composition and processes. In Magmatism in the Ocean Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Brugger, J.; Bettiol, A.A.; Costa, S.; Lahaye, Y.; Bateman, R.; Lambert, D.D.; Jamieson, D.N. Mapping REE distribution in scheelite using luminescence. Mineral. Mag. 2000, 64, 891–903. [Google Scholar] [CrossRef]
- Nevin, C.G.; Pandalai, H.S. Rare earth element geochemistry and fluid characteristics of scheelite in the Hutti gold deposit, Hutti-Maski schist belt, Raichur district, Karnataka, India. J. Asian Earth Sci. 2020, 189, 104–161. [Google Scholar] [CrossRef]
- Bell, K.; Anglin, C.D.; Franklin, J.M. Sm-Nd and Rb-Sr isotope systematics of scheelites: Possible implications for the age and genesis of vein-hosted gold deposits. Geology 1989, 17, 500–504. [Google Scholar] [CrossRef]
- Eichhorn, R.; Höll, R.; Jagoutz, E.; Schärer, U. Dating scheelite stages: A strontium, neodymium, lead approach from the Felhertal tungsten deposit, Central Alps, Austria. Geochim. Et Cosmochim. Acta 1997, 61, 5005–5022. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jager, E. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Epis. J. Int. Geosci. 2023, 36, 199–204. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, J.; Li, C.F.; Shi, G.H.; Zheng, A.L. Rare earth geochemistry and Sm-Nd isotope dating of the Xuebaoding scheelite deposit in Sichuan. Chin. Sci. Bull. 2007, 52, 1923–1929. [Google Scholar]
- Nie, L.Q.; Zhou, T.F.; Zhang, Q.M.; Zhang, M.; Wang, L.H. Trace elements and Sr-Nd isotopes of scheelites: Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province. Acta Petrol. Sin. 2017, 33, 3518–3530. [Google Scholar]
- Ren, K.D.; Zhang, D.Y.; Meng, X.; Zhang, F.; Wang, J.; Xi, X.C.; Zhang, Y.W.; Su, H.B. Enrichment mechanism of rare earth (REE) of high-Mo scheelite in Guilinzheng deposit from Jiangnan tung mineralization belt and its geological significance. Miner. Depos. 2022, 41, 859–877. [Google Scholar]
- Wei, Y. The Mineral Characteristics and Metallogenic Mechanism of Scheelite in the Zhaishang Gold Deposit in the Western Qinling Orgenic Belt. Master’s Thesis, China University of Geosciences, Beijing, China, 2014. [Google Scholar]
- Xue, Y.S.; Liu, X.W.; Hu, X.S.; Cun, X.N.; Yang, H.T. Scheelite geochemical signature and calcite Sm-Nd dating of the Xianggou Au-W deposit in south Qinling orogen, central China: Constraints, on the ore-forming process. Geol. Chin. 2021, 48, 1818–1837. [Google Scholar]
- Peng, J.T.; Wang, C.; Li, Y.L.; Hu, A.X.; Lu, Y.L.; Chen, X.J. Geochemical characteristics and Sm-Nd Geochronology of scheelite in the Baojinshan ore district, central Human. Acta Petrol. Sin. 2021, 37, 665–682. [Google Scholar]
