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Abstract: The Sturtian (720–670 Ma) glacial–interglacial transition period was an important interval
for sedimentary manganese metallogenesis, including the Mn oxide deposit in the Otjosondu region
in Namibia and Mn carbonate deposits in the Datangpo Formation in the south-eastern Yangtze
Platform, South China. During this period, Earth experienced the breakup of Rodinia, the Sturtian
glaciation, and the Neoproterozoic oxygenation event. In this study, we investigate scenarios that
might have provided geologically and geochemically favorable conditions for Mn metallogenesis. In
these scenarios, the global recovery of microorganisms enhanced marine primary productivity and O2

levels of the hydrosphere and atmosphere during the Sturtian glacial–interglacial transition. However,
the water column was not completely oxidized, maintaining redox stratification. Transgression–
regression cycles or O2-rich downwelling drove the exchange of oxygenated topwater and anoxic
deep water in rift-related basins that developed due to Rodinia’s breakup. The coupling of these
processes precipitated existing dissolved Mn(II) at the margins of basins (Otjosondu region) or at
their centers (Yangtze Platform). In the latter case, precursor Mn oxides were further converted into
Mn carbonates via the reduction of Mn oxides coupled with organic matter oxidation during early
diagenesis. A brief review of Mn metallogenesis in the geological record reveals that Mn metallogenic
processes typically occur under geo-environmental conditions that, in concert, produce favorable
conditions for Mn sourcing, concentration, and sedimentation.

Keywords: Sturtian glaciation; Mn metallogenesis; Datangpo Formation; Chuos Formation; early
diagenesis

1. Introduction

Manganese metallogenesis in sedimentary rocks over the course of Earth’s evolution
has been primarily controlled by redox changes [1,2]. Similar to iron, Mn is a transition
element that undergoes active biogeochemical cycles. Under anoxic conditions and a low
pH (<5) in aquatic systems, dissolved Mn(II) is the most stable and dominant Mn species,
whereas under highly oxic conditions, insoluble oxidized Mn species (Mn(III) and Mn(IV))
are thermodynamically favored [3,4]. Therefore, Mn(II) converts to solid-phase Mn oxides
or hydroxides when it encounters oxidizing conditions or crosses the redox interface in
seawater between oxic and dysoxic water masses.

The breakup of the Rodinian supercontinent, the Sturtian glaciation, and the Neopro-
terozoic oxygenation event (NOE) occurred during the Cryogenian period (720–635 Ma)
in the mid-Neoproterozoic era [3,5–7]. In these scenarios, interstratified Mn oxides and
banded iron formations were formed in the Damara sequence in the Otjosondu region
during the Sturtian glacial–interglacial transition [2,3], as were black shale–hosted Mn
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carbonate deposits in the basal Datangpo Formation in the south-eastern Yangtze Platform,
China [4,6,8,9].

In this study, we investigate these major geo-environmental events and their cou-
pling effects in these two sedimentary Mn deposit formations during the Sturtian glacial–
interglacial transition. We also compile a series of published data, including major and
rare-earth elements and stable carbon and oxygen isotopes of Mn ore and host rock sam-
ples from the Datangpo Formation and selected Mn deposits throughout the geological
record. Based on this analysis, we discuss the metallogenic mechanisms relevant to
Sturtian Mn deposits. Finally, we perform a brief review of major sedimentary Mn de-
posits throughout Earth’s history and present general models for large-scale sedimentary
Mn enrichment.

2. Initiation and Termination of Sturtian Glaciation

In the context of the breakup of Rodinia, Neoproterozoic Earth experienced sev-
eral glacial events. The most severe and long-lasting glacial events were the Sturtian
(720–670 Ma) and Marinoan ones (650–635 Ma) [10–12]. The fundamental factor that is be-
lieved to be responsible for extreme Sturtian glaciation is the spectacular tectonic–magmatic
evolution that occurred in response to tectonic rifting during the breakup of Rodinia [13].
The weathering of the basaltic provinces, especially those located within the equatorial
region, drastically induced atmospheric CO2 drawdown and prompted a global transition
into a cooling stage [14]. Moreover, the increased availability of moisture along the conti-
nental borders of new smaller plates led to increased terrestrial runoff, thereby boosting
global silicate weathering, and thus, further decreasing the level of global atmospheric
CO2 [14,15].

However, mantle-plume-related volcanism continued during the Sturtian period [16].
CO2 slowly accumulated in the atmosphere until the ensuing greenhouse effect was ca-
pable of triggering the transition to the Sturtian interglacial period [11]. Furthermore,
the southward drift of the large Laurentian magmatic province away from the equatorial
region, where magmatic rock weathering and CO2 consumption had been boosted by
optimal climatic conditions, mitigated continental-weathering-related CO2 consumption,
thus preventing an endless succession of cyclic snowball glaciations [11,13,17].

