Evaluation of the Gemological Properties of Datolites from the Campotrera Deposit in the Northern Apennines (Italy)
Abstract
1. Introduction
2. Geological Setting of Campotrera
3. Materials and Methods
4. Results
4.1. Gemological Analyses
4.2. Petrographic Observations
4.3. XRPD Analyses
4.4. EDS and SEM Analyses
4.5. LA-ICP-MS Analyses
4.6. Raman Spectroscopy Analyses
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Borghi, E.; Scacchetti, M. L’attività estrattiva nella riserva naturale orientata Rupe di Campotrera e nella zona di Rossena. Comune Canossa 2002, 1, 2–47. [Google Scholar]
- Scacchetti, M.; Bartoli, O.; Bersani, D.; Laurora, A.; Lugli, S.; Malferrari, D.; Valeriani, L. Minerali della provincia di Reggio Emilia. AMI Ed. Cremona 2015, 93–147. [Google Scholar]
- Zaccarini, F.; Morales-Ruano, S.; Scacchetti, M.; Garuti, G.; Heide, K. Investigation of datolite (CaB[SiO4/OH]) from basalts in the Northen Apennines ophiolites (Italy): Genetic implications. Geochemistry 2008, 68, 265–277. [Google Scholar] [CrossRef]
- Foit, F.F.; Phillips, M.W.; Gibbs, G.V. A refinement of the crystal structure of datolite, CaBSiO4(OH). Am. Miner. 1973, 58, 909–914. [Google Scholar]
- Bellatreccia, F.; Camara, F.; Della Ventura, G.; Mottana, A. Datolite: A new occurence in volcanic ejecta (Pitigliano, Toscana, Italy) and crystal-structure refinement. Rend. Lincei 2006, 17, 289–298. [Google Scholar] [CrossRef]
- Bačík, P.; Fridrichova, J.; Uher, P.; Pršek, J.; Ondrejka, M. The crystal chemistry of gadolinite-datolite group silicates. Can. Miner. 2015, 51, 625–642. [Google Scholar] [CrossRef]
- BaČik, P.; Miyawaki, R.; Fridrichová, J.; Atencio, D.; Cámara, F.; Fridrichová, J. Nomenclature of the gadolinite supergroup. Eur. J. Miner. 2017, 29, 1067–1082. [Google Scholar] [CrossRef]
- Rinaldi, R.; Gatta, G.D.; Angel, R.J. Crystal chemistry and low-temperature behavior of datolite: A single-crystal X-ray diffraction study. Am. Miner. 2010, 95, 1413–1421. [Google Scholar] [CrossRef]
- Perchiazzi, N.; Gualtieri, A.F.; Merlino, S.; Kampf, A.R. The atomic structure of bakerite and its relationship to datolite. Am. Mineral. 2004, 89, 767–776. [Google Scholar] [CrossRef]
- Gemstones Encyclopedia. Available online: https://www.gemsociety.org/ (accessed on 2 May 2023).
- Datolite Gemstone Informations. Available online: https://www.gemdat.org/ (accessed on 26 April 2023).
- Konerskaya, L.P.; Orlova, R.G.; Bogdanis, E.P.; Konerskii, V.D.; Guseva, N.P. Using datolite and diopside raw materials in the electrical engineering industry. Glass Ceram. 1988, 45, 199–201. [Google Scholar] [CrossRef]
- Medvedovski, E. Low-temperature sintering of ceramics for the production of low-voltage insulators. Intern. Ceram. Rev. 1996, 45, 82–86. [Google Scholar]
- Bartoli, O.; Bersani, D.; Borghi, E.; Scacchetti, M. I minerali delle ofioliti: Rossena e Campotrera (RE). Riv. Miner. It. 2003, 27, 196–208. [Google Scholar]
- Bartoli, O.; Bersani, D.; Borghi, E.; Garuti, G.; Morales-Ruano, S.; Scacchetti, M.; Zaccarini, F. Datolite di Valmozzola, Parma. Un ritrovamento eccezionale. Riv. Miner. It. 2008, 32, 8–15. [Google Scholar]
- Kiss, G.; Molnar, F.; Zaccarini, F. Fluid inclusion studies in datolite of low grade metamorphic origin from a Jurassic pillow basalt series in northeastern Hungary. Cent. Eur. J. Geosci. 2012, 4, 261–274. [Google Scholar] [CrossRef]
- Pezzotta, F.; Diella, V.; Guastoni, A. Chemical and paragenetic data on gadolinite-group minerals from Baveno and Cuasso al Monte, Southern Alps, Italy. Am. Miner. 1999, 84, 782–789. [Google Scholar] [CrossRef]
- Ratkin, V.V.; Eliseeva, O.A.; Pandian, M.S.; Orekhov, A.A.; Mohapatra, M.; Priya, S.K.V. Stages and formation conditions of productive mineral associations of the Dalnegorsk borosilicate deposit, Sikhote Alin. Geol. Ore Depos. 2018, 60, 672–684. [Google Scholar] [CrossRef]
- Datolite Mineral Information, Data and Localities. Available online: https://www.mindat.org/ (accessed on 26 April 2023).
