Sedimentary Mn Metallogenesis and Coupling among Major Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition
Abstract
:1. Introduction
2. Initiation and Termination of Sturtian Glaciation
3. Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition
3.1. Microorganismal Recovery
3.2. Atmospheric Oxygen Enhancement
3.3. Redox-Stratified Water System
4. Mn Metallogenesis during the Sturtian Glacial–Interglacial Transition
4.1. Mn Deposits
4.1.1. Mn Deposit in the Otjosondu Region
4.1.2. Mn Deposits in the South-Eastern Yangtze Platform
4.2. Contribution of Microbial Processes to Mn Metallogenesis
4.3. Mn and Fe Fractionation
4.4. Coupling Effect on Mn Metallogenesis
- (1)
- Oxygen availability. The formation of Mn(IV) oxides required a strong oxidizing potential. The recovery of microorganisms after the Sturtian glaciation promoted marine primary productivity and boosted the O2 levels of atmosphere and a shallow hydrosphere layer.
- (2)
- Redox-stratified restricted basins. The water column underwent a redox change from an overall anoxic state during the Sturtian glaciation to a stratified redox state in its aftermath. The deep anoxic part of a stratified basin served as a storage area for concentrated dissolved Mn(II) that emerged due to hydrothermal activity.
- (3)
- Redox transition from anoxic to oxic. Anoxic water introduced with substantial pre-stored Mn(II) was exchanged for oxygenated water. This process was achieved through transgression–regression cycles and the downwelling of dense surface waters.
5. Mn Metallogenesis through Geologic Time
5.1. Major Sedimentary Mn Deposits throughout Earth’s History
5.2. General Models for Mn Metallogenesis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maynard, J.B. Manganiferous sediments, rocks, and ores. Treatise Geochem. 2003, 7, 289–308. [Google Scholar] [CrossRef]
- Roy, S. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Sci. Rev. 2006, 77, 273–305. [Google Scholar] [CrossRef]
- Bühn, B.; Stanistreet, I.G.; Okrusch, M. Late Proterozoic outer shelf manganese and iron deposits at Otjosondu (Namibia) related to the Damaran oceanic opening. Econ. Geol. 1992, 87, 1393–1411. [Google Scholar] [CrossRef]
- Polgári, M.; Gyollai, I.; Fintor, K.; Horváth, H.; Pál-Molnár, E.; Biondi, J.C. Microbially mediated ore-forming processes and cell mineralization. Front. Microbiol. 2019, 10, 2731. [Google Scholar] [CrossRef]
- Och, L.M.; Shields-Zhou, G.A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 2012, 110, 26–57. [Google Scholar] [CrossRef]
- Yu, W.C.; Algeo, T.J.; Du, Y.S.; Maynard, B.; Guo, H.; Zhou, Q.; Peng, T.P.; Wang, P.; Yuan, L.J. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post–glacial ventilation of Nanhua Basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 459, 321–337. [Google Scholar] [CrossRef]
- Yu, W.C.; Polgári, M.; Gyollai, I.; Fintor, K.; Szabó, M.; Kovács, I.; Fekete, J.; Du, Y.S.; Zhou, Q. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Res. 2019, 322, 122–135. [Google Scholar] [CrossRef]
- Polgári, M.; Gyollai, I. Comparative study of formation conditions of Fe-Mn ore microbialites based on mineral assemblages: A critical self-overview. Minerals 2022, 12, 1273. [Google Scholar] [CrossRef]
