Geochemical Stratigraphy of the Prima Porta Travertine Deposit (Roma, Italy)
Abstract
1. Introduction
2. Geology of the Area
Hydrogeology Features
3. The Previous Studies
4. Sampling and Analytical Method
5. Results
6. Discussion
6.1. PP Travertine Chrono-Stratigraphy
6.2. Climate Evolution in PP Travertine Records
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
RF power | 1.3 kW |
Gas | Ar 99.999% |
Plasma Ar flux | 16.5 L min−1 |
Auxiliary Ar flux | 1.5 L min−1 |
Nebulizer Ar flux | 0.70 L min−1 |
Sample aspiration rate | 1 mL min−1 |
reading | 30 s |
number of replicates | 3 |
λ [nm] | LOD * [mg kg−1] | |
---|---|---|
Na | 589.592 | 2 |
K | 766.490 | 4 |
Ca | 396.847 | 0.06 |
Mg | 279.553 | 0.04 |
Fe | 259.940 | 0.8 |
Mn | 257.610 | 0.08 |
Sr | 407.771 | 0.05 |
References
- Giustini, F.; Brilli, M.; Mancini, M. Geochemical study of travertines along middle-lower Tiber valley (central Italy): Genesis, palaeo-environmental and tectonic implications. Int. J. Earth Sci. 2018, 107, 1321–1342. [Google Scholar] [CrossRef]
- Giustini, F.; Brilli, M.; Di Salvo, C.; Mancini, M.; Voltaggio, M. Multidisciplinary characterization of the buried travertine body of Prima Porta (Central Italy). Quat. Int. 2020, 568, 65–78. [Google Scholar] [CrossRef]
- Minissale, A.; Kerrick, D.M.; Magro, G.; Murrell, M.T.; Paladini, M.; Rihs, S.; Sturchio, N.C.; Tassi, F.; Vaselli, O. Geochemistry of Quaternary travertines in the region north of Rome (Italy): Structural, hydrologic and paleoclimatic implications. Earth Planet. Sci. Lett. 2002, 203, 709–728. [Google Scholar] [CrossRef]
- Mancini, M.; Girotti, O.; Cavinato, G.P. Il Pliocene e il Quaternario della Media Valle del Tevere (Appennino Centrale). Geol. Rom. 2004, 37, 175–236. [Google Scholar]
- Manfra, L.; Masi, U.; Turi, B. La composizione isotopica dei travertini del Lazio. Geol. Rom. 1976, 15, 127–174. [Google Scholar]
- Faccenna, C.; Soligo, M.; Billi, A.; De Filippis, L.; Funiciello, R.; Rossetti, C.; Tuccinei, P. Late Pleistocene depositional cycles of the lapis Tiburtinus travertine (Tivoli, Central Italy): Possible influence of climate and fault activity. Glob. Planet. Chang. 2008, 63, 299–308. [Google Scholar] [CrossRef]
- De Filippis, L.; Faccenna, C.; Billi, A.; Anzalone, E.; Brilli, M.; Özkul, M.; Soligo, M.; Tuccimei, P.; Villa, I.M. Growth of fissure ridge travertines from geothermal springs of Denizli basin, western Turkey. Geol. Soc. Am. Bull. 2012, 124, 1629–1645. [Google Scholar] [CrossRef]
- Veizer, J. Chapter 8. Trace elements and isotopes in sedimentary carbonate. In Carbonates: Mineralogy and Chemistry; Reeder, R., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1983; pp. 265–300. [Google Scholar]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Leng, M.J.; Marshall, J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat. Sci. Rev. 2004, 23, 811–831. [Google Scholar] [CrossRef]
- Andrews, J.E. Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Earth Sci. Rev. 2006, 75, 85–104. [Google Scholar] [CrossRef]
- Kampman, N.; Burnside, N.M.; Shipton, Z.K.; Chapman, H.J.; Nicholl, J.A.; Ellam, R.M.; Bickle, M.J. Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nat. Geosci. 2012, 5, 352–358. [Google Scholar] [CrossRef]
- Boccaletti, M.; Ciaranfi, N.; Cosentino, D.; Deiana, G.; Gelati, R.; Lentini, F.; Massari, F.; Moratti, G.; Pescatore, T.; Ricci Lucchi, F.; et al. Palinspastic Restoration and Paleogeographic Reconstruction of the Peri-Tyrrhenian Area during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 77, 41–50. [Google Scholar] [CrossRef]
