Region Expansion of a Hyperspectral-Based Mineral Map Using Random Forest Classification with Multispectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Method
2.1.1. Step 1: Preprocessing
2.1.2. Step 2: Mineral Mapping from HS Images
2.1.3. Step 3: Misalignment Correction by RF Multiclass Classification
2.1.4. Step 4: Selection of Input Variables by Iterative RF Multiclass Classification
2.1.5. Step 5: Mineral Identification by Iterative RF Two-Class Classification
2.2. Study Area and Data Used
2.2.1. Study Area
2.2.2. HS and MS Images Used
2.3. Validation Method
2.3.1. Methods to Be Compared
2.3.2. Application of the Methods
3. Results
3.1. Validation Results Using AVIRIS and ASTER Images
3.2. Validation Results Using HISUI and ASTER Images
3.3. Effect of Misalignment between AVIRIS and ASTER Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cudahy, T. Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences 2016, 6, 52. [Google Scholar] [CrossRef]
- Sabins, F.F. Remote Sensing for Mineral Exploration; Elsevier: Amsterdam, The Netherlands, 1999; Volume 14. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote Sens. 2013, 6, 310–329. [Google Scholar] [CrossRef]
- Abrams, M.; Hook, S.J. Simulated ASTER Data for Geologic Studies. IEEE Trans. Geosci. Remote Sens. 1995, 33, 692–699. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic Mapping in the Mountain Pass, California Area Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Vural, A.; Akpinar, İ.; Sipahi, F. Mineralogical and Chemical Characteristics of Clay Areas, Gümüşhane Region (NE Turkey), and Their Detection Using the Crósta Technique with Landsat 7 and 8 Images. Nat. Resour. Res. 2021, 30, 3955–3985. [Google Scholar] [CrossRef]
- Koike, K.; Kouda, R. Recent Trends of Remote Sensing Technologies Applied to Metallic Mineral and Geothermal Resources Exploration. J. MMIJ 2016, 132, 96–113. [Google Scholar] [CrossRef]
- Jingu, H.; Kudou, N.; Kashimura, O.; Kato, M.; Abrams, M. Mineral Identification and Quantification for the Practical Use of Satelliteborne Hyperspectral Sensor. J. Remote Sens. Soc. Jpn. 2012, 32, 300–312. [Google Scholar]
- Onuma, T.; Tsukada, M. Geological Interpretation Using Landsat TM Imagery in the Kalpin Uplift, NW Tarim Basin, China. J. Remote Sens. Soc. Jpn. 1999, 19, 13–28. [Google Scholar]
- Mars, J.C.; Rowan, L.C. Spectral Assessment of New ASTER SWIR Surface Reflectance Data Products for Spectroscopic Mapping of Rocks and Minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Stefano, P.; Angelo, P.; Simone, P.; Filomena, R.; Federico, S.; Tiziana, S.; Umberto, A.; Vincenzo, C.; Acito, N.; Marco, D.; et al. The PRISMA Hyperspectral Mission: Science Activities and Opportunities for Agriculture and Land Monitoring. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 4558–4561. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kashimura, O.; Tanii, J.; Iwasaki, A.; Matsunaga, T.; Tsuchida, S.; Yamamoto, H. Outline and Prospect of Hyperspectral Imager Suite (HISUI). J. Remote Sens. Soc. Jpn. 2012, 32, 280–286. [Google Scholar]
- Cawse-Nicholson, K.; Townsend, P.A.; Schimel, D.; Assiri, A.M.; Blake, P.L.; Buongiorno, M.F.; Campbell, P.; Carmon, N.; Casey, K.A.; Correa-Pabón, R.E.; et al. NASA’s Surface Biology and Geology Designated Observable: A Perspective on Surface Imaging Algorithms. Remote Sens. Environ. 2021, 257, 112349. [Google Scholar] [CrossRef]