The ice cover acted as a barrier to the exchange of mass and oxygen between the ocean
and the atmosphere [11,14]. Ongoing rift-related volcanism and hydrothermal activity
during the Sturtian glaciation, or even earlier, introduced massive amounts of dissolved
Mn(II) into the anoxic water of the rift basins, but its precipitation was prevented by global
conditions prior to the Mn metallogenesis era after Sturtian glaciation [16].

The global synchroneity of the onset of Sturtian glaciation is evident from geochrono-
logical data collected from several cratons of the Rodinia supercontinent, including Lauren-
tia (717 ± 4 Ma, Pocatello Formation) [18], Arabia (713.7 ± 0.5 Ma, Ghubrah Formation) [19],
and South China (717–714 Ma) [20–22]. Sturtian glacial diamictites at many locales are
sharply overlain by post-Sturtian cap carbonates (Figure 1). Many geochronological in-
vestigations of the interglacial black shales or clastic rocks near the Sturtian diamictites
or Sturtian cap carbonates (Figure 1a), including Re–Os isotope and U–Pb-sensitive high-
resolution ion microprobe (SHRIMP) zircon dating studies, suggest a globally synchronous
end to the Sturtian glaciation (657–667 Ma).
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Figure 1. (a) Schematic stratigraphy and the end of Sturtian glaciation worldwide (modified from 

[23,24]). Columns (1) and (3) were adapted from [25–27]; column (2) was adapted from [18]; column 

(4) was adapted from [28,29]. (b) Paleogeographic reconstruction of Rodinia at approximately 680 

Ma, with δ13Ccarb values from the bottom to the top of post-Sturtian cap carbonates as distributed 

across cratons. Post-Sturtian cap carbonate locations are shown as S1–S6. The green star represents 

the Mn deposit location in the Datangpo Formation in the south-eastern Yangtze Platform, South 

China, while the orange star represents the Mn deposit location in the Otjosondu region in Namibia. 

Craton abbreviations: Au–Australia; Co–Congo; La–Laurentia; Si–Siberia; SC–South China. 
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ice in their channels. These channels in the modern polar ocean are known to have been 

inhabited by eukaryotes, protists, and prokaryotes and may have served as reliable refu-
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habitat for eukaryotes. Cryoconite and meltwater would have flushed through moulins 
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Figure 1. (a) Schematic stratigraphy and the end of Sturtian glaciation worldwide (modified
from [23,24]). Columns (1) and (3) were adapted from [25–27]; column (2) was adapted from [18];
column (4) was adapted from [28,29]. (b) Paleogeographic reconstruction of Rodinia at approximately
680 Ma, with δ13Ccarb values from the bottom to the top of post-Sturtian cap carbonates as distributed
across cratons. Post-Sturtian cap carbonate locations are shown as S1–S6. The green star represents
the Mn deposit location in the Datangpo Formation in the south-eastern Yangtze Platform, South
China, while the orange star represents the Mn deposit location in the Otjosondu region in Namibia.
Craton abbreviations: Au–Australia; Co–Congo; La–Laurentia; Si–Siberia; SC–South China.

3. Geo-Environmental Events during the Sturtian Glacial–Interglacial Transition

In the context of the breakup of Rodinia and the Sturtian glacial–interglacial transition,
dramatic exogenic environmental changes occurred across the Earth [5,12,30]. The coupling
of these geological and environmental processes powerfully influenced the evolution of
atmospheric oxygen and new environments for early life [31]. This same coupling also
provided favorable conditions for Mn transportation, accumulation, and enrichment.

3.1. Microorganismal Recovery

The Sturtian glaciation may not have caused evolutionary bottlenecks, as assumed
previously. For example, phytane and pristane as biomarkers of eukaryotes have been
found in Sturtian tillites in the Yangtze region, though at very low concentrations, sug-
gesting at least minimal photosynthesis occurred during the Sturtian glaciation [32]. Thus,
it has been assumed that cryoconite holes (Figure 2a) and crack systems incorporated
sea ice in their channels. These channels in the modern polar ocean are known to have
been inhabited by eukaryotes, protists, and prokaryotes and may have served as reliable
refugia for early microorganisms [12,33]. Figure 2a shows a model in a cryoconite pond as
a habitat for eukaryotes. Cryoconite and meltwater would have flushed through moulins
within the ice cover. Flushed cryoconite organic matter would have been subjected to
anaerobic respiration coupled with sulfate or Fe(III) reduction in the water columns and
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sediments. The organic matter would have been buried, while O2 would have been added to
the atmosphere.
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Figure 2. (a) Schematic diagram of a cryoconite hole. (b) Variation in the δ13Ccarb values of marine
carbonates from 750 to 600 Ma. ((a) was taken from [12]; (b) was modified from [5,34,35]). SL:
sea level.