- Funiciello, R.; Locardi, E.; Parotto, M. Lineamenti geologici dell'area sabatina orientale. Boll. Soc. Geol. Ital. 1976, 83, 831–849. [Google Scholar]
- Barchi, M.; Minelli, G.; Pialli, G. The CROP 03 profile: A synthesis of results on deep structures of the Northern Apennines. Mem. Soc. Geol. Ital. 1998, 52, 383–400. [Google Scholar]
- Jolivet, L.; Faccenna, C.; Goffé, B.; Mattei, M.; Rossetti, F.; Brunet, C.; Storti, F.; Funiciello, R.; Cadet, J.P.; D’Agostino, N.; et al. Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian Sea. J. Geophys. Res. 1998, 103, 12123–12160. [Google Scholar] [CrossRef]
- Chiodini, G.; Cardellini, C.; Amato, A.; Boschi, E.; Caliro, S.; Frondini, F.; Ventura, G. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 2004, 31, L07615. [Google Scholar] [CrossRef]
- Acocella, V.; Funiciello, R. Transverse Systems along the Extensional Tyrrhenian Margin of Central Italy and Their Influence on Volcanism. Tectonics 2006, 25, TC2003. [Google Scholar] [CrossRef]
- Billi, A.; Tiberti, M.M.; Cavinato, G.P.; Cosentino, D.; Di Luzio, E.; Keller, J.V.A.; Kluth, C.; Orlando, L.; Parotto, M.; Praturlon, A.; et al. First results from the CROP-11 deep seismic profile, central Apennines, Italy: Evidence of mid-crustal folding. J. Geol. Soc. Lond. 2006, 163, 583–586. [Google Scholar] [CrossRef]
- Mancini, M.; D’Anastasio, E.; Barbieri, M.; De Martini, P.M. Geomorphological, paleontological and 87Sr/86Sr isotope analyses of Early Pleistocene paleoshorelines to define the uplift of Central Apennines (Italy). Quat. Res. 2007, 67, 487–501. [Google Scholar] [CrossRef]
- Funiciello, R.; Giuliani, R.; Marra, F.; Salvi, S. The influence of volcanism and tectonics on Plio-Quaternary regional landforms in the Southeastern Sabatinian area (Central Italy). Mem. Descr. Carta Geol. d’It. 1994, 49, 323–332. [Google Scholar]
- Marra, F.; Rosa, C.; De Rita, D.; Funiciello, R. Stratigraphic and tectonic features of the Middle Pleistocene sedimentary and volcanic deposits in the area of Rome (Italy). Quat. Int. 1998, 47, 51–63. [Google Scholar] [CrossRef]
- Giordano, G.; Esposito, A.; De Rita, D.; Fabbri, M.; Mazzini, I.; Trigari, A.; Rosa, C.; Funiciello, R. The sedimentation along the Roman coast between Middle and Upper Pleistocene: The interplay of eustatism, tectonics and volcanism. New data and review. Il Quat. 2003, 16, 121–129. [Google Scholar]
- Girotti, O.; Mancini, M. Plio-Pleistocene stratigraphy and relations between marine and non-marine successions in the Middle Valley of the Tiber River. Il Quat. 2003, 16, 89–106. [Google Scholar]
- Marra, F.; Florindo, F. The subsurface geology of Rome: Sedimentary processes, sea-level changes and astronomical forcing. Earth Sci. Rev. 2014, 136, 1–20. [Google Scholar] [CrossRef]
- Milli, S. Depositional setting and high-frequency sequence stratigraphy of the Middle-Upper Pleistocene to Holocene deposits of the Roman Basin. Geol. Romana 1997, 33, 99–136. [Google Scholar]
- Funiciello, R.; Giuliani, R.; Marra, F.; Salvi, S. Superfici strutturali plio-quaternarie al margine sud-orientale del Distretto Vulcanico Sabatino. Studi Geol. Camerti. Spec. CROP 1991, 11, 301–304. [Google Scholar]
- De Rita, D.; Funiciello, R.; Parotto, M. Geological Map of the Colli Albani Volcanic Complex, 1:50,000 Scale; SELCA: Florence, Italy, 1988. [Google Scholar]
- De Rita, D.; Faccenna, C.; Funiciello, R.; Rosa, C. Structural and geological evolution of the Colli Albani volcanic district. In The Volcano of the Alban Hills; Trigila, R., Ed.; Tipografia SGS: Rome, Italy, 1995; pp. 33–71. [Google Scholar]
