Comparative Study of the Characteristics of Lower Cambrian Marine Shale and Their Gas-Bearing Controlling Factors in the Middle and Lower Yangtze Areas, South China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples
3.2. Methods
4. Results
4.1. Total Organic Carbon (TOC) and Vitrinite Reflectance (Ro)
4.2. Carbon Isotope and Organic Matter Types
4.3. Mineralogy
4.4. Isothermal Adsorption
4.4.1. Nitrogen Isothermal Adsorption
4.4.2. Methane Isothermal Adsorption
4.5. Pore Types Identified by FE-SEM
5. Discussion
5.1. The Source of Silicon and Its Controlling Effect on the Quality of Early Cambrian Marine Shale
5.2. Reservoir Physical Property Differences and Its Control Factors
5.3. Differences in Shale Gas-Bearing Properties and Controlling Factors
5.4. The Influence of Tectonics and Magmatic Activity on the Preservation of Shale Gas
6. Conclusions
- (1)
- The organic carbon content of lower Cambrian marine shale in the Lower Yangtze area was markedly higher than that of the Middle Yangtze area, and the thermal evolution degree of organic matter in the Lower Yangtze area was higher than in the Middle Yangtze area.
- (2)
- The brittle mineral contents of lower Cambrian marine shales in the Middle and Lower Yangtze regions were more than 60%, and they all showed good fracturability. From NW to SE, the types of brittle minerals decreased while siliceous minerals increased. The early Paleozoic marine shale in the Lower Yangtze area had high silicon contents and low calcium contents.
- (3)
- The adsorption properties of lower Cambrian marine shale in the Lower Yangtze area were better than those in the Middle Yangtze area. However, micropores in the Middle Yangtze shale were more developed than in the Lower Yangtze, indicating that the degree of pore development was not the main factor controlling the adsorption properties of the lower Cambrian marine shale. However, the thermal evolution of organic matter was higher in the Lower Yangtze area, and thus, the proportion of aromatic components in organic matter was higher, and shale gas was therefore more easily absorbed. The particular molecular structure of kerogen caused by high thermal evolution was, therefore, an important factor that controlled the adsorption properties of lower Cambrian marine shale in the Middle and Lower Yangtze regions.
- (4)
- Strong tectonic deformation and frequent magmatic activity caused the integrity of the regional caprock and the sealing of the hydrocarbon generation system in the Lower Yangtze area to be much poorer than those in the Middle Yangtze area, and thus, the preservation conditions for shale gas were relatively poor. This was the main factor that restricted the accumulation and preservation of lower Cambrian shale gas in the Lower Yangtze area.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- John, B. Curtis1 Fractured Shale-Gas Systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- James, W. Schmoker1 Resource-Assessment Perspectives for Unconventional Gas Systems. AAPG Bull. 2002, 86, 1993–1999. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.H.; Zhang, M.; Hu, S.Y.; Liu, H.J. Conditions of Formation and Accumulation for Shale Gas. Nat. Gas Geosci. 2010, 21, 350–356. [Google Scholar]
- Zou, C.N.; Dong, D.Z.; Wang, S.J.; Li, J.Z.; Li, X.J.; Wang, Y.M.; Li, D.H.; Cheng, K.M. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Zou, C.; Zhai, G.; Zhang, G.; Wang, H.; Zhang, G.; Li, J.; Wang, Z.; Wen, Z.; Ma, F.; Liang, Y.; et al. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Pet. Explor. Dev. 2015, 42, 14–28. [Google Scholar] [CrossRef]
- Cai, X.Y.; Zhou, D.H.; Zhao, P.R.; Zhang, H.; Qian, K.R.; Wang, C.X. Development progress and outlook of deep and normal pressure shale gas of SINOPEC. Pet. Geol. Exp. 2023, 45, 1039–1049. [Google Scholar]