- Liu, L.P.; Wu, W.C.; Jiang, Z.Z.; Jia, Y.G.; Song, G.X.; Sun, Z.L. Genesis of Cryogenian Xiangtan-type manganese deposits in Hunan Province, China: Constraints from geochemical evidence. Geochimica 2022, 51, 696–715, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Sukumaran, P.V. Geologic and climatic puzzle of the Proterozoic snowball earth. Resonance 2003, 8, 8–17. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic snowball earth. Science 1998, 281, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P.F.; Abbot, D.S.; Ashkenazy, Y.; Benn, D.I.; Brocks, J.J.; Cohen, P.A.; Cox, G.M.; Creveling, J.R.; Donnadieu, Y.; Erwin, D.H.; et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 2017, 3, e1600983. [Google Scholar] [CrossRef] [PubMed]
- Goddéris, Y.; Donnadieu, Y.; Nédélec, A.; Dupré, B.; Dessert, C.; Grard, A.; Ramstein, G.; François, L.M. The Sturtian ‘snowball’ glaciation: Fire and ice. Earth Planet. Sci. Lett. 2003, 211, 1–12. [Google Scholar] [CrossRef]
- Donnadieu, Y.; Goddéris, Y.; Ramstein, G.; Nédélec, A.; Meert, J. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 2004, 428, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.J.; Runnegar, B.; Prave, A.R.; Hoffmann, K.H.; Arthur, M.A. Two or four Neoproterozoic glaciations? Geology 1998, 26, 1059–1063. [Google Scholar] [CrossRef]
- Gernon, T.M.; Hincks, T.K.; Tyrrell, T.; Rohling, E.J.; Palmer, M.R. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. Nat. Geosci. 2016, 9, 242–248. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Kinny, P.D.; Wang, J.; Zhang, S.; Zhou, H. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res. 2003, 122, 85–109. [Google Scholar] [CrossRef]
- Fanning, C.M.; Link, P.K. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology 2004, 32, 881–884. [Google Scholar] [CrossRef]
- Bowring, S.A.; Grotzinger, J.P.; Condon, D.J.; Ramezani, J.; Newall, M.J.; Allen, P.A. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 2007, 307, 1097–1145. [Google Scholar] [CrossRef]
- Lan, Z.W.; Li, X.H.; Zhang, Q.R.; Li, Q.L. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U–Pb and O isotope evidence from the Jiangkou Group, South China. Precambrian Res. 2015, 267, 28–38. [Google Scholar] [CrossRef]
- Lan, Z.W.; Li, X.H.; Zhu, M.Y.; Zhang, Q.R.; Li, Q.L. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U–Pb zircon age constraints and regional and global significance. Precambrian Res. 2015, 263, 123–141. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, X.K.; Zhao, N.N.; Yan, B.; Li, X.H.; Shi, F.Q.; Zhang, F.F. Timing of the termination of Sturtian glaciation: SIMS U-Pb zircon dating from South China. J. Asian Earth Sci. 2019, 177, 287–294. [Google Scholar] [CrossRef]
- Zhou, Q.; Du, Y.S.; Yuan, L.J. Huanan Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenesis; Science Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Yu, W.C.; Algeo, T.J.; Zhou, Q.; Du, Y.S.; Wang, P. Cryogenian cap carbonate models: A review and critical assessment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 552, 109727. [Google Scholar] [CrossRef]
- Rooney, A.D.; Macdonald, F.A.; Strauss, J.V.; Dudás, F.Ö.; Hallmann, C.; Selby, D. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. Proc. Natl. Acad. Sci. USA 2014, 111, 51–56. [Google Scholar] [CrossRef]
- Rooney, A.D.; Strauss, J.V.; Brandon, A.D.; Macdonald, F.A. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology 2015, 43, 459–462. [Google Scholar] [CrossRef]
- Giddings, J.A.; Wallace, M.W. Sedimentology and C-isotope geochemistry of the ‘Sturtian’ cap carbonate, South Australia. Sediment. Geol. 2009, 216, 1–14. [Google Scholar] [CrossRef]