- Rast, M.; Nieke, J.; Adams, J.; Isola, C.; Gascon, F. COPERNICUS HYPERSPECTRAL IMAGING MISSION FOR THE ENVIRONMENT (CHIME). In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 108–111. [Google Scholar] [CrossRef]
- Kruse, F.A.; Perry, S.L. Regional Mineral Mapping by Extending Hyperspectral Signatures Using Multispectral Data. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007; pp. 1–14. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping Target Signatures Via Partial Unmixing of AVIRIS Data. In Proceedings of the Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995; Volume 1, pp. 1–95. [Google Scholar]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Proceedings of the Summaries of the Third Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; Volume 1. [Google Scholar]
- Hirai, A.; Tonooka, H. Mineral Discrimination by Combination of Multispectral Image and Surrounding Hyperspectral Image. J. Appl. Remote Sens. 2019, 13, 024517. [Google Scholar] [CrossRef]
- Hirai, A.; Tonooka, H.; Li, Y. Effectiveness of WorldView-3/SWIR in Mineral Discrimination Using Multispectral Image and Surrounding Hyperspectral Image. J. Remote Sens. Soc. Jpn. 2019, 39, 307–314. [Google Scholar]
- Nakayama, K.; Tonooka, H. Improvement of a Mineral Discrimination Method Using Multispectral Image and Surrounding Hyperspectral Image. J. Appl. Remote Sens. 2021, 15, 040501. [Google Scholar] [CrossRef]
- Alshari, E.A.; Gawali, B.W. Analysis of Machine Learning Techniques for Sentinel-2A Satellite Images. J. Electr. Comput. Eng. 2022, 2022, 9092299. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.-Y.; Chen, M.; Godsill, S. Multi-Band Image Fusion Based on Spectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7236–7249. [Google Scholar] [CrossRef]
- Kruse, F.A.; Kierein-Young, K.S.; Boardman, W. Mineral Mapping at Cuprite, Nevada with a 63-Channel Imaging Spectrometer. ISPRS J. Photogramm. Remote Sens. 1990, 56, 83–92. [Google Scholar]
- Johnson, K.E.; Koperski, K. Vnir-Swir Superspectral Mineral Mapping: An Example from Cuprite, Nevada. Photogramm. Eng. Remote Sens. 2020, 86, 695–700. [Google Scholar] [CrossRef]
- Ge, W.; Cheng, Q.; Jing, L.; Wang, F.; Zhao, M.; Ding, H. Assessment of the Capability of Sentinel-2 Imagery for Iron-Bearing Minerals Mapping: A Case Study in the Cuprite Area, Nevada. Remote Sens. 2020, 12, 3028. [Google Scholar] [CrossRef]
- Carmon, N.; Thompson, D.R.; Bohn, N.; Susiluoto, J.; Turmon, M.; Brodrick, P.G.; Connelly, D.S.; Braverman, A.; Cawse-Nicholson, K.; Green, R.O.; et al. Uncertainty Quantification for a Global Imaging Spectroscopy Surface Composition Investigation. Remote Sens. Environ. 2020, 251, 112038. [Google Scholar] [CrossRef]
- NASA Jet Propulsion Laboratory. AVIRIS—Airborne Visible Infrared Imaging. Available online: https://aviris.jpl.nasa.gov/ (accessed on 24 April 2023).
- NASA. AVIRIS Data Portal. Available online: https://aviris.jpl.nasa.gov/dataportal/ (accessed on 24 April 2023).
- Japan Space Systems. HISUI Hyper-Spectral Imager Suite. Available online: https://www.jspacesystems.or.jp/en/project/observation/hisui/ (accessed on 24 April 2023).
- AST_07XT v003 ASTER L2 Surface Reflectance VNIR and Crosstalk Corrected SWIR. Available online: https://lpdaac.usgs.gov/products/ast_07xtv003/ (accessed on 24 April 2023).
