Early Triassic S-Type Granitoids in the Qinzhou Bay Area, South China: Petrogenesis and Tectonic Implications
Abstract
:1. Introduction
2. Geological Background and Sampling
3. Analytical Methods
4. Results
4.1. Zircon U–Pb Geochronology and Trace Elements
4.2. Zircon Hf Isotopes
4.3. Whole-Rock Major and Trace Elements
Plutons | Jiuzhou Granodiorite | Dasi Granite Porphyry | Taima Granite Porphyry | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample No. | GX18 | GX19 | GX25 | GX44 | GX35 | GX36 | GX39 | GX41 | GX45 |
SiO2 | 66.67 | 67.24 | 64.02 | 67.50 | 68.99 | 69.24 | 72.54 | 72.26 | 72.26 |
TiO2 | 0.81 | 0.85 | 1.12 | 0.79 | 0.72 | 0.67 | 0.39 | 0.37 | 0.39 |
Al2O3 | 13.95 | 14.18 | 14.01 | 14.13 | 14.03 | 14.14 | 13.90 | 14.42 | 14.18 |
Fe2O3T | 5.76 | 6.04 | 7.28 | 5.77 | 4.89 | 4.63 | 2.68 | 2.35 | 2.68 |
MnO | 0.08 | 0.08 | 0.09 | 0.10 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 |
MgO | 1.86 | 1.84 | 2.15 | 1.81 | 1.44 | 1.34 | 0.72 | 0.60 | 0.64 |
CaO | 2.77 | 3.11 | 3.51 | 3.25 | 2.91 | 2.81 | 1.93 | 2.33 | 1.61 |
Na2O | 1.73 | 1.84 | 1.90 | 1.61 | 2.15 | 1.96 | 2.18 | 2.21 | 1.98 |
K2O | 3.79 | 3.82 | 3.32 | 3.99 | 4.05 | 4.23 | 4.91 | 4.91 | 5.43 |
P2O5 | 0.16 | 0.16 | 0.12 | 0.16 | 0.16 | 0.15 | 0.14 | 0.14 | 0.14 |
LOI | 1.36 | 0.77 | 0.98 | 0.00 | 0.32 | 0.63 | 0.28 | 0.09 | 0.16 |
Total | 98.94 | 99.95 | 98.51 | 99.11 | 99.72 | 99.85 | 99.72 | 99.71 | 99.49 |
A/NK | 2.01 | 1.98 | 2.09 | 2.02 | 1.77 | 1.81 | 1.56 | 1.61 | 1.55 |
A/CNK | 1.16 | 1.11 | 1.07 | 1.09 | 1.06 | 1.09 | 1.12 | 1.09 | 1.17 |
V | 92.5 | 94.2 | 68.3 | 100 | 68.9 | 61.8 | 24.5 | 23.6 | 26.9 |
Co | 32.0 | 52.4 | 62.0 | 45.9 | 22.9 | 33.5 | 15.6 | 19.3 | 29.8 |
Ni | 32.8 | 40.3 | 30.1 | 66.2 | 16.6 | 21.2 | 4.97 | 6.24 | 102 |
Ga | 27.2 | 33.4 | 28.7 | 41.3 | 31.1 | 31.1 | 28.4 | 31.2 | 32.4 |
Rb | 184 | 171 | 189 | 160 | 190 | 174 | 181 | 195 | 225 |
Sr | 127 | 156 | 138 | 153 | 121 | 117 | 100 | 124 | 90.6 |
Y | 39.1 | 40.0 | 37.9 | 36.3 | 41.2 | 36.9 | 36.6 | 36.7 | 43.5 |
Zr | 284 | 272 | 218 | 429 | 305 | 268 | 204 | 200 | 214 |
Nb | 16.2 | 16.0 | 14.4 | 19.8 | 15.8 | 14.0 | 10.5 | 10.5 | 11.9 |
Cs | 13.7 | 10.0 | 11.8 | 9.49 | 7.67 | 8.36 | 11.4 | 10.8 | 15.1 |
Ba | 590 | 788 | 670 | 1039 | 734 | 739 | 686 | 762 | 747 |
La | 54.8 | 56.7 | 41.2 | 70.0 | 55.7 | 52.9 | 40.1 | 44.8 | 38.5 |
Ce | 99.0 | 102 | 74.5 | 137 | 101 | 93.9 | 72.0 | 79.5 | 72.5 |
Pr | 12.3 | 12.6 | 9.35 | 17.0 | 12.4 | 11.8 | 9.21 | 10.1 | 10.1 |
Nd | 45.4 | 46.1 | 34.9 | 62.9 | 45.8 | 43.8 | 33.9 | 37.3 | 37.3 |
Sm | 8.95 | 8.92 | 7.23 | 11.0 | 9.02 | 8.56 | 6.94 | 7.44 | 7.99 |
Eu | 1.33 | 1.57 | 1.30 | 1.84 | 1.37 | 1.38 | 1.13 | 1.25 | 1.26 |
Gd | 8.21 | 8.29 | 7.01 | 9.66 | 8.37 | 7.80 | 6.71 | 7.19 | 8.06 |
Tb | 1.19 | 1.21 | 1.07 | 1.25 | 1.24 | 1.16 | 1.08 | 1.12 | 1.32 |
Dy | 6.87 | 7.04 | 6.56 | 6.64 | 7.29 | 6.76 | 6.46 | 6.65 | 8.21 |
Ho | 1.36 | 1.41 | 1.31 | 1.29 | 1.47 | 1.33 | 1.28 | 1.31 | 1.68 |
Er | 3.85 | 3.88 | 3.66 | 3.68 | 4.08 | 3.70 | 3.63 | 3.71 | 4.78 |
Tm | 0.59 | 0.60 | 0.55 | 0.56 | 0.62 | 0.55 | 0.53 | 0.54 | 0.70 |
Yb | 3.73 | 3.87 | 3.54 | 3.72 | 3.79 | 3.47 | 3.31 | 3.36 | 4.33 |
Lu | 0.57 | 0.57 | 0.53 | 0.59 | 0.56 | 0.50 | 0.47 | 0.48 | 0.60 |
Hf | 7.68 | 7.31 | 6.05 | 11.5 | 8.21 | 7.36 | 5.67 | 5.60 | 6.17 |