- Kendall, B.; Creaser, R.A.; Selby, D. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation. Geology 2006, 34, 729–732. [Google Scholar] [CrossRef]
- Yu, W.C.; Algeo, T.J.; Du, Y.S.; Zhou, Q.; Wang, P.; Xu, Y.; Yuan, L.J.; Pan, W. Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China. Precambrian Res. 2017, 293, 112–130. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Schrag, D.P. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 2002, 14, 129–155. [Google Scholar] [CrossRef]
- Ye, Y.T.; Wang, H.J.; Zhai, L.N.; Zhou, W.X.; Wang, X.M.; Zhang, S.C.; Wu, C.D. Geological events and their biological responses during the Neoproterozoic Era. Acta Sedimentol. Sin. 2017, 35, 203–216, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, T.G.; Li, M.J.; Wang, C.J.; Wang, G.L.; Zhang, W.B.; Shi, Q.; Zhu, L. Organic molecular evidence in the Late Neoproterozoic Tillites for a palaeo-oceanic environment during the snowball Earth era in the Yangtze region, southern China. Precambrian Res. 2008, 162, 317–326. [Google Scholar] [CrossRef]
- Mckay, C.P. Thickness of tropical ice and photosynthesis on a snowball earth. Geophys. Res. Lett. 2000, 27, 2153–2156. [Google Scholar] [CrossRef]
- Halverson, G.P.; Hoffman, P.F.; Schrag, D.P.; Kaufman, A.J. A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: Prelude to snowball Earth? Geochem. Geophys. Geosyst. 2002, 3, 1–24. [Google Scholar] [CrossRef]
- Johnston, D.T.; Macdonald, F.A.; Gill, B.C.; Hoffman, P.F.; Schrag, D.P. Uncovering the Neoproterozoic carbon cycle. Nature 2012, 483, 32–324. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.H.; Allen, C.M. Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 2008, 1, 554–558. [Google Scholar] [CrossRef]
- Pruss, S.B.; Bosak, T.; Macdonald, F.A.; Mclane, M.; Hoffman, P.F. Microbial facies in a Sturtian cap carbonate, the Rasthof Formation, Otavi Group, northern Namibia. Precambrian Res. 2010, 181, 187–198. [Google Scholar] [CrossRef]
- Le Ber, E.; Le Heron, D.P.; Winterleitner, G.; Bosence, D.W.J.; Vining, B.A.; Kamona, F. Microbialite recovery in the aftermath of the Sturtian glaciation: Insights from the Rasthof Formation, Namibia. Sediment. Geol. 2013, 294, 1–12. [Google Scholar] [CrossRef]
- Lenton, T.M.; Boyle, R.A.; Poulton, S.W.; Shields-Zhou, G.A.; Butterfield, N.J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 2014, 7, 257–265. [Google Scholar] [CrossRef]
- Mei, M.X. Great oxidation event in history of the Earth: An important clue for the further understanding of evolution of palaeogeographical background. J. Palaeogeogr. 2016, 18, 315–334, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wei, W.; Frei, R.; Klaebe, R.; Li, D.; Wei, G.Y.; Ling, H.F. Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: A chromium-isotope perspective. Precambrian Res. 2018, 319, 198–210. [Google Scholar] [CrossRef]
- Li, C.; Love, G.D.; Lyons, T.W.; Scott, C.T.; Feng, L.J.; Huang, J.; Chang, H.J.; Zhang, Q.R.; Chu, X.L. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet. Sci. Lett. 2012, 331–332, 246–256. [Google Scholar] [CrossRef]
- Lau, K.V.; Macdonald, F.A.; Maher, K.; Payne, J.L. Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. Earth Planet. Sci. Lett. 2017, 458, 282–292. [Google Scholar] [CrossRef]
- Wei, W.; Wang, D.; Li, D.; Ling, H.F.; Chen, X.; Wei, G.Y.; Zhang, F.F.; Zhu, X.K.; Yan, B. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China. J. Earth Sci. 2016, 27, 233–241. [Google Scholar] [CrossRef]