- Boselli, F.; Boselli, L.; Ferretti, P.; Demartin, F. Datolite. Nuovo ritrovamento sul Buffaure (Val di Fassa, Trentino). Riv. Miner. It. 2013, 2, 108–115. [Google Scholar]
- Albertini, C. Famous mineral localities: Baveno, Italy. Miner. Rec. 1983, 14, 157–168. [Google Scholar]
- Marchesini, M.; Lunaccio, S.; Zampa, A. Il burrone di Vallegrande. Riv. Miner. It. 1988, 4, 19–24. [Google Scholar]
- Riserva Naturale Rupe di Campotrera. Available online: http://www.parchiemiliacentrale.it/riserva.rupe.campotrera/ (accessed on 1 March 2021).
- Borghi, E.; Patteri, P.; Scacchetti, M. I minerali delle ofioliti di Campotrera e Rossena. Comune Canossa 2002, 2–19. [Google Scholar]
- Marroni, M.; Molli, G.; Montanini, A.; Tribuzio, R. The association of continental crust rocks with ophiolites in the Northern Apennines (Italy): Implications for the continent–ocean transition in the Western Tethys. Tectonophysics 1998, 292, 43–66. [Google Scholar] [CrossRef]
- Marroni, M.; Molli, G.; Montanini, A.; Ottria, G.; Pandolfi, L.; Tribuzio, R. The external Liguride units (Northern Apennines, Italy): From rifting to convergence history of a fossil ocean-continent transition zone. Ofioliti 2002, 27, 119–132. [Google Scholar]
- Montanini, A.; Tribuzio, R. Gabbro-derived Granulites from the Northern Apennines (Italy): Evidence for Lower-crustal Emplacement of Tholeiitic Liquids in Post-Variscan Times. J. Petrol. 2001, 42, 2259–2277. [Google Scholar] [CrossRef]
- Montanini, A.; Tribuzio, R.; Vernia, L. Petrogenesis of basalts and gabbros from an ancient continent to ocean transition (External liguride ophiolites, Northern Italy). Lithos 2008, 101, 453–479. [Google Scholar] [CrossRef]
- Tribuzio, R.; Thirlwall, M.F.; Vannucci, R. Origin of the gabbro-peridotite association from the Northern Apennine ophiolites (Italy). J. Petrol. 2004, 45, 1109–1124. [Google Scholar] [CrossRef]
- Bertolani, M. La datolite della formazione ofiolitica appenninica. Pontif. Accad. Sci. 1948, 12, 305–366. [Google Scholar]
- Ferrari, M. Sulla datolite del monte Campotrera. Rend. R. Accad. Naz. Lincei 1924, 33, 439. [Google Scholar]
- Maddalena, L. Un nuovo giacimento di datolite e prehnite nell’Appennino Emiliano. Period. Miner. 1933, 3. [Google Scholar]
- X-ray Diffractometers. Available online: https://www.malvernpanalytical.com/ (accessed on 1 March 2021).