Ta | 1.27 | 1.41 | 1.46 | 1.48 | 1.21 | 1.34 | 0.99 | 1.03 | 1.31 |
Pb | 30.0 | 31.6 | 35.0 | 28.7 | 31.6 | 29.7 | 30.5 | 32.7 | 30.4 |
Th | 25.8 | 25.9 | 18.1 | 36.0 | 25.3 | 25.9 | 22.3 | 25.0 | 24.4 |
U | 4.41 | 4.08 | 4.86 | 3.58 | 4.48 | 4.01 | 4.09 | 4.59 | 4.95 |
Eu/Eu* | 0.47 | 0.56 | 0.55 | 0.54 | 0.48 | 0.51 | 0.50 | 0.52 | 0.48 |
ΣREE | 248 | 254 | 193 | 327 | 253 | 238 | 187 | 205 | 197 |
5. Discussion
5.1. Genetic Relationship with the Coeval Silicic Volcanic Rocks
5.2. Petrogenesis of the Granitoids and Mantle-Derived Contribution
5.3. Implications for Paleo-Tethys Geodynamic Evolution
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Li, X.-H.; Li, W.-X.; Li, Z.-X.; Lo, C.-H.; Wang, J.; Ye, M.-F.; Yang, Y.-H. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res. 2009, 174, 117–128. [Google Scholar] [CrossRef]
- Faure, M.; Lin, W.; Chu, Y.; Lepvrier, C. Triassic tectonics of the southern margin of the South China Block. Comptes Rendus Geosci. 2016, 348, 5–14. [Google Scholar] [CrossRef]
- Liu, J.-X.; Wang, S.; Wang, X.-L.; Du, D.-H.; Xing, G.-F.; Fu, J.-M.; Chen, X.; Sun, Z.-M. Refining the spatio-temporal distributions of Mesozoic granitoids and volcanic rocks in SE China. J. Asian Earth Sci. 2020, 201, 104503. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, T.; Shen, W.; Shu, L.; Niu, Y. Petrogenesis of Mesozoic granitoids and volcanic rocks in south China: A response to tectonic evolution. Epis. J. Int. Geosci. 2006, 29, 26–33. [Google Scholar] [CrossRef]
- Li, Z.-X.; Li, X.-H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Zhu, K.-Y.; Li, Z.-X.; Xu, X.-S.; Wilde, S.A.; Chen, H.-L. Early Mesozoic ferroan (A-type) and magnesian granitoids in eastern South China: Tracing the influence of flat-slab subduction at the western Pacific margin. Lithos 2016, 240–243, 371–381. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.; Li, C.; Qin, X.; Li, H. Crustal evolution of the Shiwandashan area in South China: Zircon U-Pb-Hf isotopic records from granulite enclaves in Indo-Sinian granites. Chin. Sci. Bull. 2010, 55, 2028–2038. [Google Scholar] [CrossRef]
- Chen, C.-H.; Hsieh, P.-S.; Lee, C.-Y.; Zhou, H.-W. Two episodes of the Indosinian thermal event on the South China Block: Constraints from LA-ICPMS U–Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite. Gondwana Res. 2011, 19, 1008–1023. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.; Li, C.; Zhao, L.; Li, H.; Yang, J. Multi-stage crust–mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong–Fujian provinces. Lithos 2012, 150, 62–84. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Yang, J.-H.; Chen, J.-Y.; Wu, F.-Y.; Wilde, S.A. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China: A crystal mush origin with mantle input. Lithos 2018, 296–299, 482–495. [Google Scholar] [CrossRef]
- Shen, L.; Yu, J.-H.; O’Reilly, S.Y.; Griffin, W.L.; Zhou, X. Subduction-related middle Permian to early Triassic magmatism in central Hainan Island, South China. Lithos 2018, 318–319, 158–175. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, G.W.; Zhang, Y.H. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Li, X.-H. In situ zircon U–Pb and Hf–O isotopic results for ca. 73 Ma granite in Hainan Island: Implications for the termination of an Andean-type active continental margin in southeast China. J. Asian Earth Sci. 2014, 82, 32–46. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.-F.; Zhao, Z.-F. Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth-Sci. Rev. 2017, 173, 266–294. [Google Scholar] [CrossRef]