- Feng, L.J.; Chu, X.L.; Huang, J.; Zhang, Q.R.; Chang, H.J. Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Res. 2010, 18, 632–637. [Google Scholar] [CrossRef]
- Ai, J.Y.; Zhong, N.N.; Zhang, T.G.; Zhang, Y.; Wang, T.G.; George, S.C. Oceanic water chemistry evolution and its implications for post-glacial black shale formation: Insights from the Cryogenian Datangpo Formation, South China. Chem. Geol. 2021, 566, 120083. [Google Scholar] [CrossRef]
- Wei, G.Y.; Wei, W.; Wang, D.; Li, T.; Yang, X.P.; Shields, G.A.; Zhang, F.F.; Li, G.J.; Chen, T.Y.; Yang, T.; et al. Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation. Earth Planet. Sci. Lett. 2020, 539, 116244. [Google Scholar] [CrossRef]
- Zhang, F.F.; Zhu, X.K.; Yan, B.; Kendall, B.; Peng, X.; Li, J.; Algeo, T.J.; Romaniello, S. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions. Earth Planet. Sci. Lett. 2015, 429, 11–19. [Google Scholar] [CrossRef]
- Xu, L.G.; Frank, A.B.; Lehmann, B.; Zhu, J.M.; Mao, J.W.; Ju, Y.Z.; Frei, R. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity. Sci. Rep. 2019, 9, 15056. [Google Scholar] [CrossRef]
- Hohl, S.V.; Jiang, S.Y.; Viehmann, S.; Wei, W.; Liu, Q.; Wei, H.Z.; Galer, S.J.G. Trace metal and Cd isotope systematics of the basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (bio) geochemical metal cycling in Cryogenian seawater. Geosci 2020, 10, 36. [Google Scholar] [CrossRef]
- Cao, H.; Wu, C.Z.; Liu, Y.J.; Wang, Q.W.; Lei, R.X. Characteristics and genesis of bandes iron formation in the Neoproterozoic Chuos formation in Damara belt of Namibia. J. Geol. 2016, 40, 589–598, (In Chinese with English abstract). [Google Scholar]
- Wang, P.; Du, Y.S.; Yu, W.C.; Algeo, T.J.; Zhou, Q.; Xu, Y.; Qi, L.; Yuan, L.J.; Pan, W. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Sci. Rev. 2020, 201, 103032. [Google Scholar] [CrossRef]
- Ma, Z.X.; Liu, X.T.; Yu, W.C.; Du, Y.S.; Du, Q.D. Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin: Insight from the basal Datangpo Formation of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 529, 39–52. [Google Scholar] [CrossRef]
- Häusler, K.; Dellwig, O.; Schnetger, B.; Feldens, P.; Leipe, T.; Moros, M.; Pollehne, F.; Schönke, M.; Wegwerth, A.; Arz, H.W. Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): Hydrographic conditions, temporal succession, and Mn budget calculations. Mar. Geol. 2018, 395, 260–270. [Google Scholar] [CrossRef]
- Du, Y.S.; Zhou, Q.; Yu, W.C.; Wang, P.; Yuan, L.J.; Qi, L.; Guo, H.; Xu, Y. Linking the Cryogenian Manganese Metallogenic process in the Southeast Margin of Yangtze Block to break-up of Rodinia supercontinent and Sturtian glaciation. Geol. Sci. Technol. Inf. 2015, 34, 1–7, (In Chinese with English abstract). [Google Scholar]
- Qi, L.; Yu, W.C.; Du, Y.S.; Zhou, Q.; Guo, H.; Wang, J.W.; Wang, P.; Xu, Y. Paleoclimate evolution of the Cryogenian Tiesi’ao Formation-Datangpo Formation in eastern Guizhou Province: Evidence from the chemical index of Alteration. Geol. Sci. Technol. Inf. 2015, 34, 47–57, (In Chinese with English abstract). [Google Scholar]
- Hein, J.R.; Fan, D.L.; Jie, Y.; Liu, T.B.; Yeh, H.W. Composition and origin of Early Cambrian Tiantaishan phosphorite–Mn carbonate ores, Shaanxi Province, China. Ore Geol. Rev. 1999, 15, 95–134. [Google Scholar] [CrossRef]
- Öztürk, H.; Hein, J.R. Mineralogy and stable isotopes of black shale-hosted manganese ores, southwestern Taurides, Turkey. Econ. Geol. 1997, 92, 733–744. [Google Scholar] [CrossRef]