- Masuda, A.; Kawakami, O.; Dohmoto, Y.; Takenaka, T. Lanthanide tetrad effects in nature: Two mutually opposite types, W and M. Geochem. J. 1987, 21, 119–124. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Et Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Monecke, T.; Kempe, U.; Monecke, J.; Sala, M.; Wolf, D. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Et Cosmochim. Acta 2002, 66, 1185–1196. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Bao, Z.W.; Qiao, Y.L. A peculiar composite M- and W-type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China. Chin. Sci. Bull. 2010, 55, 1474–1488. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Tan, H.Q.; Gong, D.X.; Zhu, Z.M.; Luo, L.P. Wulaxi Aluminous A-type Granite in Western Sichuan, China: Recording Early Yanshanian Lithospheric Thermo-upwelling Extension of Songpan-Garze Orogenic Belt. Geol. Rev. 2014, 60, 348–362. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Song, G.X.; Qin, K.Z.; Li, G.M.; Evans, N.J.; Chen, L. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China. Am. Mineral. 2014, 99, 303–317. [Google Scholar] [CrossRef]
- Shao, J.A.; Mou, B.L.; Zhu, H.Z.; Zhang, L.Q. Material source and tectonic settings of the Mesozoic mineralization of the Da Higgan Mts. Acta Petrol. Sin. 2010, 26, 649–656. [Google Scholar]
- Guo, Z.J.; Li, J.W.; Huang, G.J.; Guan, J.D.; Dong, X.Z.; Tian, J.; Yang, X.C.; She, H.Q.; Xiang, A.P.; Kang, Y.J. Sr-Nd-Pb-Hf isotope characteristics of ore-bearing granites in the Honghuaerji scheelite deposit, Inner Mongolia. Geol. Chin. 2014, 41, 1226–1241. [Google Scholar]
Basic Properties | Sch−1 | Sch−2 | Sch−3 | Sch−4 | Sch−5 |
---|---|---|---|---|---|
Color | Light yellow to yellow | Yellow | Yellow to orange | Nearly colorless | Light yellow |
Relative density | 6.07 | 6.14 | 6.11 | 5.81 | 6.13 |
Polarscope | Four bright and four dark | Four bright and four dark | Four bright and four dark | Four bright and four dark | Four bright and four dark |
Zoomed in and observe | Color band | Clean | Clean | Dark inclusion and ring structure | Accessory mineral |
Basic Properties | Sch−1 | Sch−2 | Sch−3 | Sch−4 | Sch−5 |
---|---|---|---|---|---|
Fluorescence | L.W. no fluorescence | L.W. no fluorescence | L.W. no fluorescence | L.W. no fluorescence | L.W. no fluorescence |
S.W. medium blue to white fluorescence | S.W. strong blue to white fluorescence | S.W. strong blue to white fluorescence | S.W. white fluorescence | S.W. weak blue to white fluorescence | |
Grating spectroscope | A weak absorption line in the yellow zone | Two weak absorption lines in the yellow zone | Two weak absorption lines in the yellow zone | A weak absorption line in the green zone | A weak absorption line in the yellow zone |
A weak absorption line in the green zone |
Chemical Components | Sch−1 | Sch−2 | Sch−3 |
---|---|---|---|
WO3 | 80.86 | 79.16 | 79.47 |
CaO | 17.43 | 17.60 | 17.17 |
P2O5 | 1.29 | 0.75 | 1.64 |
SO3 | 0.37 | 0.40 | - |
Y2O3 | 0.05 | - | 0.04 |
ReO2 | - | 1.32 | 1.57 |
Tm2O3 | - | 0.77 | - |
SrO | - | - | 0.11 |
Total | 100.0 | 100.0 | 100.0 |
Main Constituent | Sch−1 | Sch−2 | Sch−3 | Sch−4 | Sch−5 |
---|---|---|---|---|---|
WO3 | 80.62 | 80.95 | 79.92 | 80.73 | 80.28 |
CaO | 19.68 | 19.61 | 19.54 | 19.37 | 19.68 |