- Barberi, F.; Buonasorte, G.; Cioni, R.; Fiordelisi, A.; Foresi, L.; Iaccarino, S.; Laurenzi, M.A.; Sbrana, A.; Vernia, A.; Villa, I.M. Plio–Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem. Descr. Carta Geol. It. 1994, 49, 77–135. [Google Scholar]
- Karner, D.B.; Marra, F.; Renne, P.R. The history of the Monti Sabatini and Alban Hills volcanoes: Groundwork for assessing volcani-tecnonic hazards for Rome. J. Volcanol. Geotherm. Res. 2001, 107, 185–219. [Google Scholar] [CrossRef]
- Alfonsi, L.; Funiciello, R.; Mattei, M.; Girotti, O.; Maiorani, A.; Preite Martinez, M.; Trudu, C.; Turi, B. Structural and geochemical features of the Sabina strike-slip fault (Central Apennines). Boll. Soc. Geol. Ital. 1991, 110, 217–230. [Google Scholar]
- Faccenna, C. Structural and hydrogeological features of Pleistocene shear zones in the area of Rome (Central Italy). Ann. Geofis. 1994, 37, 121–133. [Google Scholar] [CrossRef]
- Faccenna, C.; Funiciello, R.; Mattei, M. Late Pleistocene N-S shear zones along the Latium Tyrrhenian margin: Structural characters and volcanological implications. Boll. Geofis. Teor. Appl. 1994, 36, 507–522. [Google Scholar]
- Milli, S.; Mancini, M.; Moscatelli, M.; Stigliano, F.; Marini, M.; Cavinato, G.P. From river to shelf, anatomy of a high-frequency depositional sequence: The late Pleistocene to Holocene Tiber depositional sequence. Sedimentology 2016, 63, 1886–1928. [Google Scholar] [CrossRef]
- Di Salvo, C.; Di Luzio, E.; Mancini, M.; Moscatelli, M.; Capelli, G.; Cavinato, G.P.; Mazza, R. GIS-based hydrostratigraphic modeling of the city of Rome (Italy): Analysis of the geometric relationships between a buried aquifer in the Tiber Valley and the confining hydrostratigraphic complexes. Hydrogeol. J. 2012, 20, 1549–1567. [Google Scholar] [CrossRef]
- Minissale, A. Origin, transport and discharge of CO2 in central Italy. Earth Sci. Rev. 2004, 66, 89–141. [Google Scholar] [CrossRef]
- Kele, S.; Breitenbach, S.F.M.; Capezzuoli, E.; Meckler, A.N.; Ziegler, M.; Millan, I.M.; Kluge, T.; Deák, J.; Hanselmann, K.; John, C.M.; et al. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6–95 °C temperature range. Geochim. Cosmochim. Acta 2015, 168, 172–192. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Folk, R.L. Travertines: Depositional morphology and the bacterially constructed constituents. J. Sediment. Petrol. 1984, 54, 289–316. [Google Scholar]
- Andrews, J.E.; Brasier, A.T. Seasonal records of climatic change in annually laminated tufas: Short review and future prospects. J. Quat. Sci. 2005, 20, 411–421. [Google Scholar] [CrossRef]
- Claes, H.; Huysmans, M.; Soete, J.; Dirix, K.; Vassilieva, E.; Marques Erthal, M.; Vandewijngaerde, W.; Hamaekers, H.; Aratman, C.; Özkul, M.; et al. Elemental geochemistry to complement stable isotope data of fossil travertine: Importance of digestion method and statistics. Sediment. Geol. 2019, 386, 118–131. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Fairchild, I.J. Partitioning of Sr and Mg into calcite under karst-analogue experimental conditions. Geochim. Cosmochim. Acta 2001, 65, 47–62. [Google Scholar] [CrossRef]
- Ihlenfeld, C.; Norman, M.D.; Gagan, M.K.; Drysdale, R.N.; Maas, R.; Webb, J. Climatic significance of seasonal trace element and stable isotope variations in a modern freshwater tufa. Geochim. Cosmochim. Acta 2003, 67, 2341–2357. [Google Scholar] [CrossRef]
- Gabitov, R.I.; Sadekov, A.; Leinweber, A. Crystal growth rate effect on Mg/Ca and Sr/Ca partitioning between calcite and fluid: An in situ approach. Chem. Geol. 2014, 367, 70–82. [Google Scholar] [CrossRef]