- Zhou, W.; Xu, H.; Yu, Q.; Xie, R.C.; Deng, K. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas. Lithol. Reserv. 2016, 28, 18–25. [Google Scholar]
- Dong, D.Z.; Cheng, K.M.; Wang, Y.M.; Li, X.J.; Wang, S.J.; Huang, J.L. Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China. Oil Gas Geol. 2010, 31, 288–299+308. [Google Scholar]
- Gao, P.; He, Z.; Lash, G.G.; Li, S.; Xiao, X.; Han, Y.; Zhang, R. Mixed Seawater and Hydrothermal Sources of Nodular Chert in Middle Permian Limestone on the Eastern Paleo-Tethys Margin (South China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 551, 109740. [Google Scholar] [CrossRef]
- Li, H.; Liu, A.; Luo, S.Y.; Chen, X.H.; Chen, L. Characteristics of the Cambrian Shuijingtuo shale reservoir on Yichang Slope, western Hubei Province: A case study of well EYY 1. Pet. Geol. Exp. 2019, 41, 76–82. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Jia, A.L.; Wei, Y.S.; Wang, J.L.; Zhu, H.Q. Progress in shale gas exploration in China and prospects for future development. China Pet. Explor. 2020, 25, 31–44. [Google Scholar]
- Wedepohl, K.H. Environmental Influences on the Chemical Composition of Shales and Clays. Phys. Chem. Earth 1971, 8, 307–333. [Google Scholar] [CrossRef]
- Adachi, M.; Yamamoto, K.; Sugisaki, R. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sediment. Geol. 1986, 47, 125–148. [Google Scholar] [CrossRef]
- Pan, J.P.; Qiao, D.W.; Li, S.Z.; Zhou, D.S.; Xu, L.F.; Zhang, M.Y.; Song, X.Y. Shale-gas geological conditions and exploration prospect of the Paleozoic marine strata in lower Yangtze area, China. Geol. Bull. China 2011, 30, 337–343. [Google Scholar]
- Zhang, Y.; Huang, D.J.; Zhang, L.L.; Wan, C.H.; Luo, H.; Shao, D.Y.; Meng, K.; Yan, J.P.; Zhang, T.W. Bio geni csilica of the lower Cambrian Shui jin gtuo Formation in Yichan g, western Hubei Province—Features and influence onshale gasaccumu. ation. Earth Sci. Front. 2023, 30, 83–100. [Google Scholar] [CrossRef]
- Tréguer, P.; Nelson, D.M.; Van Bennekom, A.J.; DeMaster, D.J.; Leynaert, A.; Quéguiner, B. The Silica Balance in the World Ocean: A Reestimate. Science 1995, 268, 375–379. [Google Scholar] [CrossRef]
- Siever, R. The Silica Cycle in the Precambrian. Geochim. Cosmochim. Acta 1992, 56, 3265–3272. [Google Scholar] [CrossRef]
- Steiner, M.; Wallis, E.; Erdtmann, B.-D.; Zhao, Y.; Yang, R. Submarine-Hydrothermal Exhalative Ore Layers in Black Shales from South China and Associated Fossils Ð Insights into a lower Cambrian Facies and Bio-Evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 169, 165–191. [Google Scholar] [CrossRef]
- Guo, Q.; Shields, G.A.; Liu, C.; Strauss, H.; Zhu, M.; Pi, D.; Goldberg, T.; Yang, X. Trace Element Chemostratigraphy of Two Ediacaran–Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the early Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 194–216. [Google Scholar] [CrossRef]
- Ramseyer, K.; Amthor, J.E.; Matter, A.; Pettke, T.; Wille, M.; Fallick, A.E. Primary Silica Precipitate at the Precambrian/Cambrian Boundary in the South Oman Salt Basin, Sultanate of Oman. Mar. Pet. Geol. 2013, 39, 187–197. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Holdaway, H.K.; Clayton, C.J. Preservation of Shell Microstructure in Silicified Brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geol. Mag. 1982, 119, 371–382. [Google Scholar] [CrossRef]
- Yamamoto, K. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sediment. Geol. 1987, 52, 65–108. [Google Scholar] [CrossRef]
- Zeng, Z.X. A Study on the Origin and Sedimentary Environment of Siliceous (Shale) Rocks from the Lower Cambrian Hetang Formation in Northwest Zhejiang Province. Master’s Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Xu, X.C.; Wang, W.J.; Xiong, Y.P.; Chu, P.L.; Fang, H.B.; Zhao, L.L. REE geochemical characteristics of the lower Cambrian black shale series in Shitai area, Anhui Province, and their geological significance. Acta Petrol. Mineral. 2009, 28, 118–128. [Google Scholar]