Spectacular, far-reaching biological events may have occurred immediately after the
Sturtian glaciation. Massive nutrient flows (e.g., P and Fe) derived from intensive ongoing
submarine volcanism [16] and the erosion of supermountains created by continental colli-
sions during the breakup of Rodinia [36] might have significantly influenced the oceans’
chemistry and triggered a drastic increase in primary productivity.

Most post-Sturtian cap carbonates contain microbially mediated structures and micro-
bial fossils, such as microbial mats, tube-like structures, and/or roll-up structures, which
are regarded as evidence for the recovery of microbial communities in the aftermath of the
Sturtian glaciation [29,37,38]. In this study, we reviewed δ13Ccarb values of the postglacial
cap carbonates globally overlying glacigenic sequences of the Sturtian period (Figure 1b).
The results show that these cap carbonates yield negative δ13C values (−5‰ to −2‰)
at their bases, increasing to weakly positive values (0 to +3‰) at their tops (Figure 1b).
This pattern suggests the recovery of marine primary productivity during the interglacial
interval [29].

3.2. Atmospheric Oxygen Enhancement

Oxygenic photosynthesis by algae and cyanobacteria significantly increased the O2
levels [36]. Moreover, high sedimentation rates have been suggested to promote the rapid
burial of organic matter that emerged due to high productivity. These factors, along with
the introduction of less easily degradable organic matter and the expansion of eukaryotic
life, prevented large quantities of organic matter from reacting with oxygen [39,40]. The
occurrence of positive δ13Ccarbonate excursion immediately after the Sturtian glaciation
(Figure 2b) implies the enhanced burial of organic carbon and, therefore, a rise in at-
mospheric oxygen levels. This enhanced oxygen level provided an opportunity for the
oxygenation of hydrosphere and subsequent Mn precipitation and enrichment.

3.3. Redox-Stratified Water System

Although the level of pO2 on the Earth’s surface during the waning of Sturtian glacia-
tion was probably higher than that of 1% PAL (present atmospheric level) [41], the seawater
system was not completely oxidized and exhibited redox stratification, with oxygen-rich
topwater and anoxic deep water [42]. Moreover, the bottom-to-top increase in the δ13C
values of post-Sturtian cap carbonates may be another signature of the redox-stratified
state of the ocean system (Figure 1b).
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For example, many studies of the redox state of seawater during this period have
focused on the Nanhua Rift Basin in the south-eastern Yangtze Platform, where Mn deposits
in the Datangpo Formation exist [43–50]. A series of proxies used to reconstruct the
redox environment of the Datangpo Formation indicate that the deep water column in the
Nanhua Rift Basin might have experienced a redox transition from an anoxic state during
the Sturtian glaciation to a temporarily oxygenated state during the Mn metallogenic
era (Figure 3). Mn enrichment in the basal Datangpo Formation is thus an indicator of
oxic conditions.
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Figure 3. Elemental and isotopic proxies for reconstructing paleoenvironmental oxygenation during
deposition of the Sturtian-age Tiesi’ao Formation and the 1st (Mn ores and black shales overlying
the Mn layers) and 2nd members of the Datangpo Formation (data sources: N isotopes [44]; Fe
species [46]; Fe isotopes [48]; Cr isotopes [49]; Cd isotopes (SW: surface water; DW: deep water) [50]).

These episodic water redox shifts between anoxic and oxic conditions on the seafloor
or in deep basins at other locales might not have been rare during the Sturtian interglacial
interval. For example, extensive but temporary seafloor oxygenation is evidenced by the
high δ238U values of post-Sturtian limestones in the Taishir Formation, Mongolia [43]. Oxy-
gen might have been consumed via the subsequent oxidation of organic matter, returning
the ocean to an anoxic state. Coincidentally, if this redox transition happened to encounter
substantial amounts of dissolved Mn(II) stored in the anoxic water column within the
relatively enclosed basins, episodic ventilation with cold oxygenated surface water would
then have induced large-scale Mn sedimentation.
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4. Mn Metallogenesis during the Sturtian Glacial–Interglacial Transition
4.1. Mn Deposits
4.1.1. Mn Deposit in the Otjosondu Region