- Miller, C.; Zanetti, A.; Thoni, M.; Konzett, J.; Klotzli, U. Mafic and silica-rich glasses in mantle xenolits from Wau-ennamus, Lybia: Textural and geochemical evidence for peridotite melt reactions. Lithos 2012, 128, 11–26. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions. In Reviews in Mineralogy and Geochemistry; Ribbe, P.H., Ed.; Mineralogical Society of America: Reston, VA, USA, 1984; Volume 12, p. 646. [Google Scholar]
- Goldstein, R.H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 2001, 55, 159–193. [Google Scholar] [CrossRef]
- Caucia, F.; Scacchetti, M.; Marinoni, L.; Gilio, M. Black quartz from the Burano formation (Val Secchia, Italy): An unusual gem. Minerals 2022, 12, 1449. [Google Scholar] [CrossRef]
- Mernagh, T.P.; Wilde, A.R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions. Geochim. Cosmochim. Acta 1989, 53, 765–771. [Google Scholar] [CrossRef]
Sample | Cut | Shape | Color (RGB) | Reflection Index | Weight (ct) | Specific Gravity |
---|---|---|---|---|---|---|
1 | Brilliant modified | Trapezoidal | Colorless | x = 1.62; y = 1.65; z = 1.67 | 3.12 | 3 |
2a | Brilliant modified | Oval | Colorless | x = 1.62; y = 1.65; z = 1.67 | 3.41 | 2.99 |
2b | Brilliant modified | Rectangular | Colorless | x = 1.62; y = 1.65; z = 1.67 | 4.77 | 2.99 |
2c | Brilliant modified | Square | Colorless | x = 1.62; y = 1.65; z = 1.67 | 3.09 | 2.99 |
2d | Baguette | Rectangular | Colorless | x = 1.63; y = 1.65; z = 1.67 | 0.91 | 3 |
3 | Brilliant modified | Pear | Colorless | x = 1.63; y = 1.64; z = 1.67 | 5.04 | 3 |
4a | Brilliant modified | Pear | Colorless | x = 1.62; y = 1.65; z = 1.67 | 3.04 | 3 |
4b | Brilliant modified | Oval | Colorless | x = 1.62; y = 1.66; z = 1.67 | 1.35 | 2.98 |
4c | Carré | Square | Colorless | x = 1.62; y = 1.65; z = 1.67 | 2.68 | 2.98 |
5d | Brilliant modified | Oval | Colorless, salmon4 * | x = 1.63. y = 1.64; z = 1.67 | 2.25 | 2.99 |
5e | Brilliant modified | Rectangular | White, light salmon4 | x = 1.62; y = 1.65; z = 1.67 | 2.22 | 3 |
Wt% | Datolite 3 | Datolite 5A |
---|---|---|
SiO2 | 37.938 | 38.362 |
CaO | 34.615 | 34.035 |
Fe2O3 | 0.000 | 0.080 |
B2O3calc | 21.802 | 21.865 |
H2Ocalc | 5.645 | 5.658 |
TOT | 100.000 | 100.000 |
a.p.f.u. per 5 anions (4O2− + OH−) | ||
Si4+ | 1.008 | 1.016 |
Ca2+ | 0.985 | 0.966 |
Fe3+ | 0.000 | 0.002 |
B3+ | 1.00 | 1.000 |
OH− | 1.000 | 1.000 |
TOT | 3.993 | 3.984 |
Element (ppm) | SPOT 1 | SPOT 2 | SPOT 3 | SPOT 4 | SPOT 5 |
---|---|---|---|---|---|
Sc | 0.98 | 0.921 | 0.936 | 0.838 | 0.746 |
Ti | 0.6 | 0.59 | 0.82 | 0.45 | 0.7 |
V | 1.027 | 0.986 | 0.973 | 1.018 | 1.065 |
Mn | 0.76 | 0.7 | 0.53 | 0.36 | 0.71 |
Fe | 19.87 | 41.54 | 34.56 | 57.81 | 25.64 |
Co | 0.0145 | 0.0195 | 0.0186 | 0.0155 | 0.0116 |
Ni | 0.176 | 0.222 | 0.126 | 0.192 | 0.156 |
La | 0.0157 | 0.0058 | 0.061 | 0.105 | 0.559 |
Sr | 1.653 | 1.514 | 1.482 | 1.637 | 1.529 |
Rb | 0.0212 | 0.0184 | 0.0217 | 0.0160 | 0.0182 |
Cs | 0.0158 | 0.0103 | 0.0106 | 0.0199 | 0.0127 |
Ba | 0.036 | 0.00 | 0.00 | 0.0027 | 0.0086 |
Cu | 0.58 | 0.082 | 0.087 | 0.093 | 0.104 |
Zn | 0.48 | 0.34 | 0.42 | 0.5 | 0.23 |