- Liu, T.L.; Jiang, Z.X.; Liu, W.W.; Zhang, K.; Xie, X.L.; Yin, L.S.; Huang, Y.Z. Effect of hydrothermal activity on the enrichment of sedimentary organic matter at early Cambrian in the Xiuwu Basin. Pet. Geol. Recovery Effic. 2018, 25, 68–76. [Google Scholar] [CrossRef]
- Zhu, W.B.; Zhang, X.H.; Qu, Z.D.; Huang, Z.Q.; Wang, X.Q.; Ding, D.L. REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and west Zhejiang, China. Mar. Geol. Quat. Geol. 2021, 41, 88–99. [Google Scholar] [CrossRef]
- Gao, P.; He, Z.; Lash, G.G.; Zhou, Q.; Xiao, X. Controls on Silica Enrichment of lower Cambrian Organic-Rich Shale Deposits. Mar. Pet. Geol. 2021, 130, 105126. [Google Scholar] [CrossRef]
- Milliken, K.L.; Esch, W.L.; Reed, R.M.; Zhang, T. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bull. 2012, 96, 1553–1578. [Google Scholar] [CrossRef]
- Pszonka, J.; Schulz, B. SEM Automated Mineralogy applied for the quantification of mineral and textural sorting in submarine sediment gravity flows. Gospod. Surowcami Miner. Miner. Resour. Manag. 2022, 38, 105–131. [Google Scholar] [CrossRef]
- Zhang, J.C.; Jin, Z.J.; Yuan, M.S. Reservoiring Mechanism of Shale Gas and its distribution. Nat. Gas Ind. 2004, 24, 15–18+131–132. [Google Scholar]
- He, J.; He, S.; Liu, Z.X.; Zhai, G.Y.; Wang, Y.; Han, Y.J.; Wan, K.; We, I.S.L. Pore structure and adsorption capacity of shale in the lower Cambrian Shuijingtuo Formation in the southern flank of Huangling anticline, western Hubei. Acta Pet. Sin. 2020, 41, 27–42. [Google Scholar]
- Zhang, S.Z. Comparison of Geological Conditions of lower Cambrian Shale Gas in the Middle and Lower Yangtze Region. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. [Google Scholar]
- Long, Y.K. Geological conditions for shale gas accumulation in the Niutitang Formation of the Central Yangtze River region. Jianghan. Pet. Sci. Technol. 2017, 27, 7–11. [Google Scholar]
- Gao, Y.; Mao, L.; Ma, R. Adsorption characteristics and its controlling factors of organic-rich shales with high thermal maturity. Sci. Technol. Eng. 2018, 18, 242–248. [Google Scholar]
- Wen, M. The Pore Structure Characteristics and Influencing Factors of Lower Paleozoic Marine Shale in the Northwest Jiangxi Region. Master’s Thesis, China University of Petroleum, Beijing, China, 2021. [Google Scholar]
- Guo, C.L.; Yang, S.; Wang, A.D.; Wang, Y.T.; Zhang, S.L.; Qi, X. Study on the lower Cambrian marine shale reservoir and methane adsorption characteristics in Xiuwu Basin. Nat. Gas Geosci. 2021, 32, 598–610. [Google Scholar]
- Luo, S.Y.; Chen, X.H.; Li, H.; Liu, A.; Wang, C.S. Shale Gas Accumulation Conditions and Target Optimization of lower Cambrian Shuijingtuo Formation in Yichang Area, West Hubei. Earth Sci. 2019, 44, 3598–3615. [Google Scholar]
- Li, H.; Liu, A.; Luo, S.Y.; Chen, X.H.; Chen, L. Pore structure characteristics and development control factors of Cambrian shale in the Yichang area, western Hubei. Pet. Geol. Recovery Effic. 2018, 25, 16–23. [Google Scholar] [CrossRef]
- Chen, X.H.; Wei, K.; Zhang, B.M.; Li, P.J.; Li, H.; Liu, A.; Luo, S.Y. Main geological factors controlling shale gas reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as well as its and enrichment patterns. Geol. China 2018, 45, 207–226. [Google Scholar]
- Zhu, W.B.; Zhang, X.H.; Wang, X.Q.; Qu, Z.D.; Huang, Z.Q.; Zhou, D.R. Geological characteristics and shale gas potential of lower Cambrian Hetang Formation in Lower Yangtze region: A case study of Jiangshan—Tonglu area, western Zhejiang province. Pet. Geol. Exp. 2020, 42, 477–488. [Google Scholar]