The Otjosondu region in Namibia hosts the only known occurrence of economic Mn de-
posits, which correlate with the widespread banded iron formations (BIFs) that exist within
the Chuos Formation. The Chuos Formation is found in the middle of the Late Protero-
zoic Damara sequence, which is composed mostly of shelf glaciomarine sediments [3,51].
From bottom to top, the sequence of the Chuos Formation consists of lower supermature
quartz arenites, a lower Mn horizon, BIFs, an upper Mn horizon, and upper supermature
quartz arenites (Figure 4a). The lower and upper Mn ore horizons were formed during
transgressive and regressive stages, respectively, in association with glacial–interglacial
cycles [2,3]. Hydrothermal activity, linked to the initial spreading of the Khomas Sea,
represents the most likely candidate for the Mn source [3]. During transgressions and
regressions, remanent dissolved metals (Mn(II) and Fe(II)) in the pH–buffered seawater
encountered the redox interface developing between the basinal waters and oxygenated
shelf waters in the outer shelf area (Figure 4b). The cyclic depositional rhythm of BIFs
and Mn layers, resembling sandwiches, was a result of the shifting of Fe(II)/Fe(III) and
Mn(II)/Mn(IV) redoxclines as a result of repeated transgression–regression cycles. Mn
would have been precipitated in more highly oxidizing, shallower shelf environments than
those of Fe. The sandwiched ore-bearing sequences thus likely represent a complete large-
scale transgressive–regressive cycle. Mn-rich deposits in the upper and lower horizons
exist in lithofacies-type sequences whose orders are mutually reverse (Figure 4b). Moreover,
small-scale sedimentary cycles can be interpreted as glacial-induced sea-level fluctuations
that changed the location of the redox boundary along the shelf.
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Figure 4. (a) Stratigraphic overview of the Damara Sequence, Namibia (modified from [2,3]).
(b) Schematic diagram of the formation of interbedded Mn oxides and banded iron formations
in the Damara sequence in the Otjosondu region in Namibia. Ore-forming solutions were likely
derived from hydrothermal vents, which developed in the newly formed oceanic crust in the Khomas
trough to the south of the Otjosondu shelf (modified from [3]). (c) Location of Namibia in Africa.

4.1.2. Mn Deposits in the South-Eastern Yangtze Platform

Mn-rich sequences interbedded with black carbonaceous shales are hosted in the first
member of the Datangpo Formation in a series of graben sub-basins in the Nanhua Rift
Basin in the south-eastern Yangtze Platform (Figure 5a). Mn carbonate ore deposits are
restricted to the deepest parts of a series of graben sub-basins of the Nanhua Rift Basin,
rather than around the sub-basin margins [6–9]. The detailed locations of these Mn deposits
are shown in Figure S1 in Supplementary File S1.
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Figure 5. (a) Stratigraphic section showing the Mn beds in the basal Datangpo Formation (modified
from [23,52]). (b) “Episodic ventilation” model for the formation of Mn carbonate deposits in the
sub-basins of the Nanhua Rift Basin, South China (adapted from [6]). (c) Location of the Mn deposit
in China.

We compiled published data on major rare-earth elements (REEs + Y and REY) in
Mn carbonate ores and black carbonaceous shale host rocks from the first member of the
Datangpo Formation (Supplementary File S2—original data and references). The post-
Archean Australian Shale (PAAS)-normalized REY pattern (Figure 6a) shows that the
Mn ores have an obvious enrichment of middle REEs, resulting in a “hat-shaped” plot,
whereas black shales (Figure 6b) have slightly higher more REE enrichment, resulting in
a flat plot. Mn ore samples are characterized by prominent positive Ce anomalies, with
CeSN/CeSN

* values ranging from 0.99 to 1.38 (average: 1.22). These findings indicate
an Mn oxide precursor for Mn carbonate ores. Meanwhile, the lack of any obvious Ce
anomaly in host rocks (average: 1.07; Supplementary File S2) implies an anoxic depositional
environment. Other redox proxies (e.g., U, Mo, and V) analyzed in the entire profile of the
Datangpo Formation [6,23,53] also suggest that Mn-enriched layers were deposited in oxic
environments, whereas interbedded black carbonaceous shale host rocks were deposited
in anoxic conditions. Moreover, positive Eu anomalies (Figure 6a; average: 1.16) and
extremely low Al/Mn values of Mn layers (0.02–0.57) (Supplementary File S2) indicate that
the original Mn source was most likely derived from hydrothermal fluids.