- Iwasaki, A.; Tonooka, H. Validation of a Crosstalk Correction Algorithm for ASTER/SWIR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2747–2751. [Google Scholar] [CrossRef]
- Tonooka, H.; Sakuma, F.; Tachikawa, T.; Kikuchi, M. Radiometric Calibration Status and Recalibration of Aster Thermal Infrared Images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8530–8533. [Google Scholar] [CrossRef]
- Tonooka, H. Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2778–2792. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Fujisada, H. Design and performance of ASTER instrument. In Proceedings of the Proceedings Volume 2583, Advanced and Next-Generation Satellites, Paris, France, 25–28 September 1995; Volume 2583, pp. 16–25. [Google Scholar] [CrossRef]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; et al. Status of Atmospheric Correction Using a MODTRAN4-Based Algorithm. In Proceedings of the Proceedings Volume 4049, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Orlando, FL, USA, 24–28 April 2000; Volume 4049, pp. 199–207. [Google Scholar]
- Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, G.; Gardner, J.; et al. Atmospheric Correction for Short-Wave Spectral Imagery Based on MODTRAN4. In Proceedings of the Proceedings Volume 3753, Imaging Spectrometry V, Denver, CO, USA, 18–23 July 1999; Volume 3753, pp. 61–69. [Google Scholar] [CrossRef]
- Bierwirth, P.N. Evaluation of ASTER satellite data for geological applications. Consultancy Report to Geoscience Australia. 2002; 50 p, unpublished. [Google Scholar]
- Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C. Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), A New Satellite-Imaging System. Econ. Geol. 2003, 98, 1019–1027. [Google Scholar] [CrossRef]
- Gozzard, J.R. Image Processing of ASTER Multispectral Data; Geological Survey of WA: East Perth, WA, Australia, 2006.
- Rajendran, S.; Nasir, S. ASTER Capability in Mapping of Mineral Resources of Arid Region: A Review on Mapping of Mineral Resources of the Sultanate of Oman. Ore Geol. Rev. 2019, 108, 33–53. [Google Scholar] [CrossRef]
- Volesky, J.C.; Stern, R.J.; Johnson, P.R. Geological Control of Massive Sulfide Mineralization in the Neoproterozoic Wadi Bidah Shear Zone, Southwestern Saudi Arabia, Inferences from Orbital Remote Sensing and Field Studies. Precambrian Res. 2003, 123, 235–247. [Google Scholar] [CrossRef]
- Hewson, R.D.; Cudahy, T.J.; Huntington, J.F. Geologic and Alteration Mapping at Mt Fitton, South Australia, Using ASTER Satellite-Borne Data. Scanning the Present and Resolving the Future. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001; Volume 2, pp. 724–726. [Google Scholar]
- Ninomiya, Y. Mapping Quartz, Carbonate Minerals, and Mafic-Ultramafic Rocks Using Remotely Sensed Multispectral Thermal Infrared ASTER Data. In Proceedings of the Thermosense XXIV, Orlando, FL, USA, 1–5 April 2002; Volume 4710, pp. 191–202. [Google Scholar]