- Wang, K.M. Geological characteristics and controlling factors of shale gas accumulation of the lower Cambrian in the southern Anhui of Lower Yangtze area. China Pet. Explor. 2021, 26, 83–99. [Google Scholar]
- Shu, L.; Yao, J.; Wang, B.; Faure, M.; Charvet, J.; Chen, Y. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Sci. Rev. 2021, 216, 103596. [Google Scholar] [CrossRef]
- Mgimba, M.M.; Jiang, S.; Nyakilla, E.E.; Mwakipunda, G.C. Application of GMDH to Predict Pore Pressure from Well Logs Data: A Case Study from Southeast Sichuan Basin, China. Nat. Resour. Res. 2023, 32, 1711–1731. [Google Scholar] [CrossRef]
- Shu, L.S. An analysis of principal features of tectonic evolution in South China Block. Geol. Bull. China 2012, 31, 1035–1053. [Google Scholar]
- Veevers, J.J.; Walter, M.R.; Scheibner, E. Neoproterozoic Tectonics of Australia-Antarctica and Laurentia and the 560 Ma Birth of the Pacific Ocean Reflect the 400 M.Y. Pangean Supercycle. J. Geol. 1997, 105, 225–242. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Wu, R.-X.; Wu, Y.-B.; Zhang, S.-B.; Yuan, H.; Wu, F.-Y. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Res. 2008, 163, 351–383. [Google Scholar] [CrossRef]
- Wang, J. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Res. 2003, 122, 141–158. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, F.Y.; Yin, Y.L. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze Region. Mar. Geol. Quat. Geol. 2018, 38, 85–95. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Planavsky, N.J.; Kendall, B.; Wang, X.; Shi, X.; Scott, C.; Anbar, A.D.; Lyons, T.W.; Jiang, G. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature 2012, 489, 546–549. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, R.; Chen, D.; Fu, Y.; Wang, J.; Guo, Z.; Guo, C. Climatic-Oceanic Forcing on the Organic Accumulation across the Shelf during the early Cambrian (Age 2 through 3) in the Mid-Upper Yangtze Block, NE Guizhou, South China. J. Asian Earth Sci. 2017, 134, 365–386. [Google Scholar] [CrossRef]
- Wang, H.Z. Early Cambrian Paleogeographic Map of China. In Atlas of Ancient Chinese Geography; Beijing Cartography Publishing House: Beijing, China, 1985; pp. 25–26. [Google Scholar]
- Feng, Z.S.; Peng, Y.M.; Jin, Z.K.; Jiang, P.L.; Bao, Z.D.; Luo, Z.; Ju, T.Y.; Tian, H.Q.; Wang, H. Cambrian lithofacies and paleogeography in southern China. J. Palaeogeogr. 2001, 3, 1–14+98–101. [Google Scholar]
- Jiao, P.; Guo, J.H.; Wang, X.K.; Liu, C.S.; Guo, X.W.; Huang, Y.R.; Liu, B. Characteristics and significance of petrological-mineralogical of lower Cambrian Niutitang formation shale gas reservoir in Northwest Hunan. J. Cent. South Univ. Sci. Technol. 2018, 49, 1447–1458. [Google Scholar]
- Liu, Z.; Xu, L.; Wen, Y.; Zhang, Y.; Luo, F.; Duan, K.; Chen, W.; Zhou, X.; Wen, J. Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei. Eart. Scie. 2022, 47, 1586. [Google Scholar] [CrossRef]
- Wang, H. The influence of sample dissolution time in total organic carbon analysis results of the sedimentary rocks. Petrochem. Ind. Appl. 2015, 34, 87–92. [Google Scholar]
- Liu, Z.; Algeo, T.J.; Guo, X.; Fan, J.; Du, X.; Lu, Y. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 59–76. [Google Scholar] [CrossRef]
- Qiu, X.S.; Hu, M.Y.; Hu, Z.G. Lithofacies palaeogeographic characteristics and reservoir-forming conditions of shale gas of lower Cambrian in middle Yangtze region. J. Cent. South Univ. Sci. Technol. 2014, 45, 3174–3185. [Google Scholar]
- Lin, T.; Zhang, J.C.; Li, B.; Yang, S.Y.; He, W.; Tang, X.; Ma, L.R.; Pei, S.W. Shale gas accumulation conditions and gas-bearing properties of the lower Cambrian Niutitang Formation in Well Changye 1, northwestern Hunan. Acta Pet. Sin. 2014, 35, 839–846. [Google Scholar]