- Zhao, K.; Xu, X.; Erdmann, S.; Liu, L.; Xia, Y. Rapid migration of a magma source from mid- to deep-crustal levels: Insights from restitic granulite enclaves and anatectic granite. GSA Bull. 2017, 129, 1708–1725. [Google Scholar] [CrossRef]
- Fan, W.M.; Wang, Y.J.; Zhang, A.M.; Zhang, F.F.; Zhang, Y.Z. Permian arc–back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos 2010, 119, 553–568. [Google Scholar] [CrossRef]
- Jiao, S.-J.; Li, X.-H.; Huang, H.-Q.; Deng, X.-G. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China. Lithos 2015, 239, 217–233. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.; Li, C.; Qin, X.; Li, H. Origin of the granulite enclaves in Indo-Sinian peraluminous granites, South China and its implication for crustal anatexis. Lithos 2012, 150, 209–226. [Google Scholar] [CrossRef]
- Qin, X.F.; Wang, Z.Q.; Zhang, Y.L.; Pan, L.Z.; Hu, G.A.; Zhou, F.S. Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi: Constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou joint belt. Acta Petrol. Sin. 2011, 27, 794–808, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.; Liu, L.; Zhao, Z.; Liu, X.; Huang, W. Early Triassic silicic volcanic rocks of South China: Petrogenesis and constraints on the geodynamic evolution of the paleo-Tethys Ocean region. Acta Geol. Sin. 2023, in press. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Zou, X.; Jiang, J.; Qin, K.; Zhang, Y.; Yang, W.; Li, X. Progress in the principle and application of zircon trace element. Acta Petrol. Sin. 2021, 37, 985–999, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Trail, D.; Bruce Watson, E.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Et Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Qi, C.S.; Deng, X.; Li, X.H.; Li, W.-X.; Yang, Y.; Xie, L. Origin of the Darongshan-Shiwandashan S-type granitoid belt from southeastern Guangxi: Geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrol. Sin. 2007, 23, 403–412, (In Chinese with English abstract). [Google Scholar]
- Xu, W.-C.; Luo, B.-J.; Xu, Y.-J.; Wang, L.; Chen, Q. Geochronology, geochemistry, and petrogenesis of late Permian to early Triassic mafic rocks from Darongshan, South China: Implications for ultrahigh-temperature metamorphism and S-type granite generation. Lithos 2018, 308–309, 168–180. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- White, A.J.R.; Chappell, B.W. Ultrametamorphism and granitoid genesis. Tectonophys 1977, 43, 7–22. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Xin, Y.; Sun, H.; Yu, Y. Zircon LA-ICP-MS U-Pb dating and geochemical analysis of the Darongshan–Shiwandashan granitoids in southwestern South China and their geological implications. Acta Geosci. Sin. 2018, 39, 179–188, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Liu, X.; Xiao, W.; Bao, H.; Shi, Y.; Liu, L.; Liao, S.; Qin, X. Geochronology, geochemistry and Hf isotopes of volcanic rocks in Pingxiang area, southwest Guangxi: Implications for the latest stage of paleo-Tethyan ocean northward subduction. J. Geomech. 