Pink to Purple Sapphires from Ilakaka, Madagascar: Insights to Separate Unheated from Heated Samples
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritsch, E.; Rossman, G.R. An update on color in gems. Part I. Introduction and colors caused by dispersed metal ions. Gems Gemol. 1987, 23, 126–139. [Google Scholar] [CrossRef]
- Emmett, J.L.; Dubinsky, E.V.; Hughes, R.W.; Scarratt, K. Color, Spectra & Luminescence. In Ruby & Sapphire: A Gemmologist’s Guide; Hughes, R., Ed.; RWH Publishing: Bangkok, Thailand, 2017; pp. 90–148. [Google Scholar]
- Dubinsky, E.V.; Stone-Sundberg, J.; Emmett, J.L. A quantitative description of the causes of color in corundum. Gems Gemol. 2020, 56, 2–28. [Google Scholar] [CrossRef]
- Krzemnicki, M.; Cartier, L.E.; Lefèvre, P.; Zhou, W. Colour varieties of gems—Where to set the boundary? InColor 2020, 45, 92–95. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, A.J. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits, 2nd ed.; Mineralogical Association of Canada Short Course Series; Groat, L.A., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Volume 44, pp. 113–134. ISBN 9780921294375. [Google Scholar]
- Giuliani, G.; Groat, L. Geology of corundum and emerald deposits: A review. Gems Gemol. 2019, 55, 464–489. [Google Scholar] [CrossRef]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic origin determination of ruby. Gems Gemol. 2019, 55, 580–612. [Google Scholar] [CrossRef]
- Milisenda, C.C.; Henn, U.; Henn, J. New gemstone occurrences in the south-west of Madagascar. J. Gemmol. 2001, 27, 385–394. [Google Scholar] [CrossRef]
- Krzemnicki, M.S.; Lefèvre, P.; Zhou, W.; Wang, H.A.O. Zircon inclusions in unheated pink sapphires from Ilakaka, Madagascar: A Raman spectroscopic study. In Proceedings of the International Gemmological Conference, Online, 20–21 November 2021. [Google Scholar]
- Wang, W.; Scarratt, K.; Emmett, J.L.; Breeding, C.M.; Douthit, T.R. The effects of heat treatment on zircon inclusions in Madagascar sapphires. Gems Gemol. 2006, 42, 134–150. [Google Scholar] [CrossRef]
- Krzemnicki, M.S. How to get the “blues” out of the pink: Detection of low-temperature heating of pink sapphires. Facette 2010, 17, 12. [Google Scholar]
- Saeseaw, S.; Khowpong, C. The effect of low-temperature heat treatment on pink sapphire. Gems Gemol. 2019, 56, 290–291. [Google Scholar]
- Saeseaw, S.; Khowpong, C.; Vertriest, W. Low-temperature heat treatment of pink sapphires from Ilakaka, Madagascar. Gems Gemol. 2020, 56, 448–457. [Google Scholar] [CrossRef]
- Karampelas, S.; Hennebois, U.; Delaunay, A.; Pardieu, V.; Mevellec, J.-Y.; Fritsch, E. Raman spectroscopy of zircon inclusions in unheated pink sapphires from Ilakaka, Madagascar: Opening new perspectives. J. Gemmol. 2022, 38, 16–18. [Google Scholar] [CrossRef]
- Karampelas, S.; Hennebois, U.; Mevellec, J.-Y.; Pardieu, V.; Delaunay, A.; Fritsch, E. Identification of heated pink sapphires from Ilakaka (Madagascar). In Proceedings of the 7th International Gem & Jewelry Conference (GIT2021), Chanthaburi, Thailand, 2–3 February 2022; p. 212. [Google Scholar]
- Karampelas, S.; Hennebois, U.; Delaunay, A. Détection du traitement thermique à basse température des corindons. Rev. Gemmol. A.F.G. 2022, 217, 4–5. [Google Scholar]
- Notari, F.; Hainschwang, T.; Caplan, C.; Ho, K. The heat treatment of corundum at moderate temperature. InColor 2019, 42, 14–23. [Google Scholar]