- Liu, Z.B.; Wang, P.W.; Nie, H.K.; Li, P.; Li, Q.W. Enrichment conditions and favorable prospecting targets of Cambrian shale gas in Middle-Upper Yangtze. J. Cent. South Univ. Sci. Technol. 2022, 53, 3694–3707. [Google Scholar]
- Luo, S.Y.; Chen, X.H.; Liu, A.; Li, H. Geochemical features and genesis of shale gas from the lower Cambrian Shuijingtuo Formation shale in Yichang block, Middle Yangtze region. Oil Gas Geol. 2019, 40, 999–1010. [Google Scholar]
- Wu, S.; Hu, Z.G.; Qiu, X.S.; Li, S.L.; Li, H.D.; Liu, S.F. Mineral Composition and Its Significance of Organic Shale of the lower Cambrian Niutitang Formation in Tongshan Area, Eastern Hubei. Sci. Technol. Eng. 2020, 20, 11867–11874. [Google Scholar]
- Liu, S.G.; Xie, G.L.; Yang, J.H. Formation Conditions of Shale Gas in Wangyinpu Formation of Jiurui Block in Northwest Jiangxi Province. Spec. Oil Gas Reserv. 2015, 22, 8–11+151. [Google Scholar]
- Xia, X.J.; Hu, X.J.; Wang, C.Y. Shale Gas Accumulation Condition and Potential in lower Cambrian in Northwestern Jiangxi. Spec. Oil Gas Reserv. 2013, 20, 35–39+142. [Google Scholar]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Huang, Y.R.; Xiao, Z.H.; Jiao, P.; Qin, M.Y.; Yu, Y.; Wang, X.K.; Cao, T.T. Comparison of factors for shale gas accumulation in Niutitang formation wells in northwestern Hunan and its implications. J. Cent. South Univ. Sci. Technol. 2018, 49, 2240–2248. [Google Scholar]
- Guo, C.L.; Yang, S.; Wang, A.D.; Zhang, S.L.; Qi, X. Pore Characteristics of Marine Shale in lower Cambrian Hetang Formation in Xiuwu Basin. Xinjiang Pet. Geol. 2020, 41, 550–556. [Google Scholar]
- Chen, Y.Q.; Guo, E.P.; Qi, Y.D. Amethod for determining Langmuir′s volume and Langmuir′s pressure. Fault-Block Oil Gas Field 2015, 22, 67–69. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Marc Bustin, R. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Behar, F.; Vandenbroucke, M. Chemical Modelling of Kerogens. Org. Geochem. 1987, 11, 15–24. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. Lower Cretaceous Gas Shales in Northeastern British Columbia, Part II: Evaluation of Regional Potential Gas Resources. Bull. Can. Pet. Geol. 2008, 56, 22–61. [Google Scholar] [CrossRef]
- James, W. Schmoker (2) Determination of Organic-Matter Content of Appalachian Devonian Shales from Gamma-Ray Logs. AAPG Bull. 1981, 65, 1285–1298. [Google Scholar] [CrossRef]
- Bowker, K.A. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bull. 2007, 91, 523–533. [Google Scholar] [CrossRef]
- Milliken, K.L.; Curtis, M.E. Imaging Pores in Sedimentary Rocks: Foundation of Porosity Prediction. Mar. Pet. Geol. 2016, 73, 590–608. [Google Scholar] [CrossRef]
- Soeder, D.J. The Successful Development of Gas and Oil Resources from Shales in North America. J. Pet. Sci. Eng. 2018, 163, 399–420. [Google Scholar] [CrossRef]
- Nie, H.K.; Tang, X.; Bian, R.K. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China. Acta Pet. Sin. 2009, 30, 484–491. [Google Scholar]
- Meyer, M.J.; Donovan, A.D.; Pope, M.C. Depositional Environment and Source Rock Quality of the Woodbine and Eagle Ford Groups, Southern East Texas (Brazos) Basin: An Integrated Geochemical, Sequence Stratigraphic, and Petrographic Approach. AAPG Bull. 2021, 105, 809–843. [Google Scholar] [CrossRef]
- Wilson, M.J.; Wilson, L.; Shaldybin, M.V. The Importance of Illitic Minerals in Shale Instability and in Unconventional Hydrocarbon Reservoirs. Geol. Soc. Lond. Spec. Publ. 2017, 454, 253–269. [Google Scholar] [CrossRef]
- Li, X.J.; Lv, Z.G.; Dong, D.Z.; Cheng, K.M. Geologic controls on accumulation of shale gas in North America. Nat. Gas Ind. 2009, 29, 27–32+135–136. [Google Scholar]