SiO2 | 0.23 | 0.25 | - | - | 0.25 |
MnO | 0.01 | 0.02 | 0.01 | - | 0.07 |
K2O | 0.03 | 0.01 | 0.01 | - | - |
Na2O | 0.02 | 0.05 | 0.02 | 0.04 | 0.01 |
MgO | 0.01 | 0.02 | 0.01 | - | - |
TiO2 | 0.01 | 0.02 | - | - | - |
Total | 100.61 | 100.93 | 99.50 | 100.14 | 100.29 |
Trace Element | Sch−1 | Sch−2 | Sch−3 | Sch−4 | Sch−5 | Average Value |
---|---|---|---|---|---|---|
Si | 922.30 | 569.87 | 701.26 | 619.13 | 588.76 | 680.26 |
P | 3.54 | 0.10 | 1.14 | 1.38 | 0.42 | 1.32 |
As | 0.51 | 0.60 | 0.47 | 0.31 | 0.26 | 0.43 |
Li | 1.86 | 0.34 | 0.21 | 8.52 | 0.41 | 2.27 |
Be | - | - | 0.28 | 0.00 | 0.17 | 0.15 |
Na | 3.17 | 1.90 | 8.53 | 0.51 | 0.94 | 3.01 |
Mg | 2.14 | 3.67 | 1.30 | 0.49 | 3.49 | 2.22 |
K | 0.23 | 0.46 | 0.25 | 0.19 | 0.26 | 0.28 |
Ga | 0.84 | 0.91 | 0.89 | 0.04 | 0.60 | 0.66 |
Ge | 2.81 | 3.44 | 2.60 | 0.24 | 1.75 | 2.17 |
Rb | 0.25 | 0.21 | 0.30 | 0.05 | 0.29 | 0.22 |
Sr | 42.17 | 15.29 | 221.63 | 541.99 | 13.58 | 166.93 |
Sn | 0.03 | 0.04 | 0.03 | 0.01 | 0.02 | 0.03 |
Pb | 3.52 | 3.83 | 2.17 | 0.78 | 3.36 | 2.73 |
Sc | 0.01 | 0.02 | 0.00 | 0.02 | 0.01 | 0.01 |
Ti | 0.04 | 0.20 | 0.01 | 0.03 | 0.03 | 0.06 |
V | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 |
Cr | 0.37 | 0.45 | 0.21 | 0.30 | 0.51 | 0.37 |
Mn | 5.17 | 11.27 | 6.17 | 0.17 | 9.44 | 6.44 |
Fe | 20.74 | 21.26 | 21.51 | 19.91 | 20.42 | 20.77 |
Co | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Ni | 0.05 | 0.04 | 0.05 | 0.07 | 0.06 | 0.05 |
Y | 58.76 | 26.19 | 62.87 | 13.92 | 20.86 | 36.52 |
Zr | 0.56 | 0.67 | 0.38 | 0.47 | 0.63 | 0.54 |
Nb | 47.98 | 35.13 | 36.67 | 1.91 | 18.26 | 27.99 |
Mo | 0.46 | 0.69 | 0.45 | 4.36 | 0.81 | 1.35 |
W | 147,244.50 | 146,973.75 | 147,473.88 | 138,478.00 | 139,973.43 | 144,028.71 |
Hf | 0.07 | 0.06 | 0.08 | 0.01 | 0.01 | 0.05 |
Ta | 0.94 | 0.46 | 1.69 | 0.06 | 0.30 | 0.69 |
Th | 0.10 | 0.21 | 0.02 | 0.93 | 0.87 | 0.43 |
U | 0.09 | 0.25 | 0.03 | 0.42 | 0.91 | 0.34 |
Rb/Sr | 0.01 | 0.01 | 0.00 | 0.00 | 0.02 | 0.01 |
Nb/Ta | 51.04 | 76.37 | 21.70 | 31.83 | 60.87 | 48.36 |
Zr/Hf | 8.00 | 11.17 | 4.75 | 47.00 | 63.00 | 26.78 |
Rare Earth Element | Sch−1 | Sch−2 | Sch−3 | Sch−4 | Sch−5 | Average Value |
---|---|---|---|---|---|---|
La | 11.89 | 12.13 | 18.53 | 1.98 | 8.83 | 10.67 |
Ce | 40.58 | 39.85 | 49.33 | 10.05 | 24.75 | 32.91 |
Pr | 7.48 | 7.68 | 8.64 | 2.64 | 4.78 | 6.24 |
Nd | 37.11 | 43.90 | 49.36 | 6.09 | 25.23 | 32.34 |
Sm | 12.08 | 12.94 | 14.50 | 1.58 | 6.05 | 9.43 |
Eu | 2.01 | 2.27 | 3.08 | 0.36 | 1.61 | 1.87 |
Gd | 13.56 | 13.70 | 15.69 | 3.21 | 7.81 | 10.79 |
Tb | 2.36 | 1.97 | 2.06 | 0.48 | 1.10 | 1.59 |
Dy | 14.09 | 11.20 | 13.17 | 1.89 | 7.32 | 9.53 |
Ho | 2.39 | 1.95 | 2.37 | 0.42 | 1.27 | 1.68 |
Er | 5.87 | 4.71 | 6.43 | 0.93 | 3.51 | 4.29 |
Tm | 0.66 | 0.53 | 0.83 | 0.11 | 0.34 | 0.49 |
Yb | 3.31 | 2.59 | 4.29 | 0.54 | 1.95 | 2.54 |
Lu | 0.35 | 0.28 | 0.46 | 0.04 | 0.25 | 0.28 |
Y | 58.76 | 26.19 | 62.87 | 13.92 | 20.86 | 36.52 |
∑RFF + Y | 212.50 | 181.89 | 251.61 | 44.24 | 115.66 | 161.18 |