- Emmett, J.L.; Hughes, R.W.; Douthit, T.R. Treatments. In Ruby & Sapphire: A Gemmologist’s Guide; Hughes, R., Ed.; RWH Publishing: Bangkok, Thailand, 2017; pp. 196–248. [Google Scholar]
- McClure, S.F.; Smith, C.P.; Wang, W.; Hall, M. Identification and durability of lead glass-filled rubies. Gems Gemol. 2006, 42, 22–34. [Google Scholar] [CrossRef]
- Hughes, E.B.; Vertriest, W. A canary in the ruby mine: Low-temperature heat treatment experiments on Burmese rubies. Gems Gemol. 2022, 58, 400–423. [Google Scholar] [CrossRef]
- Wanthanachaisaeng, B. The Influence of Heat Treatment on the Phase Relations in Mineral Growth Systems. Ph.D. Thesis, Johannes Gutenberg University of Mainz, Mainz, Germany, 2007; 79p. [Google Scholar]
- Sripoonjan, T.; Wanthanachaisaeng, B.; Leelawatanasuk, T. Phase Transformation of Epigenetic Iron Staining: Indication of Low-Temperature Heat Treatment in Mozambique Ruby. J. Gemmol. 2016, 35, 156–161. [Google Scholar] [CrossRef]
- Vigier, M.; Fritsch, E.; Cavignac, T.; Latouche, C.; Jobic, S. Shortwave UV Blue Luminescence of Some Minerals and Gems due to Titanate Groups. Minerals 2023, 13, 104. [Google Scholar] [CrossRef]
- Balan, E. Theoretical infrared spectra of OH defects in corundum (α-Al2O3). Eur. J. Mineral. 2020, 32, 457–467. [Google Scholar] [CrossRef]
- Beran, A.; Rossman, G.R. OH in natural occurring corundum. Eur. J. Mineral. 2006, 18, 441–447. [Google Scholar] [CrossRef]
- Smith, C.P. A contribution to understanding the infrared spectra of rubies from Mong Hsu, Myanmar. J. Gemmol. 1995, 24, 321–335. [Google Scholar] [CrossRef]
- Nasdala, L.; Irmer, G.; Wolf, D. The degree of metamictization in zircon: A Raman spectroscopic study. Eur. J. Mineral. 1995, 7, 471–478. [Google Scholar] [CrossRef]
- Elmaleh, E. Blue Sapphires from Madagascar, Sri Lanka, Tanzania and Burma (Myanmar): Gemological, Chemical, Spectroscopic Characterization and Dating of Zircon Inclusions. Master’s Thesis, University of Geneva, Geneva, Switzerland, 2015; 425p. [Google Scholar]
- Elmaleh, E.; Karampelas, S.; Schmidt, S.T.; Galster, F. Zircon inclusions in blue sapphire. In Proceedings of the 34th International Gemmological Conference, Vilnius, Lithuania, 26–30 August 2015; pp. 51–52. [Google Scholar]
- Link, K. Age determinations of zircon inclusions in faceted sapphires. J. Gemmol. 2015, 34, 692–700. [Google Scholar] [CrossRef]
- Elmaleh, E.; Schmidt, S.T.; Karampelas, S.; Link, K.; Kiefert, L.; Süssenberger, A.; Paul, A. U-Pb Ages of Zircon Inclusions in Sapphires from Ratnapura and Balangoda (Sri Lanka) and Implications for Geographic Origin. Gems Gemol. 2019, 55, 18–28. [Google Scholar] [CrossRef]
- Xu, W.; Krzemnicki, M.S. Raman spectroscopic investigation of zircon in gem-quality sapphire: Application in origin determination. J. Raman Spectrosc. 2021, 52, 1011–1021. [Google Scholar] [CrossRef]
- Hennebois, U.; Delaunay, A.; Karampelas, S. Heated purplish pink sapphire from Ilakaka (Madagascar) with colored monazite inclusions. Gems Gemol. 2023, 59, 159–160. [Google Scholar]
- Vertriest, W.; Palke, A.C.; Renfro, N.D. Field gemology: Building a research collection and understanding the development of gem deposits. Gems Gemol. 2019, 55, 490–511. [Google Scholar] [CrossRef]
