Links between Ikaite Morphology, Recrystallised Ikaite Petrography and Glendonite Pseudomorphs Determined from Polar and Deep-Sea Ikaite
Abstract
:1. Introduction
Ikaite Location | Lat/Long | Water Depth (m) | Depth below S-W Interface (m) | Site Tag | Sample Tag | Reference | |
---|---|---|---|---|---|---|---|
Utqiaġvik Alaska | Isatkoak Lagoon | 71°23′20″ N 156°28′45″ W | 3 | Shallow | [23] | ||
Sea of Okhotsk | Offshore Sakahlin | 05°59.6′ S, 09°56.6′ E | 380 | 2 | Site lv27-3-3 n-Sakhalin 5 | [7] | |
South Georgia | Anakaov Trough W | 54°23.2′ S, 37°30.8′ W | 359 | 5.7 | Cruise M134 S Georgia | GeoB-Number: 22049-3 | [25] |
Nankai Trough | Japan Trench | 31°50′ N, 133°51′ E | 6900 | 4.3 | Core GeoB16423-1 | GeoB 16427-1-460 | [26] |
Laptev Sea | Siberia | 78°04.5′ N, 133°35.9′ E | 204 | 2.32 to 2.38 | ARCTIC’93 exped., Core PS2460-4 | IKAITE PM 9499-2 | [22] |
2. Methods
2.1. Scanning Electron Microscopy
2.2. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)
Sample | CaCO3 | Mg/Ca | Sr/Ca | Na/Ca | Mn/Ca | Fe/Ca | S/Ca | P/Ca | Al/Ca | Rb/Ca |
---|---|---|---|---|---|---|---|---|---|---|
wt% | mmol/mol | mmol/mol | mmol/mol | mmol/mol | mmol/mol | mmol/mol | mmol/mol | mmol/mol | mmol/mol | |
Sample in Figure 3(a4)—Sea of Okhotsk type 1, large orange calcite | 100.00 | 17.89 | 1.12 | 7.61 | 0.00 | 0.05 | 0.33 | 0.60 | 0.10 | LOD |
Sample in Figure 3(a4)—Sea of Okhotsk type 2, yellow calcite | 100.00 | 6.02 | 1.00 | 3.07 | 0.00 | 0.05 | 0.25 | 0.11 | 0.29 | LOD |
Sample in Figure 3(a4)—Sea of Okhotsk matrix, fingrained white calcite powder | 93.14 | 2.99 | 1.04 | 6.91 | 0.00 | 0.01 | 0.23 | 0.17 | 0.15 | LOD |
Sea of Okhotsk [7], their Figure 2C tracefossil burrow concretion | 51.79 | 112.39 | 1.81 | 23.17 | 0.62 | 29.45 | 17.57 | 4.48 | 56.02 | LOD |
Sea of Okhotsk [7],their Figure 2C tracefossil burrow calcite martix | 85.86 | 68.82 | 1.82 | 6.57 | 0.27 | 5.29 | 8.48 | 4.45 | 2.72 | LOD |
Sea of Okhotsk [7], their Figure 2F glendonite concretion | 65.65 | 69.83 | 1.42 | 23.90 | 5.79 | 41.44 | 3.73 | 12.61 | 44.92 | LOD |
Sea of Okhotsk [7], their Figure 2F glendonite calcite matrix | 100.00 | 99.40 | 1.71 | 6.52 | 0.09 | 0.37 | 1.04 | 5.87 | 0.57 | LOD |
Sample in Figure 3(b4)—South Georgia bulk calcite | 93.06 | 0.46 | 1.22 | 1.11 | 0.01 | 0.06 | 1.56 | 0.26 | 0.17 | LOD |
Sample in Figure 3(c4)—Nankai Trough, sediment fragments as reference | 49.74 | 60.21 | 0.76 | 119.49 | 0.33 | 27.06 | 30.21 | 0.47 | 32.63 | 0.11 |
Sample in Figure 3(c4)—Nankai Trough type 1, large orange calcite grains | 100.00 | 25.36 | 0.84 | 11.20 | 0.01 | 0.12 | 11.96 | 0.31 | 0.39 | LOD |
Sample in Figure 3(c4)—Nankai Trough type 2, yellow calcite grains | 91.84 | 4.10 | 1.28 | 23.26 | 0.01 | 0.31 | 6.99 | 0.11 | 0.73 | LOD |
Sample in Figure 3(d4)—Nankai Trough type3, fine grained calcite | 91.60 | 1.44 | 1.40 | 25.03 | 0.01 | 0.21 | 7.69 | 0.05 | 0.51 | LOD |
Sample in Figure 3(d4)—Laptev Sea bulk calcite | 91.10 | 2.37 | 0.60 | 4.47 | 0.08 | 1.15 | 0.79 | 0.36 | 1.31 | LOD |
2.3. Introduction to Petrography Approaches
3. Results
3.1. Macroscopic Morphology and Petrography