- Fu, L.; Chen, Q.L.; Pan, J.Y.; Li, S.R. The reservoir charcteristics of over-mature marine shale in the lower Yangzte plate: Taking the bottom lower Cambrian Hetang formation in the Xiuwu Basin as an instance. Sci. Technol. Eng. 2017, 17, 44–50. [Google Scholar]
- Yao, H.S.; He, X.P.; Wang, K.M. Geochemical characteristics and significance of the shale of lower Cambrian Hetang Formation in the southern Anhui Province of Lower Yangtze area. Mar. Geol. Front. 2022, 38, 32–41. [Google Scholar] [CrossRef]
- Zhu, D.; Lu, L.; Wei, J.Q.; Wang, F.; Gu, B.Y.; Pan, S.Y. Study of Vanadium in early Cambrian Black Shales—A Case Study of the Tongshan Mine, South China. Resour. Environ. Eng. 2018, 32, 473–480. [Google Scholar] [CrossRef]
- Wu, Y.P.; Liu, C.L.; Gong, H.W.; Liu, Y.J.; Sarwar, A.R.; Yang, H.; Zeng, X.X. Geochemical characteristics and sedimentary tectonic setting of the lower Cambrian Niutitang Formation in western Hunan Province. Geol. Explor. 2021, 57, 1065–1076. [Google Scholar]
- Dong, T.; He, S.; Chen, M.; Hou, Y.; Guo, X.; Wei, C.; Han, Y.; Yang, R. Quartz Types and Origins in the Paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for Porosity Preservation in Shale Reservoirs. Mar. Pet. Geol. 2019, 106, 62–73. [Google Scholar] [CrossRef]
- Xi, Z.; Tang, S.; Zhang, S.; Yi, Y.; Dang, F.; Ye, Y. Characterization of Quartz in the Wufeng Formation in Northwest Hunan Province, South China and Its Implications for Reservoir Quality. J. Pet. Sci. Eng. 2019, 179, 979–996. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Jiang, S.; Jiang, Z.; Wen, M.; Jia, C.; Song, Y.; Liu, W.; Huang, Y.; Xie, X.; et al. Comparative Analysis of the Siliceous Source and Organic Matter Enrichment Mechanism of the Upper Ordovician–Lower Silurian Shale in the Upper-Lower Yangtze Area. Minerals 2018, 8, 283. [Google Scholar] [CrossRef]
- Korzhinsky, M.A.; Tkachenko, S.I.; Shmulovich, K.I.; Taran, Y.A.; Steinberg, G.S. Discovery of a Pure Rhenium Mineral at Kudriavy Volcano. Nature 1994, 369, 51–52. [Google Scholar] [CrossRef]
- Koschinsky, A.; Seifert, R.; Halbach, P.; Bau, M.; Brasse, S.; De Carvalho, L.M.; Fonseca, N.M. Geochemistry of Diffuse Low-Temperature Hydrothermal Fluids in the North Fiji Basin. Geochim. Cosmochim. Acta 2002, 66, 1409–1427. [Google Scholar] [CrossRef]
- Mark, L.; Caplan, R. MARC BUSTIN Factors Governing Organic Matter Accumulation and Preservation in a Marine Petroleum Source Rock from the Upper Devonian to Lower Carboniferous Exshaw Formation, Albert. Bull. Can. Pet. Geol. 1996, 40, 474–494. [Google Scholar]
- Wan, T.F. Chinese Geotectonics; Geological Publishing House: Beijing, China, 2011. [Google Scholar]
- Cai, Z.R.; Xia, B.; Huang, Q.T.; Wan, Z.F. Comparative Study of the Tectonic Setting on the Formation and Preservation of Paleozoic Shale Gas between the Upper Yangtze and the Lower Yangtze Platforms. Nat. Gas Geosci. 2015, 26, 1446–1454. [Google Scholar]
- Teng, G.E.; Lu, L.F.; Yu, L.J.; Zhang, W.T.; Pan, A.Y.; Shen, B.J.; Wang, Y.; Yang, Y.F.; Gao, Z.W. Formation, preservation and connectivity control of organic pores in shale. Pet. Explor. Dev. 2021, 48, 687–699. [Google Scholar]
- Hu, D.; Zhang, H.; Ni, K.; Yu, G. Preservation Conditions for Marine Shale Gas at the Southeastern Margin of the Sichuan Basin and Their Controlling Factors. Nat. Gas Ind. B 2014, 1, 178–184. [Google Scholar] [CrossRef]
- Ingram, G.M.; Urai, J.L. Top-Seal Leakage through Faults and Fractures: The Role of Mudrock Properties. Geol. Soc. Lond. Spec. Publ. 1999, 158, 125–135. [Google Scholar] [CrossRef]
- Wong, T.; Baud, P. The Brittle-Ductile Transition in Porous Rock: A Review. J. Struct. Geol. 2012, 44, 25–53. [Google Scholar] [CrossRef]
- Fu, C.Q.; Zhu, Y.M.; Chen, S.B. Pore structure and fractal features of Hetang Formation shale in western Zhejiang. J. China Univ. Min. Technol. 2016, 45, 77–86. [Google Scholar] [CrossRef]