Mn accumulation in the deepest parts of graben sub-basins may be due to the inter-
mittent intrusion of cold oxygenated surface water in the redox-stratified Nanhua Rift
Basin during the Sturtian glacial–interglacial transition. This would seem to be the only
mechanism capable of forming a sedimentary Mn deposit in the center of the ore-hosting
basin. This situation is similar to that in the modern Baltic Sea [6,54,55], where episodic
inflows of dense, oxygenated water masses from the North Sea intrude at intervals of
several years, and Mn(II) is oxidized and preferentially accumulates during stagnation
periods in the deepest basins, where currents have no influence. However, the driving
factor for the redox (oxic–anoxic) exchange of the stratified water column in the Nanhua
Rift Basin may be the possible presence of episodic cold events interrupting the warming
process during the Sturtian glacial–interglacial transition period [6,55]. Sea ice might have
remained during the aftermath of the Sturtian glaciation, and complete deglaciation might
not have been as abrupt as previously thought it was. Thus, additional sea ice formation,
which makes surface water denser due to brine rejection, would contribute to replenishing
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anoxic bottom water (Figure 5b). This possibility is supported by the following line of
evidence. (1) A plot depicting chemical index of alteration (CIA) data for the first member
of the Datangpo Formation displays a serrated, upward trend (e.g., Figure 7 in [52]). This
trend might reflect a tortuous process toward achieving a relatively stable warm climate
after the Sturtian glaciation, given that the CIA can serve as a proxy in climate change
reconstruction [52,55,56]. (2) At some locations, the basal Datangpo Formation contains
at least two diamictite layers, each 20 cm thick [23]. Moreover, the presence of dropstone-
bearing intervals just above the base of the Sturtian-aged Tindelpina cap carbonate in South
Australia indicates a similar situation [27]. The multiplicity of these layers should be un-
derstood as resulting from recurring glacigenic debris flows caused by multiple ice-melting
events rather than a single sudden melting event.
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ores of the Datangpo Formation in the south-eastern Yangtze Platform in South China (data obtained
from [6,9,63]).

Notably, Mn carbonate rather than Mn oxide characterizes the Mn deposits in the
Datangpo Formation. Negative δ13Ccarb values (Figure 7) and the negative relationship
between Mn contents and δ13Ccarb values (Figure 7b) imply that precursor Mn oxides were
reduced by organic matter, whose δ13Corg values typically range from −34‰ to −31‰.
This process would have released Mn(II) and bicarbonate (HCO3

−), which would have
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served as the precursors for Mn carbonate precipitation. Mn carbonate precipitation in the
basal Datangpo Formation might have occurred in an early diagenetic pore-water environ-
ment where considerable bicarbonate was sourced from seawater [9]. This possibility is
supported by the very low δ13Ccarb of Datangpo Mn carbonate ores in comparison with
some other Mn carbonate ore deposits in the geologic record, each of which exhibits a broad
range of δ13Ccarb values (Figure 7a).

4.2. Contribution of Microbial Processes to Mn Metallogenesis

In addition to the geochemical behavior of Mn, microbially mediated Mn fixation plays
an important role in considerable Mn accumulation in sediments. Mn deposits across dif-
ferent geological periods exhibit similar two-step microbial metallogenesis processes [4,64].
(1) The primary chemolithoautotrophic cycle: microbes oxidize Mn(II) to Mn(IV) via an
enzymatic pathway under essential oxic conditions. (2) The diagenetic heterotrophic cy-
cle: this cycle involves the decomposition and mineralization of cells and extracellular
polymeric substances (EPSs) of Mn (and Fe) bacteria.

In the case of Mn carbonate deposits within black shale, microbes mediate Mn-oxide
reduction via organic matter decomposition, resulting in the formation of rhodochrosite,
characterized by a low δ13Ccarb signal, as the final product [7,8]. However, for Mn-oxide
deposits, such as those found in the Otjosondu region of Namibia, Mn oxides do not trans-
form into Mn carbonates, either due to them having a slow organic matter sedimentation
rate or because the majority of the organic matter was oxidized under oxic conditions
throughout the process of metallogenesis.

Although diagenesis and other processes can obscure microbial characteristics, rem-
nants of microbial activity, including mineralized microbial microtextures and fossils of
various shapes [4,7,64], were preserved, likely owing to the protective nature of the minerals
around the cells and EPS. Polgári and Gyollai [8] suggest using a multiscale methodology
to verify the role of microbe-mediated ore-forming processes.