3.2. Geochemical Variations between the Petrographic Types
3.3. Crystal Morphology and Structure
3.4. Calcite Phases Shown in Figure 4 Summarised
3.5. Geochemical Distribution in the Petrographic Types
4. Discussion
4.1. Recrystalised Ikaite Calcite Types
4.2. Petrographic Comparison of Ikaite and Fur Formation Glendonite
4.3. Morphology and Cleavage
4.4. Similarities between Glendonite and Ikaite Morphology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schultz, B.P.; Thibault, N.; Huggett, J.M. The minerals ikaite and its pseudomorph glendonite: Historical perspective and legacies of Douglas Shearman and Alec K. Smith. Proc. Geol. Assoc. 2022, 133, 176–192. [Google Scholar] [CrossRef]
- Kennedy, G.L. Glendonites: Enigmatic mineral pseudomorphs and their ephemeral precursor. Rocks Miner. 2022, 97, 496–508. [Google Scholar] [CrossRef]
- MacNair, P. On Pseudogaylussite Dredged from the Clyde at Cardross and Other Recent Additions to the Mineral Collections in the Kelvingrove Museum; Royal Philosophical Society of Glasgow: Glasgow, UK, 1904; pp. 250–262. [Google Scholar]
- Van Baren, J. Bijdrage tot de Kennis van Pseudogaylussiet; Mededelingen Geologisch Instituut Landbouw Hogeschool Wageningen: Wageningen, The Netherlands, 1926; pp. 1–24. [Google Scholar]
- Blum, J.R. Die Pseudomorphosen des Mineralreichs; E. Schweizerbat’che Verlagshandlung: Stuttgart, Germany, 1843; pp. 13–17. [Google Scholar]
- Ito, T. Factors controlling the transformation of natural ikaite from Shiowakka, Japan. Geochem. J. 1998, 32, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Greinert, J.; Derkachev, A. Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: Implications of a venting-related ikaite/glendonite formation. Mar. Geol. 2004, 204, 129–144. [Google Scholar] [CrossRef]
- Geologe Geologie Beruf Mineralogie Oryktognosie Mineralogen: Mineralien Naturwissenschaftler Naturwissenschaft Evoluti; KGUS Publishing: New York, NY, USA, 2020.
- Dana, E.S. A crystallographic study of the thinolite of Lake Lahontan. U.S. Geol. Surv. Bull. 1884, 12, 429–450. [Google Scholar]
- van Calker, F.J.P. XXIX. Beitrag zur Kenntniss des Pseudogaylussit und über dessen Vorkommen in Holland. Z. Krist. Mineral. Geol. 1897, 28, 556–572. [Google Scholar] [CrossRef]
- Hintze, C. Nitrate, Jodate, Karbonate, Selenite, Tellurite, Manganite, Plumbate, Handbuch der Mineralogie, Veit & Comp; Der Verlag Walter de Gruyter & Co.: Berlin, Germany, 1915; pp. 2790–2802. [Google Scholar]
- Goldschmidt, V.M. Entwicklung d. Krystallformen II, Taf VIII & IX: Zeitschrift fur Krystallographie und Mineralogie 28 bd; Walter de Gruyter: Berlin, Germany, 1923. [Google Scholar]
- Suess, E.; Balzer, W.; Hesse, K.-F.; Muller, P.J.; Ungerer, C.A.; Wefer, G. Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: Precursors of glendonites. Science 1982, 216, 1128–1131. [Google Scholar] [CrossRef]
- Stein, C.; Smith, A. Authigenic carbonate nodules in the Nankai Trough, Site Initial reports of the deep sea drilling project. Init. Repts. DSDP 1985, 77, 659–668. [Google Scholar]