- Polgári, M.; Okita, P.M.; Hein, J.R. Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary. J. Sediment. Petrol. 1991, 61, 384–393. [Google Scholar] [CrossRef]
- Okita, P.M.; Maynard, J.B.; Spiker, E.C.; Force, E.R. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore. Geochim. Cosmochim. Acta 1988, 52, 2679–2685. [Google Scholar] [CrossRef]
- Fan, D.L.; Liu, T.B.; Ye, J. The process of formation of manganese carbonate deposits hosted in black shale series. Econ. Geol. 1992, 87, 1419–1429. [Google Scholar] [CrossRef]
- Yeh, H.W.; Hein, J.R.; Bolton, B.R. Origin of the Nsuta manganese carbonate proto-ore, Ghana: Carbon- and oxygen isotope evidence. J. Geol. Soc. China 1995, 38, 397–409. [Google Scholar]
- Zhou, Q.; Du, Y.S. Ancient Natural Gas Seepage and Sedimentary Manganese Metallogenesis: A Case Study of the Cryogenian Datangpo Type Manganese in the Nanhua Rift Basin; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Polgári, M.; Hein, J.R.; Vigh, T.; Szabó-Drubina, M.; Fórizs, I.; Bíró, L.; Müller, A.; Tóth, A.L. Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geol. Rev. 2012, 47, 87–109. [Google Scholar] [CrossRef]
- Canfield, D.E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 2004, 304, 839–861. [Google Scholar] [CrossRef]
- Olson, S.L.; Kump, L.R.; Kasting, J.F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 2013, 362, 35–43. [Google Scholar] [CrossRef]
- Kasting, J.F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 1987, 34, 205–229. [Google Scholar] [CrossRef]
- Kasting, J.F. Earth’s early atmosphere. Science 1993, 259, 920–926. [Google Scholar] [CrossRef]
- Wiechert, U.H. Earth’s Early Atmosphere. Science 2002, 298, 2341–2342. [Google Scholar] [CrossRef]
- Roy, S. Late Archean initiation of manganese metallogenesis: Its significance and environmental controls. Ore Geol. Rev. 2000, 17, 179–198. [Google Scholar] [CrossRef]
- Mottl, M.J.; Holland, H.D. Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater. Geochim. Cosmochim. Acta 1978, 42, 1103–1115. [Google Scholar] [CrossRef]
- Holland, H.D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 2002, 66, 3811–3826. [Google Scholar] [CrossRef]
- Kuleshov, V.N. A superlarge deposit—Kalahari manganese ore field (Northern Cape, South Africa): Geochemistry of isotopes (δ13C and δ18O) and genesis. Lithol. Miner. Resour. 2012, 47, 217–233. [Google Scholar] [CrossRef]
- Cornell, D.H.; Schütte, S.S. A volcanic-exhalative origin for the world’s largest (Kalahari) Manganese field. Miner. Depos. 1995, 30, 146–151. [Google Scholar] [CrossRef]
- Fan, D.L.; Ye, J.; Li, J.J. Geology, mineralogy, and geochemistry of the Middle Proterozoic Wafangzi ferromanganese deposit, Liaoning Province, China. Ore Geol. Rev. 1999, 15, 31–53. [Google Scholar] [CrossRef]
- Veimarn, A.B.; Vorontzova, T.N.; Martynova, M.V. Stratigraphy, paleogeography and iron–manganese ores of the Famennian of Central Kazakhstan. In Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System—Memoir 14, Volume III: Paleontology, Paleoecology and Biostratigraphy; McMillan, N.J., Embry, A.F., Glass, D.J., Eds.; AAPG: Tulsa, OK, USA, 1988; Volume 14, pp. 681–689. [Google Scholar]
- Okita, P.M.; Shank, W.C., III. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China. Chem. Geol. 1992, 99, 139–163. [Google Scholar] [CrossRef]
- Fan, D.L.; Ye, J.; Yin, L.M.; Zhang, R.F. Microbial processes in the formation of the Sinian Gaoyan manganese carbonate ore, Sichuan Province, China. Ore Geol. Rev. 1999, 15, 79–93. [Google Scholar] [CrossRef]