4.3. Mn and Fe Fractionation

The fractionation of Mn with respect to Fe is a prerequisite for forming sedimentary Mn
deposits [64]. Fe(II)/Fe(III) redoxcline is achieved at much lower EH and pH levels than that
which is required for the Mn(II)/Mn(IV) buffer, based on geochemical constraints [2]. Thus,
Mn oxide would have formed gradually, and Mn(II) would have dispersed farther from
hydrothermal vents than Fe(II) did. The necessary oxic conditions (>2 mL/L dissolved O2)
for initiating microbial enzymatic Mn(II) oxidation would have overwhelmed the microbial
oxidation of Fe(II) (if it was present).

Mn ores in the Datangpo Formation show the extreme fractionation of Mn with re-
spect to Fe (0.03–0.52; see Supplementary File S2), which can be explained by two possible
mechanisms. First, Fe may have been previously fixed as sulfides over the preceding Meso-
proterozoic era, causing low sulfate availability (<2 mM) during the Mn metallogenesis
period [42,65]. This possibility is evidenced by the very high δ34S values of pyrites in the
basal Datangpo Formation [9,52]. Second, weakly oxygenated conditions locally might
have preferentially removed Fe(II), as evidenced by the Sturtian-age BIFs distributed in
the underlying sequences of the Datangpo Formation in some areas within the Nanhua
Rift Basin [9,60]. In this case, Mn(II) would have remained in an aqueous solution since a
strong oxidizing potential is needed for Mn oxide precipitation.

However, for the Otjosondu Mn deposit, the partitioning of Fe and Mn occurred
first at exhalative vents due to the preferential precipitation of Fe sulfides and pyritic
schist protoliths (Figure 4b). Subsequently, the fractionation of Mn with respect to Fe, i.e.,
the cyclic deposition of BIFs and Mn layers, was achieved via the shifts in Fe(II)/Fe(III)
and Mn(II)/Mn(IV) redoxclines according to the repeated cycles of transgression and
regression [3]. The contact between the Mn and Fe layers indicates the alternating activities
of Mn- and Fe-oxidizing bacteria controlled by redox conditions in a double-microbial
ore-forming system.
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4.4. Coupling Effect on Mn Metallogenesis

From the above perspective, advantageous conditions contributing to sedimentary
Mn metallogenesis were produced due to geo-environmental events during the Sturtian
glacial–interglacial transition, as follows:

(1) Oxygen availability. The formation of Mn(IV) oxides required a strong oxidizing
potential. The recovery of microorganisms after the Sturtian glaciation promoted
marine primary productivity and boosted the O2 levels of atmosphere and a shallow
hydrosphere layer.

(2) Redox-stratified restricted basins. The water column underwent a redox change from
an overall anoxic state during the Sturtian glaciation to a stratified redox state in
its aftermath. The deep anoxic part of a stratified basin served as a storage area for
concentrated dissolved Mn(II) that emerged due to hydrothermal activity.

(3) Redox transition from anoxic to oxic. Anoxic water introduced with substantial
pre-stored Mn(II) was exchanged for oxygenated water. This process was achieved
through transgression–regression cycles and the downwelling of dense surface waters.

We further propose a schematic (Figure 8) to illustrate the major geo-environmental
processes and their coupling effects on sedimentary Mn metallogenesis during the Stur-
tian glacial–interglacial transition. The occurrence of sedimentary Mn deposits during
this period is closely linked to glaciogenic sequences. The withdrawal of considerable
quantities of seawater during the Sturtian glaciation might have provided specific storage
conditions for dissolved Mn(II) and Fe(II) derived mainly from rift-related hydrothermal
activity. The evolution of rift basins, as part of the breakup of Rodinia, provided suitable
geological settings and sites for Mn accumulation. The microbial biota recovered imme-
diately following the Sturtian glaciation, causing a significant increase in O2 levels in the
atmosphere and surface ocean. However, widespread anoxia prevailing in the bottom
water allowed it to continue to hold substantial Mn(II) and Fe(II). Exogenic processes, such
as transgressive–regressive cycles and the downwelling of oxygenated waters, drove the
exchange of redox-stratified water in the rifting basins to facilitate the transfer of the highly
concentrated Mn(II) to the shallow drowned shelves in the Otjosondu region, Namibia, as
well as to the centers of rift sub-basins in the south-eastern Yangtze Platform, South China.
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5. Mn Metallogenesis through Geologic Time

Given the geo-environmental scenarios linked to Mn metallogenesis during the Stur-
tian glacial–interglacial transition, we conducted a brief review of other major sedimentary
Mn deposits throughout Earth’s history to explore related scenarios of changes in geological
and geochemical factors.