- Jansen, J.; Woensdregt, C.; Kooistra, M.; Van Der Gaast, S. Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite. Geology 1987, 15, 245–248. [Google Scholar] [CrossRef]
- Rogov, M.; Ershova, V.; Gaina, C.; Vereshchagin, O.; Vasileva, K.; Mikhailova, K.; Krylov, A. Glendonites throughout the Phanerozoic. Earth-Sci. Rev. 2023, 241, 104430. [Google Scholar] [CrossRef]
- Hesse, K.F.; Küppers, H. Refinement of the structure of ikaite, CaCO3·6 H2O. Z. Krist. 1983, 163, 227–231. [Google Scholar]
- Vickers, M.L.; Vickers, M.; Rickaby, R.E.; Wu, H.; Bernasconi, S.M.; Ullmann, C.V.; Bohrmann, G.; Spielhagen, R.F.; Kassens, H.; Schultz, B.P.; et al. The ikaite to calcite transformation: Implications for palaeoclimate studies. Geochim. Cosmochim. Acta 2022, 334, 201–216. [Google Scholar] [CrossRef]
- Huggett, J.M.; Schultz, B.P.; Shearman, D.J.; Smith, A.J. The petrology of ikaite pseudomorphs and their diagenesis. Proc. Geol. Assoc. 2005, 116, 207–220. [Google Scholar] [CrossRef]
- Scheller, E.L.; Grotzinger, J.; Ingalls, M. Guttulatic calcite: A carbonate microtexture that reveals frigid formation conditions. Geology 2022, 50, 48–53. [Google Scholar] [CrossRef]
- Frank, T.D.; Thomas, S.G.; Fielding, C.R. On using carbon and oxygen isotope data from glendonites as paleoenvironmental proxies: A case study from the Permian system of eastern Australia. J. Sediment. Res. 2008, 78, 713–723. [Google Scholar] [CrossRef]
- Kassen, H.; Dmitrenko, I. The TRANSDRIFT II Expedition to the Laptev Sea Reports on Polar research, Laptev Sea Systems Expedition in Beretten. Polarforsch 1995, 182, 93. [Google Scholar]
- Kennedy, G.L.; Hopkins, D.M.; Pickthorn, W.J. Ikaite, the Glendonite Precursor, in Estuarine Sediments at Barrow, Arctic Alaska, Abstracts with Programs; Geological Society of America: Boulder, CO, USA, 1987. [Google Scholar]
- Schultz, B.P.; Hugget, J.M.; Kenndy, G.L.; Burger, P.; Friis, H.; Jensen, A.M.; Kanstrup, M.; Bernasconi, S.M.; Thibault, N.; Ullmann, C.V.; et al. Petrography and geochemical analysis of Arctic ikaite pseudomorphs from Utqiaġvik (Barrow), Alaska. Nor. J. Geol. 2023, 103, 202303. [Google Scholar] [CrossRef]
- Bohrmann, G.; Aromokeye, A.D.; Bihler, V.; Dehning, K.; Dohrmann, I.; Gentz, T.; Grahs, M.; Hogg, O.; Hüttich, D.; Kasten, S.; et al. R/V METEOR Cruise Report M134, Emissions of Free Gas From Cross-shelf Troughs of South Georgia: Distribution, Quantification, and Sources for Methane Ebullition Sites in Sub-Antarctic Waters, Port Stanley (Falkland Islands)—Punta Arenas (Chile), 16 January–18 February 2017. Berichte, MARUM—Zentrum für Marine Umweltwissenschaften, Fachbereich Geowissenschaften, Universität Bremen. 2017, Volume 317, pp. 1–220. Available online: https://media.suub.uni-bremen.de/handle/elib/3351 (accessed on 1 May 2023).
- Wefer, G.; Strasser, M.; Besuden, E.; Büttner, H.; Diekamp, V.; Dinten, D.; dos SantosFerreira, C.; Fink, H.; Franke, P.; Fujiwara, T.; et al. Report and Preliminary Results of R/V SONNE Cruise SO219A,Tohoku-Oki-Earthquake—Japan Trench, Yokohama—Yokohama, 8 March 2012–6 April 2012. pp. 1–83. Available online: http://publications.marum.de/id/eprint/2362 (accessed on 1 May 2023).