- Condie, K.C. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet. Sci. Lett. 1998, 163, 97–108. [Google Scholar] [CrossRef]
- Pálfy, J.; Smith, P.L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 2000, 28, 747–750. [Google Scholar] [CrossRef]
- Sinton, C.W.; Duncan, R.A. Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Econ. Geol. 1997, 92, 836–842. [Google Scholar] [CrossRef]
- Glasby, G.P. Manganese deposition through geological time: Dominance of the post-Eocene deep-sea environment. Ore Geol. Rev. 1988, 4, 135–143. [Google Scholar] [CrossRef]
- Jones, C.E.; Jenkyns, H.C. Seawater strontium isotopes, oceanic anoxic events and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 2001, 301, 112–149. [Google Scholar] [CrossRef]
- Frakes, L.A.; Bolton, B.R. Origin of manganese giants: Sea-level change and anoxic–oxic history (Groote Eylandt, Australia). Geology 1984, 12, 83–86. [Google Scholar] [CrossRef]
- Force, E.R.; Cannon, W.F. Depositional model for shallow-marine manganese deposits around black shale basins. Econ. Geol. 1988, 83, 93–117. [Google Scholar] [CrossRef]
- Kuleshov, V.N. Manganese Deposits: Communication 2. Major epochs and phases of manganese accumulation in the Earth’s history. Lithol. Miner. Resour. 2011, 46, 546–565. [Google Scholar] [CrossRef]
- Roy, S. Genetic Diversity of Manganese Deposition in the Terrestrial Geological Record; Geological Society, London, Special Publications: London, UK, 1997; Volume 119, pp. 5–27. [Google Scholar] [CrossRef]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 2015, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Myrow, P.M.; Lamb, M.P.; Ewing, R.C. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth. Science 2018, 360, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Huckriede, H.; Meischner, D. Origin and environment of manganese-rich sediments within black-shale basins. Geochim. Cosmochim. Acta 1996, 60, 1399–1413. [Google Scholar] [CrossRef]
- Herndon, E.M.; Havig, J.R.; Singer, D.M.; Mccormick, M.L.; Kump, L.R. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake. Geochim. Cosmochim. Acta 2018, 231, 50–63. [Google Scholar] [CrossRef]
- Wittkop, C.; Swanner, E.D.; Grengs, A.; Lambrecht, N.; Fakhraee, M.; Myrbo, A.; Bray, A.W.; Poulton, S.W.; Katsev, S. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments. Earth Planet. Sci. Lett. 2020, 538, 116201. [Google Scholar] [CrossRef]
- Van Cappellen, P.; Viollier, E.; Roychoudhury, A.; Clark, L.; Ingall, E.; Lowe, K.; Dichristina, T. Biogeochemical cycles of manganese and iron at the oxic–anoxic transition of a stratified marine basin (Orca Basin, Gulf of Mexico). Environ. Sci. Technol. 1998, 32, 2931–2939. [Google Scholar] [CrossRef]
- Maynard, J.B. The Chemistry of Manganese Ores through Time: A signal of increasing diversity of Earth-surface environments. Econ. Geol. 2010, 105, 535–552. [Google Scholar] [CrossRef]
- An, Z.Z.; Zhang, R.B.; Chen, J.C.; Qin, Y.; Pan, W.; Wu, G.W.; Peng, Q.Y.; Zheng, C.; Zhang, F.F.; Zhu, X.K.; et al. Geological and geochemical characteristics of Daotuo superlarge manganese ore deposit in Songtao County of Guizhou Province: Constraint on formation mechanism of Mn-carbonate ores. Miner. Deposits 2014, 33, 870–884, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Ling, H.F.; Jiang, S.Y. Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment. Prog. Nat. Sci. 2008, 18, 421–429. [Google Scholar] [CrossRef]