- Zhang, M.; Salje, E.K.H.; Capitani, G.C.; Leroux, H.; Clark, A.M.; Schlüter, J.; Ewing, R.C. Annealing of O-decay damage in zircon: A Raman spectroscopy study. J. Phys. Condens. Matter 2000, 12, 3131–3148. [Google Scholar] [CrossRef]
- Nasdala, L.; Lengauer, C.; Hanchar, J.; Kronz, A.; Wirth, R.; Blanc, P.; Kennedy, A.; Seydoux-Guillaume, A.M. Annealing radiation damage and the recovery of cathodoluminescence. Chem. Geol. 2002, 191, 121–140. [Google Scholar] [CrossRef]
- Váczi, T.; Nasdala, L.; Wirth, R.; Mehofer, M.; Libowitzky, E.; Häger, T. On the breakdown of zircon upon “dry” thermal annealing. Mineral. Petrol. 2009, 97, 129–138. [Google Scholar] [CrossRef]
- Marsellos, A.E.; Garver, J.I. Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation. Am. Mineral. 2010, 95, 1192–1201. [Google Scholar] [CrossRef]
- Knittle, E.; Williams, Q. High-pressure Raman spectroscopy of ZrSiO4: Observation of the zircon to scheelite transition at 300 K. Am. Mineral. 1993, 78, 245–252. [Google Scholar]
- Nasdala, L.; Miletich, R.; Ruschel, K.; Váczi, T. Raman study of radiation-damaged zircon under hydrostatic compression. Phys. Chem. Miner. 2008, 35, 597–602. [Google Scholar] [CrossRef]
- Noguchi, N.; Abduriyim, A.; Shimizu, I.; Kamegata, N.; Odake, S.; Kagi, H. Imaging of internal stress around a mineral inclusion in a sapphire crystal: Application of micro-Raman and photoluminescence spectroscopy. J. Raman Spectrosc. 2013, 44, 147–154. [Google Scholar] [CrossRef]
- Zeug, M.; Rodríguez Vargas, A.I.; Nasdala, L. Spectroscopic study of inclusions in gem corundum from Mercaderes, Cauca, Colombia. Phys. Chem. Miner. 2017, 44, 221–233. [Google Scholar] [CrossRef]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic origin determination of blue sapphire. Gems Gemol. 2019, 55, 536–579. [Google Scholar] [CrossRef]
- Váczi, T. A New, Simple Approximation for the Deconvolution of Instrumental Broadening in Spectroscopic Band Profiles. Appl. Spectrosc. 2014, 68, 1274–1278. [Google Scholar] [CrossRef]
Treatment | FWHM (cm−1) | Median Value (cm−1) | Average Value (cm−1) | Reference |
---|---|---|---|---|
Unheated | 10.1–13.5 | na* | 11.5 | [9] |
Unheated | 8.8–13.8 | na* | na* | [12] |
Unheated | 7.5–17.6 | <10 | na* | [8] |
Unheated | 7.1–21.7 | 11.3 | 11.6 | [13,14] |
Heated to 1000 °C | 6.6–12.7 | na* | na* | [12] |
Heated to 1400 °C | na* | na* | 8.7 | [9] |
Sample Number | Mass (ct) | Dimensions (mm) | Colour | Photo |
---|---|---|---|---|
SK-007 | 0.373 | 4.43 × 4.15 × 2.02 | Light pink | |
SK-008 | 0.412 | 5.09 × 4.64 × 1.86 | Light pink | |
SK-009 | 0.525 | 6.44 × 4.13 × 2.04 | Pink | |
SK-010 | 0.566 | 6.83 × 5.31 × 1.63 | Pink | |
SK-011 | 0.346 | 5.12 × 4.07 × 2.00 | Purplish-pink | |
SK-012 | 0.328 | 5.13 × 3.50 × 2.16 | Light pink | |
SK-013 | 0.307 | 3.96 × 3.03 × 2.04 | Light pink | |
SK-014 | 0.337 | 4.71 × 3.75 × 2.19 | Pink | |
SK-015 | 0.599 | 5.01 × 4.49 × 2.51 | Pinkish-purple | |
SK-016 | 0.460 | 4.76 × 3.59 × 2.29 | Purple-pink | |
SK-017 | 0.346 | 4.28 × 3.23 × 2.44 | Pinkish-purple | |
SK-018 | 0.319 | 4.15 × 3.49 × 2.06 | Light pink | |
SK-023 | 0.255 | 4.98 × 3.77 × 1.65 | Pink | |
SK-024 | 0.550 | 5.37 × 4.16 × 2.62 | Pink | |
SK-025 | 0.357 | 4.35 × 3.70 × 2.29 | Pink |
Sample Number | Mass (ct) | Dimensions (mm) | Colour | Photo |
---|---|---|---|---|
LFG101 | 1.797 | 9.02 × 6.22 × 4.28 | Purplish pink | |