- Sengar, V.K.; Venkatesh, A.S.; Champati ray, P.K.; Sahoo, P.R.; Khan, I.; Chattoraj, S.L. Spaceborne Mapping of Hydrothermal Alteration Zones Associated with the Mundiyawas-Khera Copper Deposit, Rajasthan, India, Using SWIR Bands of ASTER: Implications for Exploration Targeting. Ore Geol. Rev. 2020, 118, 103327. [Google Scholar] [CrossRef]
- Gabr, S.; Ghulam, A.; Kusky, T. Detecting Areas of High-Potential Gold Mineralization Using ASTER Data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and Alteration Mineral Mapping in Poorly Exposed Lithologies Using Landsat-8 and ASTER Satellite Data: North-Eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2019, 108, 112–133. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. ASTER, ALI and Hyperion Sensors Data for Lithological Mapping and Ore Minerals Exploration. Springerplus 2014, 3, 130. [Google Scholar]
- Abrams, M.; Yamaguchi, Y. Twenty Years of ASTER Contributions to Lithologic Mapping and Mineral Exploration. Remote Sens 2019, 11, 1394. [Google Scholar] [CrossRef]
Type | Sensor | Date and Time (UTC) | Spatial Resolution (m) | Product ID |
---|---|---|---|---|
HS sensor | AVIRIS | 20 September 2006 19:21 | 15.7 | f060920t01p00r05 |
HISUI | 5 April 2021 20:02 | 20 | HSHL1G_N376W1172_20210405200234_20221208052533 | |
MS sensor | ASTER | 15 August 2006 18:38 | VNIR: 15 SWIR: 30 TIR: 90 | AST_07XT_00308152006183834_20230424001733_7858 AST_L1T_00308152006183834_201 50515181406_80216 |
Subsystem | Band | Spectral Range (μm) | Spatial Resolution (m) | Signal Quantization Levels (bits) |
---|---|---|---|---|
VNIR | 1–96 | 0.360–1.259 | 4–20 | 12 |
SWIR | 97–224 | 1.260–2.510 |
Subsystem | Band | Spectral Range (μm) | Spatial Resolution (m) | Signal Quantization Levels (bits) |
---|---|---|---|---|
VNIR | 1–57 | 0.405–0.965 | 20–31 | 12 |
SWIR | 58–185 | 0.970–2.475 |
Subsystem | Band | Spectral Range (μm) | Spatial Resolution (m) | Signal Quantization Levels (bits) |
---|---|---|---|---|
VNIR | 1 | 0.520–0.600 | 15 | 8 |
2 | 0.630–0.690 | |||
3N/3B | 0.760–0.860 | |||
SWIR | 4 | 1.600–1.700 | 30 | |
5 | 2.145–2.185 | |||
6 | 2.185–2.225 | |||
7 | 2.235–2.285 | |||
8 | 2.295–2.365 | |||
9 | 2.360–2.430 | |||
TIR | 10 | 8.125–8.475 | 90 | 12 |
11 | 8.475–8.825 | |||
12 | 8.925–9.275 | |||
13 | 10.25–10.95 | |||
14 | 10.95–11.65 |
No. | ASTER Band Math | Features | Comments | Reference |
---|---|---|---|---|
1 | 2/1 | Ferric iron, Fe3+ discrimination (blue) | — | Rowan et al., 2003 [6] Hewson et al., 2001 [48] Abrams et al., 1995 [5] |
2 | (5/3) + (1/2) | Ferric iron, Fe2+ | — | Rowan et al., 2003 [6] |
3 | 4/5 | Laterite alteration | — | Bierwith, 2002 [43] Volesky et al., 2003 [47] |
4 | 4/2 | Gossan | — | Volesky et al., 2003 [47] |
5 | 5/4 | Ferrous silicates (biotite, chlorite, amphibole) | Fe oxide Cu–Au alteration | Hewson et al., 2001 [48] |