- Cao, Q.G.; Cao, T.T.; Liu, G.X.; Song, Z.G.; Song, S.; Wang, S.B. Microscopic Pore Characteristics and Methane Sorption Capacity of the lower Cambrian Shales in Yangtze Platform. Bull. Mineral. Petrol. Geochem. 2016, 35, 1298–1309. [Google Scholar]
- Zeng, W.T.; Ding, W.L.; Zhang, J.C.; Li, Y.X.; Wang, R.Y.; Jiu, K. Analyses of the characteristics and main controlling factors for the micro/nanopores in Niutitang shale from China’s southeastern Chongqing and northern Guizhou region. Earth Sci. Front. 2019, 26, 220–235. [Google Scholar] [CrossRef]
- Xiong, Q.; Peng, Y.; Tang, Y.J.; Chen, T.Y.; Mao, Y.H. Shale gas adsorption characteristics and influencing factors of Taiyuan Formation in Eastern Ordos Basin. Geol. Surv. China 2019, 6, 51–57. [Google Scholar] [CrossRef]
- Wang, R.; Sang, S.; Zhu, D.; Liu, S.; Yu, K. Pore Characteristics and Controlling Factors of the lower Cambrian Hetang Formation Shale in Northeast Jiangxi, China. Energy Explor. Exploit. 2018, 36, 43–65. [Google Scholar] [CrossRef]
- Guo, X.S. Rules of Two-Factor Enrichiment for Marine Shale Gas in Southern China—Understanding from theLongmaxi Formation Shale Gas in Sichuan Basin and its surrounding area. Acta Geol. Sin. 2014, 88, 1209–1218. [Google Scholar] [CrossRef]
- Cai, L.X.; Xiao, G.L.; Guo, X.W.; Wang, J.; Wu, Z.Q.; Li, B.G. Characteristics of Lower Silurian Hydrocarbon Source Rocks and their main controlling factors in the South Yellow Sea Basin based on Land-Ocean comparison in the Lower Yangtze region. J. Jilin Univ. Earth Sci. Ed. 2019, 49, 39–52. [Google Scholar] [CrossRef]
- Zhai, G.Y.; Bao, S.J.; Wang, Y.F.; Chen, K.; Wang, S.J.; Zhou, Z.; Song, T.; Li, H.H. Reservoir Accumulation Model at the Edge of Palaeohigh and Significant Discovery of Shale Gas in Yichang Area, Hubei Province. Acta Geosci. Sin. 2017, 38, 441–447. [Google Scholar]
- Shen, C.B.; Mei, L.F.; Liu, Z.Q.; Xu, S.H. Apatite and zircon fission track data, evidences for the mesozoic-cenozoic uplift of Huangling Dome, Central China. Miner. Pet. 2009, 29, 54–60. [Google Scholar] [CrossRef]
- Zhai, G.Y.; Wang, Y.F.; Liu, G.H.; Lu, Y.C.; He, S.; Zhou, Z.; Li, J.; Zhang, Y.X. Accumulation model of the Sinian-Cambrian shale gas in western Hubei Province, China. J. Geomech. 2020, 26, 696–713. [Google Scholar]
- Shkolin, A.V.; Fomkin, A.A. Deformation of AUK Microporous Carbon Adsorbent Induced by Methane Adsorption. Colloid. J. 2009, 71, 119–124. [Google Scholar] [CrossRef]
- Zhang, J.C.; Li, Z.; Wang, D.S.; Xu, L.F.; Li, Z.M.; Niu, J.L.; Chen, L.; Sun, Y.H.; Li, Q.C.; Yang, Z.K.; et al. Shale gas accumulation patterns in China. Nat. Gas Ind. 2022, 42, 78–95. [Google Scholar] [CrossRef]
- Fernando De Ros, L. Heterogeneous Generation and Evolution of Diagenetic Quartzarenites in the Silurian-Devonian Furnas Formation of the Paraná Basin, Southern Brazil. Sediment. Geol. 1998, 116, 99–128. [Google Scholar] [CrossRef]
- Einsele, G.; Gieskes, J.M.; Curray, J.; Moore, D.M.; Aguayo, E.; Aubry, M.-P.; Fornari, D.; Guerrero, J.; Kastner, M.; Kelts, K.; et al. Intrusion of Basaltic Sills into Highly Porous Sediments, and Resulting Hydrothermal Activity. Nature 1980, 283, 441–445. [Google Scholar] [CrossRef]
- Othman, R.; Arouri, K.R.; Ward, C.R.; McKirdy, D.M. Oil Generation by Igneous Intrusions in the Northern Gunnedah Basin, Australia. Org. Geochem. 2001, 32, 1219–1232. [Google Scholar] [CrossRef]
- He, Z.; Nie, H.; Li, S.; Luo, J.; Wang, H.; Zhang, G. Differential Enrichment of Shale Gas in Upper Ordovician and Lower Silurian Controlled by the Plate Tectonics of the Middle-Upper Yangtze, South China. Mar. Pet. Geol. 2020, 118, 104357. [Google Scholar] [CrossRef]