5.1. Major Sedimentary Mn Deposits throughout Earth’s History

Over the course of Earth’s history, the water chemistry of marine basins was initially
extremely reducing in the early Archean, followed by the evolution of oxygen oases in
shallow locales during the late Archean , and finally, by a redox-stratified ocean system in
the Paleoproterozoic [66–68]. Thus, in the late Archean, small Mn deposits were found only
on basin margins and shallow shelves, where oxygenated oases, limited to small areas, were
produced with the evolutionary appearance of Photosystem II (PSII) in the late Archean.
PSII, or water-plastoquinone oxidoreductase, uses light to drive oxygenic photosynthe-
sis and is located in the thylakoid membranes of chloroplasts and cyanobacteria [69,70].
However, substantial amounts of Mn(II) and Fe(II) were inferred to have been introduced
by the frequent rift-related hydrothermal activity during this period and concentrated in
anoxic oceans in their soluble forms [71]. Around the time of the Archean–Proterozoic
transition, concomitant with the enhanced burial of organic matter and a decrease in vol-
canic emissions of reduced gases (e.g., CH4, CO, and H2), a net increase in photosynthetic
oxygen production significantly promoted a substantial increase in atmospheric oxygen
and triggered the Great Oxidation Event (2.45–2.26 Ga) [2,72]. However, the seawater
column was not completely oxidized and remained dominated by redox stratification with
oxygenated topwater and anoxic bottom water [5,7]. Regional transgression–regression
cycles caused by plate movement or glacial retreat-assisted transfer concentrated Mn(II)
in the anoxic parts of stratified basins across an Mn(II)/Mn(IV) redoxcline to precipitate
as Mn(IV) oxides on the oxygenated shallow shelf margins. This convergence of factors
produced volumetrically large global Mn deposits, including the single largest Mn reserve,
the Kalahari Mn field (approximately 2.4 Ga), in the Hotazel Formation of Postmasburg,
South Africa [73,74]. Additionally, major black carbonaceous shale–hosted Mn carbonate
deposits in the Birimian sequence (ca. 2.3–2.0 Ga), Ghana, West Africa; in the Francevillian
sequence (ca. 2.2–2.1 Ga), Gabon, West Africa; in the Sausar Group, central India correlate
to this period. Some of these deposits consist of Mn carbonates transformed from Mn
oxides during early diagenesis.

The Mesoproterozoic period (ca. 1.6–1.0 Ga) has long been considered an era devoid of
Mn deposits, possibly due to its long-term deep-water anoxia. However, sedimentary Mn-
rich sequences discovered in China, including the Wafangzi Mn oxide–carbonate deposit
(ca. 1.17–1.07 Ga) in Liaoning province [75] and the Qinjiayu Mn carbonate deposit in
Hebei province, at least imply the occurrence of episodic oxygen states. Furthermore, these
discoveries belie the reputation of the middle Proterozoic as the “boring billion [2].”

The Paleozoic Era was characterized by repeated local glacial cycles, mantle-induced
oceanic volcanism, and hydrothermal activities linked to the final breakup of the Rodinian
supercontinent and the assembly of Gondwanaland. In these scenarios, Earth’s system wit-
nessed the formation of the large Mn oxide–carbonate deposits in Central Kazakhstan (Late
Devonian) [76] and several small black-shale-hosted Mn carbonate deposits in Tiantaishan
(early Cambrian) [57], Taojiang (Middle Ordovician) [77], and Jiaodingshan (Late Ordovi-
cian) [78]. Two major sedimentary Mn carbonate deposits in China were formed in response
to oceanic anoxic events and associated glacioeustatic sea level changes: the Xialei deposit
in Guangxi province in the Late Devonian and the Zunyi deposit in Guizhou province in
the Late Permian.

Anoxic events and sea level fluctuations that may have provided advantageous envi-
ronments for the source, and the deposition of sedimentary Mn deposits also frequently
occurred in the absence of glacial–interglacial cycles during the Mesozoic era [79–81] and
early Oligocene epoch [82]. The redox stratification of ocean water in the Mesozoic usually
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responded to oceanic anoxic events, which were caused by organic matter biodegradation,
CH4 release, or sluggish water circulation in a greenhouse-effected climate [2,83]. The main
resulting deposits include major black carbonaceous shale–hosted Mn carbonate deposits in
the Jurassic (e.g., Úrkút, Hungary, and Molango, Mexico) [60,64], major Mn oxide and Mn
oxide–carbonate deposits in the Cretaceous (e.g., Groote Eylandt, Australia, and Imini, Mo-
rocco) [84,85], and colossal Mn oxide–carbonate deposits in the early Oligocene (Chiatura,
Georgia, and Nikopol, Ukraine) [2,86]. Since the late Miocene, Mn precipitation has mostly
been restricted to the deep ocean floor as Mn nodules and crusts in regions influenced by
the activity of the Antarctic Bottom Water, as controlled by interrelated tectonic forces and
climatic changes [2,82].