LFG102 | 1.893 | 8.94 × 6.52 × 4.02 | Purplish pink | |
LFG103 | 2.038 | 7.78 × 6.30 × 4.86 | Purplish pink | |
LFG104 | 3.022 | 9.57 × 7.74 × 4.55 | Purplish pink | |
LFG105 | 3.214 | 10.27 × 8.39 × 4.57 | Purplish pink | |
LFG106 | 3.027 | 9.22 × 7.93 × 4.87 | Purplish pink |
Sample | Range of Peak Position (cm−1) | Range of FWHM (cm−1) | Number of Analysed Zircon Inclusions | Total Number of Raman Analyses |
---|---|---|---|---|
SK-007 | 1013.86–1019.02 | 7.87–17.70 | 20 | 28 |
SK-008 | 1017.56–1020.65 | 15.07–18.42 | 5 | 7 |
SK-009 | 1018.81–1019.73 | 9.47–21.73 | 7 | 7 |
SK-010 | 1005.10–1017.21 | 7.06–13.14 | 10 | 10 |
SK-011 | 1011.87–1019.01 | 9.60–13.39 | 10 | 10 |
SK-012 | 1011.13–1015.32 | 8.11–12.09 | 5 | 5 |
SK-013 | 1014.12–1017.22 | 7.11–11.65 | 8 | 8 |
SK-014 | 1011.20–1016.63 | 7.87–13.80 | 10 | 10 |
SK-015 | 1012.74–1021.11 | 7.55–14.21 | 7 | 7 |
SK-016 | - | - | - | - |
SK-017 | 1012.37–1018.22 | 7.25–16.15 | 13 | 17 |
SK-018 | 1003.76–1005.25 | 14.48–15.85 | 2 | 2 |
SK-023 | 1014.14–1021.61 | 6.26–15.39 | 20 | 26 |
SK-024 | 1014.55–1018.21 | 6.83–13 | 20 | 26 |
SK-025 | 1010.00–1016.14 | 6.81–10.31 | 20 | 26 |
Sample | Range of Peak Position (cm−1) | Range of FWHM (cm−1) | Number of Analysed Zircon Inclusions | Total Number of Raman Analyses |
---|---|---|---|---|
LFG101 | 1018.34–1020.23 | 5.47–5.91 | 6 | 6 |
LFG102 | 1017.95–1019.57 | 4.83–6.86 | 10 | 10 |
LFG103 | 1007.29–1013.24 | 6.56–9.32 | 11 | 11 |
LFG104 | 1009.75–1013.82 | 6.36–7.79 | 10 | 10 |
LFG105 | 1010.58–1014.12 | 6.19–11.38 | 17 | 22 |
LFG106 | 1018.34–1020.23 | 5.16–14.97 | 20 | 34 |
Range of FWHM (cm−1) | Non-Heated | Heated |
---|---|---|
<6 | 0/157 | 17/74 (ca. 23%) |
6–7 | 3/157 (ca. 1.9%) | 17/74 (ca. 23%) |
7–8 | 21/157 (ca. 13.4%) | 25/74 (ca. 34%) |
8–9 | 25/157 (ca. 15.9%) | 9/74 (ca. 12%) |
9–10 | 28/157 (ca. 17.8%) | 2/74 (ca. 2.7%) |
10–11 | 15/157 (ca. 9.6%) | 1/74 (ca. 1.3%) |
11–12 | 18/157 (ca. 11.5%) | 2/74 (ca. 2.7%) |
12–13 | 19/157 (ca. 12.1%) | 0/74 |
13–14 | 10/157 (ca. 6.4%) | 0/74 |
14–15 | 4/157 (ca. 2.5%) | 1/74 (ca. 1.3%) |
15–16 | 5/157 (ca. 3.1%) | 0/74 |
16–17 | 3/157 (ca. 1.9%) | 0/74 |
17–18 | 2/157 (ca. 1.3%) | 0/74 |
18–19 | 2/157 (ca. 1.3%) | 0/74 |
>20 | 2/157 (ca. 1.3%) | 0/74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampelas, S.; Hennebois, U.; Mevellec, J.-Y.; Pardieu, V.; Delaunay, A.; Fritsch, E. Pink to Purple Sapphires from Ilakaka, Madagascar: Insights to Separate Unheated from Heated Samples. Minerals 2023, 13, 704. https://doi.org/10.3390/min13050704
Karampelas S, Hennebois U, Mevellec J-Y, Pardieu V, Delaunay A, Fritsch E. Pink to Purple Sapphires from Ilakaka, Madagascar: Insights to Separate Unheated from Heated Samples. Minerals. 2023; 13(5):704. https://doi.org/10.3390/min13050704
Chicago/Turabian StyleKarampelas, Stefanos, Ugo Hennebois, Jean-Yves Mevellec, Vincent Pardieu, Aurélien Delaunay, and Emmanuel Fritsch. 2023. "Pink to Purple Sapphires from Ilakaka, Madagascar: Insights to Separate Unheated from Heated Samples" Minerals 13, no. 5: 704. https://doi.org/10.3390/min13050704
APA StyleKarampelas, S., Hennebois, U., Mevellec, J.-Y., Pardieu, V., Delaunay, A., & Fritsch, E. (2023). Pink to Purple Sapphires from Ilakaka, Madagascar: Insights to Separate Unheated from Heated Samples. Minerals, 13(5), 704. https://doi.org/10.3390/min13050704