2019, 25, 932–946, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Liu, D.; Kang, Z.; Yang, F.; Li, D. Geochronology and Geochemistry of Early Mesozoic Rhyolite in Southwestern Guangxi and Its Geological Significance. Geosci. 2021, 35, 981–996, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Glazner, A.F.; Coleman, D.S.; Mills, R.D. The Volcanic-Plutonic Connection. In Physical Geology of Shallow Magmatic Systems: Dykes, Sills and Laccoliths; Breitkreuz, C., Rocchi, S., Eds.; Springer International Publishing: Cham, 2018; pp. 61–82. [Google Scholar]
- de Silva, S.L.; Gosnold, W.D. Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 2007, 167, 320–335. [Google Scholar] [CrossRef]
- Annen, C. From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 2009, 284, 409–416. [Google Scholar] [CrossRef]
- Bachmann, O.; Bergantz, G.W. On the Origin of Crystal-poor Rhyolites: Extracted from Batholithic Crystal Mushes. J. Petrol. 2004, 45, 1565–1582. [Google Scholar] [CrossRef]
- Eichelberger, J.C.; Izbekov, P.E.; Browne, B.L. Bulk chemical trends at arc volcanoes are not liquid lines of descent. Lithos 2006, 87, 135–154. [Google Scholar] [CrossRef]
- Bachmann, O.; Miller, C.F.; de Silva, S.L. The volcanic–plutonic connection as a stage for understanding crustal magmatism. J. Volcanol. Geotherm. Res. 2007, 167, 1–23. [Google Scholar] [CrossRef]
- Medlin, C.C.; Jowitt, S.M.; Cas, R.A.F.; Smithies, R.H.; Kirkland, C.L.; Maas, R.A.; Raveggi, M.; Howard, H.M.; Wingate, M.T.D. Petrogenesis of the A-type, Mesoproterozoic Intra-caldera Rheomorphic Kathleen Ignimbrite and Comagmatic Rowland Suite Intrusions, West Musgrave Province, Central Australia: Products of Extreme Fractional Crystallization in a Failed Rift Setting. J. Petrol. 2015, 56, 493–525. [Google Scholar] [CrossRef]
- Yan, L.-L.; He, Z.-Y.; Jahn, B.-M.; Zhao, Z.-D. Formation of the Yandangshan volcanic–plutonic complex (SE China) by melt extraction and crystal accumulation. Lithos 2016, 266–267, 287–308. [Google Scholar] [CrossRef]
- Green, T.H.; Pearson, N.J. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P,T. Chem. Geol. 1986, 54, 185–201. [Google Scholar] [CrossRef]
- Harrison, T.M.; Watson, E.B. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochim. Et Cosmochim. Acta 1984, 48, 1467–1477. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. J. Petrol. 2005, 47, 329–353. [Google Scholar] [CrossRef]
- Yan, L.-L.; He, Z.-Y.; Beier, C.; Klemd, R. Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos 2018, 320–321, 28–34. [Google Scholar] [CrossRef]
- Reid, M.R.; Vazquez, J.A.; Schmitt, A.K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib. Mineral. Petrol. 2011, 161, 293–311. [Google Scholar] [CrossRef]
- Charoy, B.; Barbey, P. Ferromagnesian silicate association in S-type granites: The Darongshan granitic complex (Guangxi, South China). Bull. Société Géologique Fr. 2008, 179, 13–27. [Google Scholar] [CrossRef]
- Li, Y.J.; Wei, J.H.; Santosh, M.; Tan, J.; Fu, L.B.; Zhao, S.Q. Geochronology and petrogenesis of Middle Permian S-type granitoid in southeastern Guangxi Province, South China: Implications for closure of the eastern Paleo-Tethys. Tectonophysics 2016, 682, 1–16. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Flood, R.H.; Shaw, S.E. A cordierite-bearing granite suite from the New England Batholith, N.S.W., Australia. Contrib. Mineral. Petrol. 1975, 52, 157–164. [Google Scholar] [CrossRef]