∑REE | 153.74 | 155.7 | 188.74 | 30.32 | 94.80 | 124.66 |
LREE | 111.15 | 118.77 | 143.44 | 22.70 | 71.25 | 93.46 |
HREE | 42.59 | 36.93 | 45.30 | 7.62 | 23.55 | 31.20 |
LREE/HREE | 2.61 | 3.22 | 3.17 | 2.98 | 3.03 | 3.00 |
(La/Yb)N | 2.42 | 3.16 | 2.91 | 2.47 | 3.05 | 2.80 |
(La/Sm)N | 0.62 | 0.59 | 0.80 | 0.79 | 0.92 | 0.74 |
(Gd/Yb)N | 3.31 | 4.22 | 2.95 | 4.80 | 2.04 | 3.46 |
δEu | 0.48 | 0.52 | 0.62 | 0.48 | 0.88 | 0.59 |
δCe | 1.01 | 0.97 | 0.93 | 0.89 | 0.91 | 0.94 |
Isotope | Sch−1 | Sch−2 | Sch−3 | Sch−4 | Sch−5 |
---|---|---|---|---|---|
Sr/10−6 | 42.17 | 15.29 | 221.63 | 541.99 | 13.58 |
Sm/10−6 | 12.08 | 12.94 | 14.50 | 1.58 | 6.05 |
Nd/10−6 | 37.11 | 43.9 | 49.36 | 6.09 | 25.23 |
Sm/Nd | 0.33 | 0.29 | 0.29 | 0.26 | 0.24 |
87Rb/86Sr | 0.00097 | 0.00149 | 0.00019 | 0.00003 | 0.00148 |
87Sr/86Sr | 0.71789 | 0.71920 | 0.71103 | 0.75407 | 0.71477 |
±2σ | 0.0006 | 0.0010 | 0.0001 | 0.0001 | 0.0001 |
147Sm/144Nd | 0.2092 | 0.2307 0.2059 | 0.1690 0.1778 | 0.4042 | 0.1614 |
0.2189 | |||||
0.2221 | |||||
±2σ | 0.0005 | 0.0011 | 0.0005 | 0.0239 | 0.0004 |
143Nd/144Nd | 0.51199 | 0.51196 0.51181 | 0.51168 0.51199 | 0.54555 | 0.51177 |
0.51147 | |||||
0.51190 | |||||
±2σ | 0.0003 | 0.0004 | 0.0004 | 0.0214 | 0.0005 |
εNd (0) | −12.64 | −13.23 −16.15 | −18.69 −12.64 | 641.95 | −16.93 |
−22.78 | |||||
−14.40 | |||||
εNd (t) | −10.77 | −10.27 −10.85 | −11.71 −11.51 | −6.21 | −11.89 |
−10.54 | |||||
−10.47 |
Four Group Effect | Sch−1 | Sch−2 | Sch−3 | Sch−4 | Sch−5 |
---|---|---|---|---|---|
CeN/Ce* | 1.12 | 1.02 | 0.92 | 1.67 | 0.94 |
PrN/Pr* | 1.16 | 1.06 | 0.96 | 2.49 | 1.06 |
TbN/Tb* | 1.11 | 0.99 | 0.88 | 1.05 | 0.92 |
DyN/Dy* | 1.13 | 1.03 | 1.01 | 0.78 | 1.08 |
TmN/Tm* | 1.01 | 1.01 | 1.09 | 1.18 | 0.82 |
YbN/Yb* | 1.09 | 1.06 | 1.14 | 1.39 | 0.95 |
T1 | 0.18 | 0.06 | 0.07 | 1.56 | 0.07 |
T3 | 0.13 | 0.03 | 0.06 | 0.25 | 0.15 |
t1 | 1.14 | 1.04 | 0.94 | 2.04 | 1.00 |
t3 | 1.12 | 1.01 | 0.94 | 0.91 | 0.99 |
TE1,3 | 1.13 | 1.02 | 0.94 | 1.36 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Shi, M.; Yuan, Y.; Ma, S.; Lu, H. Mineralogy and Geochemical Characteristics of Scheelite Deposit at Xuebaoding in Pingwu, Sichuan Province, China. Minerals 2024, 14, 38. https://doi.org/10.3390/min14010038
Cao Q, Shi M, Yuan Y, Ma S, Lu H. Mineralogy and Geochemical Characteristics of Scheelite Deposit at Xuebaoding in Pingwu, Sichuan Province, China. Minerals. 2024; 14(1):38. https://doi.org/10.3390/min14010038
Chicago/Turabian StyleCao, Qinyuan, Miao Shi, Ye Yuan, Shiyu Ma, and Haoyu Lu. 2024. "Mineralogy and Geochemical Characteristics of Scheelite Deposit at Xuebaoding in Pingwu, Sichuan Province, China" Minerals 14, no. 1: 38. https://doi.org/10.3390/min14010038
APA StyleCao, Q., Shi, M., Yuan, Y., Ma, S., & Lu, H. (2024). Mineralogy and Geochemical Characteristics of Scheelite Deposit at Xuebaoding in Pingwu, Sichuan Province, China. Minerals, 14(1), 38. https://doi.org/10.3390/min14010038