6 | 4/3 | Ferric oxide discrimination (green) | Can be ambiguous | Hewson et al., 2001 [48] Abrams et al., 1995 [5] |
7 | (7 + 9)/8 | Carbonate–chlorite–epidote | — | Rowan et al., 2003 [6] |
8 | (6 + 9)/(7 + 8) | Epidote–chlorite–amphibole | Endoskarn | Hewson et al., 2001 [48] |
9 | (6 + 9)/8 | Amphibole–MgOH | Can be either MgOH or carbonate | Hewson et al., 2001 [48] |
10 | 6/8 | Amphibole | — | Bierwith, 2002 [43] |
11 | (6 + 8)/7 | Dolomite | — | Rowan et al., 2003 [6] |
12 | 13/14 | Carbonate | Exoskarn (calcite–dolomite) | Bierwith, 2002 [43] Ninomiya, 2002 [49] Hewson et al., 2001 [48] |
13 | (5 + 7)/6 | Sericite–muscovite–illite–smectite | Phyllic alteration | Rowan et al., 2003 [6] Hewson et al., 2001 [48] |
14 | (4 + 6)/5 | Alunite–kaolinite–pyrophyllite | — | Rowan et al., 2003 [6] |
15 | 5/6 | Phengite host rock | — | Hewson et al., 2001 [48] Volesky et al., 2003 [47] |
16 | 7/6 | Muscovite | — | Hewson et al., 2001 [48] |
17 | 7/5 | Kaolinite | Approximate only | Hewson et al., 2001 [48] |
18 | (5 × 7)/(6 × 6) | Clay | — | Bierwith, 2002 [43] |
19 | 14/12 | Quartz-rich rocks | — | Rowan et al., 2003 [6] |
20 | (11 × 11)/(10 × 12) | Silica siliceous rocks | — | Bierwith, 2002 [43] Ninomiya, 2002 [49] |
21 | 12/13 | Mafic minerals SIO2 | Inversely correlated with SiO2 content in silicate rocks | Bierwith, 2002 [43] Ninomiya, 2002 [49] Hewson et al., 2001 [48] |
22 | (12 × 12 × 14)/(13 × 13 × 13) | Mafic minerals (improved) | Inversely correlated with SiO2 content in silicate rocks | Ninomiya, 2002 [49] |
23 | 13/12 | SIO2 | Same as 14/12 | — |
24 | 11/10 | Silica | — | Hewson et al., 2001 [48] |
25 | 11/12 | Silica | — | Hewson et al., 2001 [48] |
26 | 13/10 | Silica | — | Hewson et al., 2001 [48] |
27 | 3/2 | Vegetation | — | — |
28 | (3 − 2)/(3 + 2) | NDVI | Normalized difference vegetation index | — |
29 | 4/1 | Discrimination for mapping (red) | — | — |
30 | 3/1 | Discrimination for mapping (green) | — | — |
31 | 12/14 | Discrimination for mapping (blue) | — | — |
32 | 4/7 | Discrimination (red) | — | Abrams et al., 1995 [5] |
Δx = −1 | Δx = ±0 | Δx = +1 | |
---|---|---|---|
Δy = −1 | 81.93 | 83.21 | 81.77 |
Δy = ±0 | 83.20 | 88.90 | 83.29 |
Δy = +1 | 81.69 | 83.24 | 81.98 |
Mineral | Measure | Proposed | Method A | Method B | Improved HT | MS-Based | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | ||
Calcite | Precision | 99.28 | 79.01 | 95.91 | 50.27 | 96.32 | 54.02 | 58.78 | 73.29 | 16.85 | 12.14 |
Recall | 97.41 | 42.97 | 97.35 | 49.84 | 97.29 | 47.56 | 71.46 | 50.63 | 93.34 | 51.22 | |
F1-score | 98.33 | 55.67 | 96.62 | 50.05 | 96.80 | 50.58 | 64.51 | 59.89 | 28.55 | 19.63 | |
Alunite | Precision | 91.33 | 81.54 | 86.43 | 74.15 | 86.90 | 74.98 | 91.64 | 91.75 | 38.42 | 16.07 |
Recall | 81.86 | 65.21 | 87.92 | 76.78 | 87.49 | 75.98 | 41.77 | 35.08 | 72.05 | 67.39 | |