5.2. General Models for Mn Metallogenesis

In review of the metallogenesis of major sedimentary Mn deposits in the geological
record, the cause of sedimentary Mn deposition has also been strongly linked to the geo-
environmental events throughout Earth’s history [2,36,70,87]. These events are primarily
the breakup of supercontinents and rapid seafloor spreading, and attendant considera-
tions are their consequences for climate change (e.g., glacial–interglacial transition) [5]
and endogenic (volcanism and hydrothermal activity) and exogenic evolution (e.g., atmo-
spheric and hydrospheric O2 levels and oceanic anoxic events) [2,88,89]. These processes
are capable of producing geological and geochemical conditions suitable for the supply,
migration, and precipitation of sedimentary Mn deposits [2]. In general, Precambrian
sedimentary Mn deposits were formed in a widespread anoxia ocean with oxic shallow
water or episodic deep-water oxygenation, whereas Phanerozoic Mn deposits emerged
during episodic anoxic events in an oxic ocean.

A “bathtub ring” model [1,2] has been proposed as a general model suitable for
interpreting sedimentary Mn metallogenesis throughout geological time (Figure 9a). In
this model, Mn undergoes vertical geochemical cycling, with solid-phase Mn(IV) that
precipitates at or just above the redox interface becoming reductively dissolved in deeper
anoxic seawater. In this model, solid-phase Mn(IV) particulates are reduced and dissolved
unless the substrate (e.g., continental shelves or seafloor) is shallow enough to intercept the
redoxcline of a restricted anoxic basin (Figure 9a). Thus, a critical depth for Mn enrichment
creates a “bathtub ring.” As changes in the relative sea level caused by repeated marine
transgression–regression could cause the Mn(II)/Mn(IV) redoxcline to move up and down,
various new “rings” are built wherever a new redoxcline impinges upon the basin slope.
This model has been used as the basis for several specifically derived models, such as the
“oxygen-minimum zone” (Figure 9b) and “episodic ventilation” models (Figure 5b).

All known significant sedimentary Mn enrichment includes primary Mn oxides or
Mn carbonates. The formation of Mn carbonate deposits can be explained by primary
sedimentary (microbial enzymatic Mn(II) oxidation from the water into the sediment) and
diagenetic processes (the redistribution of ore-forming materials via microbe-mediated
diagenesis) [86,90]. Although some evidence has demonstrated the direct precipitation
of Mn carbonates from a redox-stratified water column (e.g., Fayetteville Green Lake,
New York, USA [91]; Brownie Lake, Minnesota, USA [92] and the Orca Basin in the Gulf
of Mexico [93]), these occurrences are extremely small scale and cannot be described as
significant Mn deposits.
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6. Conclusions

The Sturtian glacial–interglacial transition period was a critical geological epoch for
sedimentary Mn deposition. Mn metallogenesis occurred against a backdrop of dramatic
environmental changes in the context of the breakup of Rodinia, the Sturtian glaciation, and
the NOE. The interplay of these processes created geologically and geochemically favorable
conditions for the supply, accumulation, and precipitation of major Mn ore deposits in
Otjosondu and South China.

Rodinia’s breakup and the consequent evolution of rift-related basins provided ad-
vantageous locations and ore-forming fluids for Mn metallogenesis. During the Sturtian
glacial–interglacial transition, the recovery of early microorganisms inhabiting cryoconite
holes and crack systems as refugia during the Sturtian glaciation triggered significant
increases in primary productivity and atmospheric O2 levels. However, the water system
remained redox-stratified, with O2-rich surface water and anoxic deep water.

Exogenic forces, including transgression–regression cycles and O2-rich downwelling,
drove the internal exchange of the redox-stratified water mass, precipitating Mn(II) as
Mn oxides in rift sub-basin margins (e.g., Otjosondu region) or in rift sub-basin centers
(e.g., Datangpo Formation). In the Datangpo Formation, primary Mn oxides were then
diagenetically reduced to Mn carbonates via the oxidation of organic matter. Microbial
activity plays a cooperative role in Mn primary deposition and subsequent diagenesis.

Furthermore, a brief review of Mn metallogenesis in the geological record, including
the Mn deposits formed in the context of the Sturtian glacial–interglacial transition, re-
vealed that the geological and geochemical conditions necessary for Mn metallogenesis
were achieved in different ways at different times during Earth’s history. However, all
cases involved the interplay of geologic forcings and endogenic and exogenic environmen-
tal processes.
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