- Meng, F.Y.; Chen, K.; Bao, S.J.; Li, H.H.; Zhang, C.; Wang, J.Z. Gas-bearing property and main controlling factors of lower Cambrian shale in complex tectonic area of northwestern Hunan province: A case of well Ciye 1. Lithol. Reserv. 2018, 30, 29–39. [Google Scholar]
- Zhang, F.Y. Lower Yangtze Region lower Cambrian Series Source Rock Geochemical Features Analysis. Coal Geol. China 2018, 30, 36–42. [Google Scholar] [CrossRef]
- Liu, Z.P.; Xu, W.; Wang, J.T.; Wang, Y.G.; Zhou, C.T. Analysis of geological conditions of gas formation in the Low Yangtze Area in early Cambrian. Geol. Anhui 2015, 25, 111–114+118. [Google Scholar]
- Shao, W.; Huang, Z.Q.; Li, J.Q.; Zhou, D.R. Shale gas reservoir-forming conditions and exploration prospecting in the Cambrian Hetang Formation of southwestern Zhejiang and northeastern Jiangxi Province. Geol. China 2022, 49, 1262–1274. [Google Scholar]
Region | Section | Formation | Physical Characteristics of Shale Reservoirs | Data Sources | ||
---|---|---|---|---|---|---|
BJH Total Pore Volume/(cm3·g−1) | BET Specific Surface Area/(m2·g−1) | BJH Average Pore Diameter/(nm) | ||||
Middle Yangtze | WD-1 | Shuijingtuo | 0.007~0.044/0.017 * | 5.94~25.72/11.08 | 5.42~7.86/6.85 | [43] |
WD-2 | Shuijingtuo | 0.011~0.039/0.021 | 10.67~19.8/14.75 | 6.14~7.71/7.07 | [43] | |
HY-1 | Suijingtuo | 0.001~0.020/0.008 | 0.80~27.54/8.11 | 3.84~8.80/5.32 | [71] | |
Lower Yangtze | XC | Hetang | 0.006~0.010/0.008 | 2.15~8.89/5.65 | 4.21~14.3/7.63 | [39] |
XY-1 | Hetang | 0.006~0.012 | 4.30~7.50 | No data | [46] | |
DT | Hetang | 0.012~0.015/0.013 | 3.62~4.69/4.16 | 13.07~13.78/13.43 | This study | |
LY | Hetang | 0.011~0.014/0.013 | 2.67~3.98/3.33 | 14.68~20.28/17.48 | This study | |
FC | Hetang | 0.012~0.015/0.014 | 3.62~5.95/4.79 | 9.01~13.07/11.04 | This study | |
XY-1 | Wangyinpu | 0.014 | 4.66 | 10.98 | This study | |
RDZ01 | Wangyinpu | 0.005~0.018/0.008 | 1.84~9.19/5.23 | 4.76~21.21/9.63 | [72] |
Region | Sample | TOC (%) | VL (m3/t) | Region | Sample | TOC (%) | VL (m3/t) |
---|---|---|---|---|---|---|---|
Middle Yangtze | ZZK-1 | 0.58 | 1.16 | Lower Yangtze | LWD-1 | 2.49 | 2.86 |
ZZK-2 | 1.73 | 1.84 | AR-1 | 1.19 | 1.22 | ||
MR-1 | 0.81 | 2.77 | YZJ-1 | 3.98 | 4.47 | ||
MR-2 | 1.49 | 1.72 | YZJ-2 | 5.37 | 5.69 | ||
XLC-1 | 0.88 | 1.74 | FC-1 | 0.09 | 0.62 | ||
XLC-2 | 1.02 | 2.00 | FC-2 | 7.35 | 8.6 | ||
XLC-3 | 1.65 | 1.89 | DT-1 | 0.24 | 0.5 | ||
MXK-1 | 0.97 | 2.03 | DT-2 | 0.09 | 0.92 | ||
MXK-2 | 13.13 | 8.19 | DT-3 | 3.03 | 4.06 | ||
JSL-1 | 1.36 | 1.72 | DT-4 | 2.01 | 2.03 | ||
JSL-2 | 2.36 | 2.47 | LY-1 | 14.3 | 15.95 | ||
JSL-3 | 1.54 | 2.46 | LY-2 | 5.26 | 6.65 | ||
WJP-1 | 1.45 | 2.01 | LY-3 | 8.94 | 16.87 | ||
WJP-2 | 2.99 | 2.90 | |||||
SFJ-1 | 10.96 | 6.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Zhou, D.; Deng, Z.; Huang, X. Comparative Study of the Characteristics of Lower Cambrian Marine Shale and Their Gas-Bearing Controlling Factors in the Middle and Lower Yangtze Areas, South China. Minerals 2024, 14, 31. https://doi.org/10.3390/min14010031
Dong H, Zhou D, Deng Z, Huang X. Comparative Study of the Characteristics of Lower Cambrian Marine Shale and Their Gas-Bearing Controlling Factors in the Middle and Lower Yangtze Areas, South China. Minerals. 2024; 14(1):31. https://doi.org/10.3390/min14010031
Chicago/Turabian StyleDong, Hezheng, Dongsheng Zhou, Ziyan Deng, and Xiaowei Huang. 2024. "Comparative Study of the Characteristics of Lower Cambrian Marine Shale and Their Gas-Bearing Controlling Factors in the Middle and Lower Yangtze Areas, South China" Minerals 14, no. 1: 31. https://doi.org/10.3390/min14010031
APA StyleDong, H., Zhou, D., Deng, Z., & Huang, X. (2024). Comparative Study of the Characteristics of Lower Cambrian Marine Shale and Their Gas-Bearing Controlling Factors in the Middle and Lower Yangtze Areas, South China. Minerals, 14(1), 31. https://doi.org/10.3390/min14010031