Elem. (ppm) | SPOT 1 * | SPOT 2 | SPOT 3 * | SPOT 4 * | SPOT 5 | SPOT 6 | SPOT 7 * | SPOT 8 | SPOT 9 * | SPOT 10 | SPOT 11 | SPOT 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | 0.49 | 0.71 | 0.64 | 0.89 | 0.68 | 0.77 | 0.92 | 0.59 | 0.91 | 0.70 | 3.21 | 9.28 |
Ti | 0.44 | 3.35 | 3.92 | 3.61 | 6.62 | 19.49 | 53.24 | 1.09 | 11.71 | 2.15 | 0.89 | 0.97 |
V | 1.36 | 1.30 | 1.49 | 1.69 | 1.27 | 1.85 | 4.79 | 1.26 | 7.11 | 1.26 | 1.20 | 1.4 |
Mn | 2.14 | 3.35 | 2.08 | 7.54 | 3.52 | 3.47 | 18.94 | 0.94 | 2.11 | 1.63 | 2.04 | 3.47 |
Fe | 27.79 | 69.86 | 133.58 | 313.68 | 131.81 | 135.38 | 1070.8 | 23.3 | 1437.4 | 57.92 | 18.04 | 34.64 |
Co | 0.02 | 0.07 | 0.07 | 0.25 | 0.10 | 0.08 | 0.56 | 0.02 | 0.07 | 0.03 | 0.02 | 0.03 |
Ni | 0.19 | 0.43 | 0.29 | 0.83 | 0.87 | 0.25 | 1.35 | 0.09 | 0.27 | 0.18 | 0.20 | 0.24 |
La | 0.34 | 0.65 | 0.62 | 3.75 | 3.19 | 0.52 | 0.69 | 0.44 | 0.61 | 0.82 | 1.81 | 1.6 |
Ce | 0.10 | 0.24 | 0.57 | 1.86 | 2.54 | 0.57 | 0.93 | 0.90 | 1.19 | 2.15 | 5.39 | 5.69 |
Sr | 21.05 | 13.13 | 11.07 | 25.49 | 7.75 | 5.54 | 6.36 | 5.54 | 5.64 | 5.67 | 19.58 | 41.88 |
Rb | 0.02 | 0.04 | 0.02 | 0.07 | 0.07 | 0.09 | 0.60 | 0.01 | 0.08 | 0.02 | 0.02 | 0.02 |
Cs | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.05 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 |
Ba | 0.07 | 0.01 | 0.05 | 0.09 | 0.05 | 0.11 | 0.48 | 0.01 | 0.17 | 0.04 | 0.02 | 0.01 |
Cu | 0.41 | 0.08 | 0.07 | 0.09 | 0.09 | 0.11 | 0.12 | 0.08 | 0.10 | 0.09 | 7.65 | 0.09 |
Zn | 0.71 | 0.29 | 0.36 | 0.55 | 0.49 | 0.49 | 1.85 | 0.57 | 1.63 | 0.74 | 7.75 | 0.26 |
Sample 3-Fluid Inclusion | Salinity (%) |
---|---|
01 | 3.74 ± 0.57 |
03 | 3.16 ± 0.48 |
04 | 3.64 ± 0.55 |
06 | 3.37 ± 0.51 |
Salinity (%) Campotrera [3] | Salinity (%) Hungary [15] |
10–16 | 1.8–2 |
Geological Setting | Salinity |
---|---|
Diagenetic fluids | 9%–25% |
Magmatic exhalative fluids | 2%–10% |
Seafloor hydrothermal fluids | 3.50%–10% |
Seawater evaporated with gypsum saturation | 10.50%–11.50% |
Magmatic fluids | 28.5%–30% |
Fluids in veins of quartz and calcite in sulfide mineralizations in the Northern Apennines basalts (Italy) | 1.5%–4% |
Recycled seawater | 3.5% |
Seawater | 3.2% |
Freshwater | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinoni, L.; Caucia, F.; Gilio, M.; Scacchetti, M. Evaluation of the Gemological Properties of Datolites from the Campotrera Deposit in the Northern Apennines (Italy). Minerals 2023, 13, 1057. https://doi.org/10.3390/min13081057
Marinoni L, Caucia F, Gilio M, Scacchetti M. Evaluation of the Gemological Properties of Datolites from the Campotrera Deposit in the Northern Apennines (Italy). Minerals. 2023; 13(8):1057. https://doi.org/10.3390/min13081057
Chicago/Turabian StyleMarinoni, Luigi, Franca Caucia, Mattia Gilio, and Maurizio Scacchetti. 2023. "Evaluation of the Gemological Properties of Datolites from the Campotrera Deposit in the Northern Apennines (Italy)" Minerals 13, no. 8: 1057. https://doi.org/10.3390/min13081057
APA StyleMarinoni, L., Caucia, F., Gilio, M., & Scacchetti, M. (2023). Evaluation of the Gemological Properties of Datolites from the Campotrera Deposit in the Northern Apennines (Italy). Minerals, 13(8), 1057. https://doi.org/10.3390/min13081057