- Ullmann, C.V.; Boyle, R.; Duarte, L.; Hesselbo, S.; Kasemann, S.; Klein, T.; Lenton, T.; Piazza, V.; Aberhan, M. Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods. Sci. Rep. 2020, 10, 6549. [Google Scholar] [CrossRef] [Green Version]
- Schultz, B.P.; Vickers, M.L.; Huggett, J.; Madsen, H.; Heilmann-Clausen, C.; Friis, H.; Suess, E. Palaeogene glendonites from Denmark. Bull. Geol. Soc. Den. 2020, 68, 23–35. [Google Scholar] [CrossRef]
- Vickers, M.; Watkinson, M.; Price, G.D.; Jerrett, R. An improved model for the ikaite-glendonite transformation: Evidence from the Lower Cretaceous of Spitsbergen, Svalbard. Nor. J. Geol. 2018, 98, 15. [Google Scholar] [CrossRef]
- Scheller, E.L.; Ingalls, M.; Eiler, J.; Grotzinger, J.; Ryb, U. The mechanisms and stable isotope effects of transforming hydrated carbonate into calcite pseudomorphs. Geochim. Cosmochim. Acta 2023, 354, 146–164. [Google Scholar] [CrossRef]
- Tollefsen, E.; Stockmann, G.; Skelton, A.; Mörth, C.M.; Dupraz, C.; Sturkell, E. Chemical controls on ikaite formation. Mineral. Mag. 2018, 82, 1119–1129. [Google Scholar] [CrossRef] [Green Version]
- Hiruta, A.; Matsumoto, R. Geochemical comparison of ikaite and methane-derived authigenic carbonates recovered from Echigo Bank in the Sea of Japan. Mar. Geol. 2022, 443, 106672. [Google Scholar] [CrossRef]
- Whiticar, M.J.; Suess, E.; Wefer, G.; Müller, P.J. Calcium Carbonate Hexahydrate (Ikaite): History of Mineral Formation as Recorded by Stable Isotopes. Minerals 2022, 12, 1627. [Google Scholar] [CrossRef]
- Pedersen, G.K.; Buchardt, B. The calcareous concretions (cementsten) in the Fur Formation (Paleogene, Denmark). Isotopic evidence of early diagenetic growth. Bull. Geol. Soc. Den. 1996, 43, 78–86. [Google Scholar] [CrossRef]
- Stokke, E.W.; Jones, M.T.; Tierney, J.E.; Svensen, H.H.; Whiteside, J.H. Temperature changes across the Paleocene-Eocene Thermal Maximum—A new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth Planet. Sci. Lett. 2020, 544, 116338. [Google Scholar] [CrossRef]
- Jones, M.T.; Percival, L.M.E.; Stokke, E.W.; Frieling, J.; Mather, T.A.; Riber, L.; Schubert, B.A.; Schultz, B.; Tegner, C.; Planke, S. Mercury anomalies across the Palaeocene-Eocene Thermal Maximum. Clim. Past 2019, 15, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Vickers, M.L.; Lengger, S.K.; Bernasconi, S.M.; Thibault, N.; Schultz, B.P.; Fernandez, A.; Ullmann, C.V.; McCormack, P.; Bjerrum, C.J.; Rasmussen, J.A. Cold spells in the Nordic Seas during the early Eocene Greenhouse. Nat. Commun. 2020, 11, 4713. [Google Scholar] [CrossRef]
- McNamara, M.E.; Briggs, D.E.G.; Orr, P.J.; Field, D.J.; Wang, Z. Experimental maturation of feathers: Implications for reconstructions of fossil feather colour. Biol. Lett. 2013, 9. [Google Scholar] [CrossRef]
- Lindgren, J.; Nilsson, D.; Sjövall, P.; Jarenmark, M.; Ito, S.; Wakamatsu, K.; Kear, B.P.; Schultz, B.P.; Sylvestersen, R.L.; Madsen, H. Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 2019, 573, 122–125. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, G.K.; Pedersen, S.A.S.; Bonde, N.; Heilmann-Clausen, C.; Larsen, L.M.; Lindow, B.; Madsen, H.; Pedersen, A.K.; Rust, J.; Schultz, B.P.; et al. Molerområdets geologi—Sedimenter, fossiler, askelag og glacialtektonik. Geol. Tidsskr. 2011, 41–135. [Google Scholar]
- Jones, M.T.; Stokke, E.W.; Rooney, A.D.; Frieling, J.; Pogge von Strandmann, P.A.E.; Wilson, D.J.; Svensen, H.H.; Planke, S.; Adatte, T.; Thibault, N.; et al. Tracing North Atlantic Volcanism and Seaway Connectivity across the Paleocene–Eocene Thermal Maximum (PETM). Available online: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-36/ (accessed on 16 January 2023).