F1-score | 86.34 | 72.47 | 87.17 | 75.44 | 87.20 | 75.48 | 57.38 | 50.75 | 50.11 | 25.95 | |
Montmorillonite | Precision | 99.68 | 3.54 | 97.47 | 2.25 | 97.67 | 2.47 | 5.28 | 0.60 | 13.66 | 2.51 |
Recall | 84.76 | 0.12 | 84.48 | 1.01 | 84.47 | 0.88 | 37.64 | 10.11 | 35.71 | 5.82 | |
F1-score | 91.62 | 0.24 | 90.51 | 1.39 | 90.59 | 1.30 | 9.27 | 1.13 | 19.76 | 3.51 | |
Chlorite | Precision | 96.14 | 87.63 | 95.02 | 86.11 | 95.02 | 86.11 | 75.68 | 71.52 | 91.03 | 86.65 |
Recall | 94.78 | 92.21 | 97.08 | 95.35 | 97.08 | 95.35 | 29.77 | 8.27 | 4.01 | 24.66 | |
F1-score | 95.45 | 89.86 | 96.04 | 90.50 | 96.04 | 90.50 | 42.73 | 14.82 | 7.68 | 38.40 | |
Opal | Precision | 87.36 | 68.92 | 75.92 | 53.54 | 75.62 | 53.19 | 8.22 | 5.76 | 43.85 | 27.44 |
Recall | 70.83 | 37.29 | 77.27 | 48.13 | 76.93 | 47.76 | 10.96 | 16.44 | 2.82 | 3.82 | |
F1-score | 78.23 | 48.40 | 76.59 | 50.69 | 76.27 | 50.33 | 9.39 | 8.54 | 5.30 | 6.70 | |
Kaolinite | Precision | 90.98 | 65.22 | 78.37 | 48.50 | 79.84 | 50.27 | 20.84 | 25.14 | 20.33 | 23.16 |
Recall | 52.47 | 13.30 | 57.17 | 20.32 | 56.52 | 19.56 | 52.60 | 42.75 | 48.73 | 39.66 | |
F1-score | 66.56 | 22.09 | 66.11 | 28.64 | 66.18 | 28.16 | 29.85 | 31.66 | 28.69 | 29.24 | |
Muscovite | Precision | 94.24 | 74.85 | 91.15 | 67.84 | 90.66 | 67.24 | 91.14 | 86.73 | 24.43 | 19.55 |
Recall | 93.38 | 63.47 | 94.06 | 68.37 | 94.20 | 68.72 | 56.41 | 26.74 | 50.28 | 66.75 | |
F1-score | 93.81 | 68.69 | 92.58 | 68.10 | 92.40 | 67.97 | 69.69 | 40.88 | 32.88 | 30.24 | |
Buddingtonite | Precision | 98.83 | 66.67 | 87.44 | 26.47 | 92.97 | 35.00 | 5.37 | 0.24 | 0.00 | 0.00 |
Recall | 87.11 | 6.78 | 89.69 | 15.25 | 88.66 | 11.86 | 57.22 | 33.90 | 0.00 | 0.00 | |
F1-score | 92.60 | 12.31 | 88.55 | 19.35 | 90.77 | 17.72 | 9.81 | 0.48 | 0.00 | 0.00 | |
Nontronite | Precision | 99.74 | 64.90 | 94.81 | 50.47 | 92.17 | 46.52 | 4.02 | 9.39 | 5.29 | 9.52 |
Recall | 42.44 | 1.80 | 41.67 | 6.67 | 41.35 | 7.26 | 51.26 | 76.06 | 28.71 | 30.34 | |
F1-score | 59.54 | 3.50 | 57.89 | 11.78 | 57.09 | 12.56 | 7.46 | 16.72 | 8.94 | 14.49 | |
All | Precision | 95.29 | 65.81 | 89.17 | 51.07 | 89.69 | 52.20 | 40.11 | 40.49 | 28.21 | 21.89 |
Recall | 78.34 | 35.91 | 80.74 | 42.41 | 80.44 | 41.66 | 45.45 | 33.33 | 37.29 | 32.18 | |
F1-score | 85.98 | 46.46 | 84.75 | 46.34 | 84.81 | 46.34 | 42.61 | 36.56 | 32.12 | 26.06 |
Δx = −1 | Δx = ±0 | Δx = +1 | |
---|---|---|---|
Δy = −1 | 62.41 | 64.47 | 62.44 |
Δy = ±0 | 63.79 | 68.37 | 62.96 |
Δy = +1 | 62.24 | 63.28 | 62.25 |
Mineral | Measure | Proposed | Method A | Method B | Improved HT | MS-Based | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | ||
Calcite | Precision | 99.58 | 79.26 | 96.90 | 56.90 | 96.90 | 50.51 | 73.77 | 79.14 | 7.57 | 9.18 |
Recall | 98.50 | 52.73 | 95.36 | 52.08 | 95.36 | 52.60 | 42.84 | 18.47 | 97.37 | 66.66 | |
F1-score | 99.03 | 63.33 | 96.12 | 54.38 | 96.12 | 51.53 | 54.20 | 29.96 | 14.05 | 16.14 | |