- He, J.Y. Ore Geochemistry and Genesis of Datangpo-Type Manganese Deposits from Nanhua Period in Eastern Guizhou; China University of Geosciences: Beijing, China, 2016; (In Chinese with English abstract). [Google Scholar]
- Ma, Z.X.; Luo, L.; Liu, X.T.; Liu, W.; Sun, Z.M. Paleoenvironment of the Datangpo Formation of Nanhua system in Xiaochayuan manganese deposit in Xiushan area of Chongqing. J. Palaeogeogr. 2016, 18, 473–486, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Qu, Y.Z.; Xu, L.G.; Mao, J.W.; Pan, W.; Zhan, P.C.; An, Z.Z. Carbon and oxygen isotope characteristics and mineralization of black shale-hosted manganese carbonate of Datangpo Formation in Tongren, Guizhou Province. Miner. Deposits 2018, 37, 50–66, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Tang, S.Y.; Liu, T.B. Origin of the early Sinian Minle manganese deposit, Hunan Province, China. Ore Geol. Rev. 1999, 15, 71–78. [Google Scholar] [CrossRef]
- Wu, C.Q.; Zhang, Z.W.; Xiao, J.F.; Fu, Y.Z.; Shao, S.X.; Zheng, C.F.; Yao, J.H.; Xiao, C.Y. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform, China: Constraints from geological and geochemical evidence. Ore Geol. Rev. 2016, 75, 76–99. [Google Scholar] [CrossRef]
- Xiao, J.F.; He, J.Y.; Yang, H.Y.; Wu, C.Q. Comparison between Datangpo-type manganese ores and modern marine ferromanganese oxyhydroxide precipitates based on rare earth elements. Ore Geol. Rev. 2017, 89, 290–308. [Google Scholar] [CrossRef]
- Yang, D.S. Geological and Geochemical Characteristics of Baishixi Manganese Deposit and Its Metallogenic Regularity Implication, Songtao, Guizhou Province; Central South University: Changsha, China, 2013; (In Chinese with English abstract). [Google Scholar]
- Zhang, F.F. The Formation Mechanism of Datangpo Manganese Ore Deposits during Nanhua Period in South China and the Paleo-Redox Conditions of Nanhua Marine Basin; Chinese Academy of Geological Sciences: Beijing, China, 2014; (In Chinese with English abstract). [Google Scholar]
- Zhou, Q.; Du, Y.S.; Wang, J.S.; Peng, J.Q. Characteristics and significance of the cold seep carbonates from the Datangpo Formation of the Nanhua series in the northeast Guizhou. Earth Sci.-J. China Univ. Geosci. 2007, 32, 339–346, (In Chinese with English abstract). [Google Scholar]
- Zhu, X.K.; Peng, Q.Y.; Zhang, R.B.; An, Z.Z.; Zhang, F.F.; Yan, B.; Li, J.; Gao, Z.F.; Qin, Y.; Pan, W. Geological and geochemical characteristics of Daotuo super-large manganese ore deposit at Songtao Country in Guizhou Province. Acta Geol. Sin. 2013, 87, 1335–1348, (In Chinese with English abstract). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Jiang, Z.; Chu, F. Sedimentary Mn Metallogenesis and Coupling among Major Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition. Minerals 2023, 13, 712. https://doi.org/10.3390/min13060712
Liu L, Jiang Z, Chu F. Sedimentary Mn Metallogenesis and Coupling among Major Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition. Minerals. 2023; 13(6):712. https://doi.org/10.3390/min13060712
Chicago/Turabian StyleLiu, Liping, Zuzhou Jiang, and Fengyou Chu. 2023. "Sedimentary Mn Metallogenesis and Coupling among Major Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition" Minerals 13, no. 6: 712. https://doi.org/10.3390/min13060712
APA StyleLiu, L., Jiang, Z., & Chu, F. (2023). Sedimentary Mn Metallogenesis and Coupling among Major Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition. Minerals, 13(6), 712. https://doi.org/10.3390/min13060712