- Zhao, K.; Xu, X.; Erdmann, S. Thermodynamic modeling for an incrementally fractionated granite magma system: Implications for the origin of igneous charnockite. Earth Planet. Sci. Lett. 2018, 499, 230–242. [Google Scholar] [CrossRef]
- Altherr, R.; Siebel, W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contrib. Mineral. Petrol. 2002, 143, 397–415. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Castro, A.; Fernández, C.; Vigneresse, J.L. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Understanding Granites: Integrating New and Classical Techniques; Geological Society of London: London, UK, 1999; Volume 168, pp. 55–75. [Google Scholar]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R.; Williams, I.S.; Wyborn, D.; Ishihara, S.; Stephens, W.E.; Harley, S.L.; Arima, M.; Nakajima, T. Low- and high-temperature granites. In The Fifth Hutton Symposium on the Origin of Granites and Related Rocks; Geological Society of America: Boulder, CO, USA, 2004; Volume 389, pp. 125–140. [Google Scholar]
- Jiao, S.; Guo, J.H.; Peng, S. Petrogenesis of garnet in the Darongshan-Shiwandashan granitic suite of the South China Block and the metamorphism of the granulite enclave. Acta Petrol. Sin. 2013, 29, 1740–1758, (In Chinese with English abstract). [Google Scholar]
- Zhao, L.; Guo, F.; Fan, W.; Li, C.; Qin, X.; Li, H. Late Paleozoic ultrahigh-temperature metamorphism in South China: A case study of granulite enclaves in the Shiwandashan granites. Acta Petrol. Sin. 2011, 27, 1707–1720, (In Chinese with English abstract). [Google Scholar]
- Shellnutt, J.G.; Zhou, M.-F.; Yan, D.-P.; Wang, Y.J. Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geol. Mag. 2008, 145, 373–388. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Ernst, R.; Lü, L.; Santosh, M.; Zhang, D.; Cheng, Z. Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: Identifying the mantle plume centre. Terra Nova 2015, 27, 247–257. [Google Scholar] [CrossRef]
- Xiang, Z.; Yang, J.; Yan, Q.; Xia, L.; Xia, W.; White, J.D.L. Petrogenesis of the Early-Middle Triassic high-Mg andesitic rocks in the southern margin of the South China Block: Implications for the convergence between the South China and Indochina Blocks. J. Asian Earth Sci. 2022, 232, 104994. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Zhao, Z.D.; Niu, Y.L.; Zhu, D.-C.; Liu, D.; Wang, Q.; Hou, Z.Q.; Mo, X.X.; Wei, J.C. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos 2017, 278–281, 477–490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Xiao, W.; Liu, X.; Zhao, Z.; Wang, Y. Early Triassic S-Type Granitoids in the Qinzhou Bay Area, South China: Petrogenesis and Tectonic Implications. Minerals 2024, 14, 22. https://doi.org/10.3390/min14010022
Liu L, Xiao W, Liu X, Zhao Z, Wang Y. Early Triassic S-Type Granitoids in the Qinzhou Bay Area, South China: Petrogenesis and Tectonic Implications. Minerals. 2024; 14(1):22. https://doi.org/10.3390/min14010022
Chicago/Turabian StyleLiu, Lei, Wenjiao Xiao, Xijun Liu, Zengxia Zhao, and Yabo Wang. 2024. "Early Triassic S-Type Granitoids in the Qinzhou Bay Area, South China: Petrogenesis and Tectonic Implications" Minerals 14, no. 1: 22. https://doi.org/10.3390/min14010022