Alunite | Precision | 89.17 | 77.50 | 83.14 | 66.76 | 83.33 | 67.45 | 83.60 | 63.57 | 35.40 | 14.03 |
Recall | 87.86 | 74.43 | 91.07 | 78.71 | 91.22 | 78.51 | 75.26 | 66.43 | 71.84 | 67.33 | |
F1-score | 88.51 | 75.93 | 86.93 | 72.24 | 87.10 | 72.56 | 79.21 | 64.97 | 47.42 | 23.22 | |
Montmorillonite | Precision | 98.50 | 39.65 | 93.77 | 9.38 | 96.22 | 22.40 | 10.17 | 1.88 | 16.96 | 3.79 |
Recall | 75.58 | 7.80 | 73.83 | 12.14 | 73.43 | 13.86 | 54.23 | 20.90 | 35.77 | 10.96 | |
F1-score | 85.53 | 13.04 | 82.61 | 10.59 | 83.29 | 17.12 | 17.12 | 3.45 | 23.01 | 5.63 | |
Chlorite | Precision | 90.79 | 67.65 | 87.00 | 67.03 | 86.46 | 66.33 | 76.18 | 60.29 | 87.94 | 90.10 |
Recall | 75.31 | 39.74 | 81.75 | 52.88 | 82.30 | 52.98 | 38.24 | 10.36 | 4.59 | 28.93 | |
F1-score | 82.33 | 50.07 | 84.29 | 59.12 | 84.33 | 58.91 | 50.92 | 17.68 | 8.73 | 43.79 | |
Opal | Precision | 79.15 | 46.39 | 61.92 | 26.37 | 68.13 | 35.56 | 2.43 | 0.24 | 27.29 | 8.74 |
Recall | 77.29 | 43.57 | 81.76 | 52.34 | 77.76 | 47.31 | 31.72 | 37.27 | 18.71 | 20.33 | |
F1-score | 78.21 | 44.94 | 70.47 | 35.07 | 72.62 | 40.60 | 4.51 | 0.48 | 22.20 | 12.23 | |
Kaolinite | Precision | 86.63 | 36.34 | 69.98 | 27.22 | 72.59 | 26.40 | 7.06 | 7.35 | 9.87 | 9.27 |
Recall | 53.26 | 8.89 | 56.57 | 18.53 | 55.60 | 14.89 | 64.32 | 62.53 | 50.49 | 47.11 | |
F1-score | 65.97 | 14.29 | 62.56 | 22.05 | 62.97 | 19.04 | 12.73 | 13.15 | 16.51 | 15.49 | |
Muscovite | Precision | 91.82 | 54.06 | 83.30 | 33.59 | 83.32 | 30.88 | 70.94 | 59.01 | 20.02 | 12.99 |
Recall | 87.71 | 32.37 | 87.70 | 33.77 | 87.67 | 33.71 | 47.39 | 28.79 | 42.28 | 57.65 | |
F1-score | 89.72 | 40.49 | 85.44 | 33.68 | 85.44 | 32.23 | 56.82 | 38.70 | 27.17 | 21.20 | |
Buddingtonite | Precision | 97.83 | 40.00 | 85.26 | 26.92 | 89.19 | 26.92 | 11.83 | 0.26 | 0.00 | 0.00 |
Recall | 92.47 | 15.38 | 91.10 | 53.85 | 90.41 | 53.85 | 61.64 | 100.00 | 0.00 | 0.00 | |
F1-score | 95.07 | 22.22 | 88.08 | 35.90 | 89.80 | 35.90 | 19.85 | 0.52 | 0.00 | 0.00 | |
Nontronite | Precision | 58.04 | 19.34 | 54.25 | 23.52 | 54.73 | 22.67 | 31.84 | 29.37 | 21.37 | 19.43 |
Recall | 55.67 | 28.09 | 60.31 | 37.12 | 59.13 | 35.31 | 58.11 | 57.68 | 24.51 | 21.94 | |
F1-score | 56.83 | 22.91 | 57.12 | 28.79 | 56.85 | 27.61 | 41.14 | 38.92 | 22.83 | 20.61 | |
All | Precision | 87.95 | 51.13 | 79.50 | 37.52 | 81.21 | 38.79 | 40.87 | 33.46 | 25.16 | 18.61 |
Recall | 78.18 | 33.67 | 79.94 | 43.49 | 79.21 | 42.56 | 52.64 | 44.71 | 38.40 | 35.66 | |
F1-score | 82.78 | 40.60 | 79.72 | 40.29 | 80.20 | 40.59 | 46.01 | 38.27 | 30.40 | 24.46 |
Mineral | Measure | Proposed | Method A | Method B | Improved HT | ||||
---|---|---|---|---|---|---|---|---|---|
Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | Overlap | Non-Overlap | ||
Calcite | Precision | 69.45 | 61.83 | 68.11 | 52.03 | 68.23 | 53.41 | 58.78 | 73.29 |
Recall | 68.52 | 44.71 | 68.82 | 51.78 | 68.86 | 51.01 | 71.46 | 50.63 | |