- Stokke, E.W.; Jones, M.T.; Riber, L.; Haflidason, H.; Midtkandal, I.; Schultz, B.P.; Svensen, H.H. Rapid and sustained environmental responses to global warming: The Paleocene–Eocene Thermal Maximum in the eastern North Sea. Clim. Past 2021, 17, 1–19. [Google Scholar] [CrossRef]
- Lindgren, J.; Uvdal, P.; Sjövall, P.; Nilsson, D.E.; Schultz, B.P.; Theil, V. Molecular preservation of the pigment melamin in fossil melanosomes. Nat. Commun. 2012, 3, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindgren, J.; Sjövall, P.; Carney, R.M.; Uvdal, P.; Gren, J.A.; Dyke, G.; Schultz, B.P.; Shawkey, M.D.; Barnes, K.R.; Polcyn, M.J. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 2014, 506, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Heingård, M.; Sjövall, P.; Sylvestersen, R.L.; Schultz, B.P.; Lindgren, J. Crypsis in the pelagic realm: Evidence from exceptionally preserved fossil fish larvae from the Eocene Stolleklint. Clay Den. Palaeontol. 2021, 64, 805–815. [Google Scholar] [CrossRef]
- Heingård, M.; Sjövall, P.; Schultz, B.P.; Sylvestersen, R.L.; Lindgren, J. Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. Biology 2022, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Lázár, A.; Molnár, Z.; Demény, A.; Kótai, L.; Trif, L.; Béres, K.; Bódis, E.; Bortel, G.; Aradi, L.; Karlik, M. Insights into the amorphous calcium carbonate (ACC) → ikaite → calcite transformations. Cryst. Eng. Comm. 2022, 25, 738–750. [Google Scholar] [CrossRef]
- Németh, P. Diffraction Features from (1014) Calcite Twins Mimicking Crystallographic Ordering. Minerals 2021, 11, 720. [Google Scholar] [CrossRef]
- Raven, M.J.; Dickson, J.A.D. Fir-tree zoning: An indicator of pulsed crystallization in calcite cement crystals. Sediment. Geol. 1989, 65, 249–259. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schultz, B.P.; Huggett, J.; Ullmann, C.V.; Kassens, H.; Kölling, M. Links between Ikaite Morphology, Recrystallised Ikaite Petrography and Glendonite Pseudomorphs Determined from Polar and Deep-Sea Ikaite. Minerals 2023, 13, 841. https://doi.org/10.3390/min13070841
Schultz BP, Huggett J, Ullmann CV, Kassens H, Kölling M. Links between Ikaite Morphology, Recrystallised Ikaite Petrography and Glendonite Pseudomorphs Determined from Polar and Deep-Sea Ikaite. Minerals. 2023; 13(7):841. https://doi.org/10.3390/min13070841
Chicago/Turabian StyleSchultz, Bo Pagh, Jennifer Huggett, Clemens V. Ullmann, Heidemarie Kassens, and Martin Kölling. 2023. "Links between Ikaite Morphology, Recrystallised Ikaite Petrography and Glendonite Pseudomorphs Determined from Polar and Deep-Sea Ikaite" Minerals 13, no. 7: 841. https://doi.org/10.3390/min13070841
APA StyleSchultz, B. P., Huggett, J., Ullmann, C. V., Kassens, H., & Kölling, M. (2023). Links between Ikaite Morphology, Recrystallised Ikaite Petrography and Glendonite Pseudomorphs Determined from Polar and Deep-Sea Ikaite. Minerals, 13(7), 841. https://doi.org/10.3390/min13070841