- Day, C.D.; Henderson, G.M. Controls on trace-element partitioning in cave-analogue calcite. Geochim. Cosmochim. Acta 2014, 120, 612–627. [Google Scholar] [CrossRef]
- Jensen, D.L.; Boddum, J.K.; Tjell, J.C.; Christensen, T.H. The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments. Appl. Geochem. 2002, 17, 503–511. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef]
- Johnsen, S.J.; Clausen, H.B.; Dansgaard, W.; Fuhrer, K.; Gundestrup, N.; Hammer, C.U.; Iversen, P.; Jouzel, J.; Stauffer, B.; Steffensen, J.P. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 1992, 359, 311–313. [Google Scholar] [CrossRef]
- Dansgaard, W.; Johnsen, S.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Sveinbjörnsdottir, A.E.; Jouzel, J.; et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The last glacial maximum. Science 2009, 325, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Tzedakis, P.C.; Andrieu, V.; de Beaulieu, J.-L.; Birks, H.J.B.; Crowhurst, S.; Follieri, M.; Hooghiemstra, H.; Magri, D.; Reille, M.; Sadori, L.; et al. Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quat. Sci. Rev. 2001, 20, 1583–1592. [Google Scholar] [CrossRef]
- Spratt, M.; Lisiecki, L.E. A Late Pleistocene sea level stack. Clim. Past 2016, 12, 1079–1092. [Google Scholar] [CrossRef]
Sample | Depth (m) | δ13C (‰) | δ18O (‰) | Fe (ppm) | K (ppm) | Mg (ppm) | Mn (ppm) | Na (ppm) | Sr (ppm) | Age (ka) |
---|---|---|---|---|---|---|---|---|---|---|
TR8 C | 7.90 | 11.84 | −3.30 | 577 | 819 | 3710 | 1291 | 913 | 1027 | |
TR8 E | 7.98 | 11.42 | −3.29 | 477 | 961 | 4184 | 1480 | 1151 | 1133 | |
TR9 C | 8.08 | 10.57 | −3.11 | 752 | 809 | 3694 | 1637 | 912 | 850 | 24.2 |
TR9 L | 8.38 | 11.65 | −3.37 | 449 | 1019 | 3765 | 1775 | 1167 | 1201 | |
TR9 P | 8.55 | 11.26 | −3.25 | 474 | 934 | 3909 | 1593 | 1042 | 894 | 44.6 |
TR9 U | 8.76 | 11.24 | −3.6 | 638 | 830 | 2947 | 1395 | 908 | 727 | |
TR9 X | 8.84 | 11.54 | −3.41 | 586 | 706 | 2370 | 1127 | 672 | 478 | |
TR9 Z | 8.97 | 11.06 | −3.06 | 678 | 667 | 2463 | 1551 | 656 | 432 | |
TR10 C | 9.10 | 10.81 | −3.15 | 740 | 665 | 2197 | 1287 | 656 | 459 | |
TR10 E | 9.18 | 10.38 | −3.54 | 491 | 668 | 2107 | 1247 | 630 | 445 | |
TR10 F | 9.23 | 10.83 | −3.32 | 508 | 656 | 2248 | 1179 | 624 | 439 | 50.4 |
TR10 H | 9.32 | 10.61 | −3.16 | 612 | 638 | 1805 | 1271 | 593 | 315 | |
TR10 O | 9.54 | 11.00 | −3.30 | 590 | 677 | 2364 | 953 | 667 | 350 | |
TR11 G | 10.07 | 11.54 | −2.93 | 541 | 672 | 2671 | 1239 | 716 | 336 | |
TR11 M | 10.35 | 11.52 | −2.88 | 604 | 700 | 2992 | 1176 | 736 | 361 | 53.5 |
TR11 P | 10.46 | 11.22 | −3.08 | 694 | 774 | 2493 | 1392 | 757 | 339 | |
TR11 R | 10.53 | 11.82 | −2.66 | 790 | 712 | 3360 | 1047 | 767 | 412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brilli, M.; Giustini, F. Geochemical Stratigraphy of the Prima Porta Travertine Deposit (Roma, Italy). Minerals 2023, 13, 789. https://doi.org/10.3390/min13060789
Brilli M, Giustini F. Geochemical Stratigraphy of the Prima Porta Travertine Deposit (Roma, Italy). Minerals. 2023; 13(6):789. https://doi.org/10.3390/min13060789
Chicago/Turabian StyleBrilli, Mauro, and Francesca Giustini. 2023. "Geochemical Stratigraphy of the Prima Porta Travertine Deposit (Roma, Italy)" Minerals 13, no. 6: 789. https://doi.org/10.3390/min13060789
APA StyleBrilli, M., & Giustini, F. (2023). Geochemical Stratigraphy of the Prima Porta Travertine Deposit (Roma, Italy). Minerals, 13(6), 789. https://doi.org/10.3390/min13060789