F1-score | 68.98 | 51.89 | 68.46 | 51.91 | 68.54 | 52.18 | 64.51 | 59.89 | |
Alunite | Precision | 82.34 | 79.15 | 77.82 | 71.55 | 78.29 | 72.35 | 91.64 | 91.75 |
Recall | 72.96 | 63.26 | 80.69 | 77.90 | 80.53 | 77.59 | 41.77 | 35.08 | |
F1-score | 77.37 | 70.32 | 79.23 | 74.59 | 79.39 | 74.88 | 57.38 | 50.75 | |
Montmorillonite | Precision | 52.38 | 1.60 | 51.82 | 3.65 | 52.08 | 3.95 | 5.28 | 0.60 |
Recall | 44.73 | 0.09 | 45.00 | 0.64 | 45.07 | 0.46 | 37.64 | 10.11 | |
F1-score | 48.25 | 0.17 | 48.17 | 1.09 | 48.32 | 0.82 | 9.27 | 1.13 | |
Chlorite | Precision | 89.67 | 87.19 | 88.72 | 85.62 | 88.72 | 85.62 | 75.68 | 71.52 |
Recall | 87.24 | 90.77 | 90.60 | 95.69 | 90.60 | 95.69 | 29.77 | 8.27 | |
F1-score | 88.44 | 88.95 | 89.65 | 90.38 | 89.65 | 90.38 | 42.73 | 14.82 | |
Opal | Precision | 64.91 | 68.30 | 59.08 | 54.02 | 58.80 | 53.49 | 8.22 | 5.76 |
Recall | 47.70 | 30.28 | 55.53 | 42.62 | 56.15 | 43.66 | 10.96 | 16.44 | |
F1-score | 54.99 | 41.96 | 57.25 | 47.64 | 57.44 | 48.08 | 9.39 | 8.54 | |
Kaolinite | Precision | 57.35 | 63.55 | 53.92 | 51.03 | 53.71 | 50.45 | 20.84 | 25.14 |
Recall | 30.85 | 10.23 | 35.73 | 16.76 | 35.87 | 16.93 | 52.60 | 42.75 | |
F1-score | 40.12 | 17.62 | 42.98 | 25.23 | 43.02 | 25.36 | 29.85 | 31.66 | |
Muscovite | Precision | 84.35 | 71.33 | 82.00 | 66.18 | 82.10 | 66.41 | 91.14 | 86.73 |
Recall | 84.77 | 65.47 | 85.85 | 70.90 | 85.86 | 70.75 | 56.41 | 26.74 | |
F1-score | 84.56 | 68.28 | 83.88 | 68.46 | 83.94 | 68.51 | 69.69 | 40.88 | |
Buddingtonite | Precision | 54.43 | 16.67 | 51.43 | 25.00 | 50.89 | 11.11 | 5.37 | 0.24 |
Recall | 44.33 | 1.69 | 46.39 | 10.17 | 44.33 | 3.39 | 57.22 | 33.90 | |
F1-score | 48.86 | 3.08 | 48.78 | 14.46 | 47.38 | 5.19 | 9.81 | 0.48 | |
Nontronite | Precision | 23.98 | 34.50 | 23.57 | 43.84 | 23.45 | 35.23 | 4.02 | 9.39 |
Recall | 9.90 | 0.45 | 10.06 | 0.83 | 10.18 | 1.18 | 51.26 | 76.06 | |
F1-score | 14.01 | 0.90 | 14.10 | 1.63 | 14.20 | 2.28 | 7.46 | 16.72 | |
All | Precision | 64.32 | 53.79 | 61.83 | 50.32 | 61.81 | 48.00 | 40.11 | 40.49 |
Recall | 54.56 | 34.11 | 57.63 | 40.81 | 57.49 | 40.07 | 45.45 | 33.33 | |
F1-score | 59.04 | 41.74 | 59.66 | 45.07 | 59.57 | 43.68 | 42.61 | 36.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsubomatsu, H.; Tonooka, H. Region Expansion of a Hyperspectral-Based Mineral Map Using Random Forest Classification with Multispectral Data. Minerals 2023, 13, 754. https://doi.org/10.3390/min13060754
Tsubomatsu H, Tonooka H. Region Expansion of a Hyperspectral-Based Mineral Map Using Random Forest Classification with Multispectral Data. Minerals. 2023; 13(6):754. https://doi.org/10.3390/min13060754
Chicago/Turabian StyleTsubomatsu, Hideki, and Hideyuki Tonooka. 2023. "Region Expansion of a Hyperspectral-Based Mineral Map Using Random Forest Classification with Multispectral Data" Minerals 13, no. 6: 754. https://doi.org/10.3390/min13060754