Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics
Abstract
:1. Introduction
2. Geological Setting
3. Deposit Geology
4. Sampling and Analytical Methods
4.1. Fluid Inclusion Analysis
4.2. Isotope Analysis
5. Results
5.1. Fluid Inclusion
5.1.1. Fluid Inclusion Petrography
5.1.2. Fluid Inclusion Microthermometry
5.1.3. Laser Raman Spectroscopy
5.2. Hydrogen-Oxygen Isotope Compositions
5.3. Sulfur-Lead Isotope Compositions
6. Discussion
6.1. Property and Origin of the Ore-Forming Fluids
6.2. Fluid Evolution and Gold Mineralization
6.3. Fluid Trapping Temperature-Pressure Conditions
6.4. Source of Ore-Forming Materials
6.5. Ore Genesis
7. Conclusions
- The Songjianghe Au deposit is a magmatic hydrothermal gold deposit formed in the intermittent stage of Paleo-Pacific plate subduction during the Late Jurassic. Four alteration/mineralization stages were recognized in this gold deposit: (I) A quartz-pyrrhotite-pyrite stage; (II) a quartz-polymetallic sulfides stage; (III) a quartz-pyrite stage; and (IV) a quartz-calcite-minor pyrite stage.
- The ore-forming fluids have evolved from a medium-high-temperature, low-salinity immiscible CO2-NaCl-H2O ± CH4 system to a low-temperature, low-salinity homogeneous NaCl-H2O system.
- The H-O isotope data suggest that the ore-forming fluids were dominated by magmatic water (Stage I and II) and intruded by meteoric water since Stage III.
- Fluid immiscibility caused by the rapid drop in pressure may have been the main trigger for gold-polymetallic sulfide precipitation in the Songjianghe Au deposit.
- The S-Pb isotope data indicate that the ore-forming materials have predominantly derived from a magmatic source and may have been affected by the contamination of the Seluohe Group.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L. Research on Ore-Forming Fluids of Gold Deposits in Jiapigou-Haigou Gold Belt, Jilin Province and Deep-Seated Metallogenic Assessment. Ph.D. Thesis, Jilin University, Changchun, China, 2016. (In Chinese). [Google Scholar]
- Zhang, X.T. Research on Geology, Geochemistry and Metallogenesis of the Gold Deposits of the Jiapigou Ore Field in the Continental Margin of Northeast China. Ph.D. Thesis, Jilin University, Changchun, China, 2018. (In Chinese). [Google Scholar]
- Liu, S.F.; Wang, Q.F.; Groves, D.I.; Wang, Z.M.; Yang, L.; Wu, Z.L.; Yu, Z.Y.; Huang, P.F.; Deng, J. Adoption of a mineral system model in successful deep exploration at Erdaogou, China’s deepest gold mine, on the northeastern margin of the North China Craton. Ore Geol. Rev. 2021, 131, 104060. [Google Scholar] [CrossRef]
- Sun, Z.S.; Feng, Y.M. Main minerogenetic epoch, determine and exploratory direction of Jiapigou gold deposit, Jilin. Acta Geosci. Sin. 1997, 18, 367–372. (In Chinese) [Google Scholar]
- Zhang, S.; Zeng, Q.D.; Liu, J.M.; Wang, Z.C.; Gao, J.H. The characteristics and its geological significance of fluid inclusions in Haigou Lode gold deposit, Jilin Province. Acta Petrol. Sin. 2011, 27, 1287–1298. (In Chinese) [Google Scholar]
- Yang, L.Y.; Yang, L.Q.; Yuan, W.M.; Zhang, C.; Zhao, K.; Yu, H.J. Origin and evolution of ore fluid for orogenic gold traced by D-O isotopes: A case from the Jiapigou gold belt, China. Acta Petrol. Sin. 2013, 29, 4025–4035. (In Chinese) [Google Scholar]
- Deng, J.; Yuan, W.M.; Carranza, E.J.M.; Yang, L.Q.; Wang, C.M.; Yang, L.Y.; Hao, N.N. Geochronology and thermochronometry of the Jiapigou gold belt, northeastern China: New evidence for multiple episodes of mineralization. J. Asian Earth Sci. 2014, 89, 10–27. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.G.; Men, L.J.; Chai, P. Origin and evolution of the ore-forming fluids of the Erdaogou and Xiaobeigou gold deposits, Jiapigou gold province, NE China. J. Asian Earth Sci. 2016, 129, 170–190. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Men, L.; Chai, P. Genesis of the Haigou gold deposit, Jilin Province, NE China: Evidence from fluid inclusions, 40Ar/39Ar geochronology and isotopes. Geol. J. 2017, 52, 992–1008. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.G.; Duan, C. Rb-Sr Isochron Dating and Isotopic Geochemistry Characteristics of the Bajiazi Large Gold Deposit, Jilin Province, China. Acta Geol. Sin. 2018, 92, 1432–1446, (In Chinese with English Abstract). [Google Scholar]
- Zhai, D.G.; Williams-Jones, A.E.; Liu, J.J.; Selby, D.; Li, C.; Huang, X.W.; Qi, L.; Guo, D.H. Evaluating the Use of the Molybdenite Re-Os Chronometer in Dating Gold Mineralization: Evidence from the Haigou Deposit, Northeastern China. Econ. Geol. 2019, 114, 897–915. [Google Scholar] [CrossRef]
- Li, J.J.; Shen, B.F.; Mao, D.B.; Li, S.B.; Zhou, H.F. Metallogenic epochs of the Jiapigou gold deposit, Jilin Province, China. Acta Geol. Sin. 1996, 70, 335–341, (In Chinese with English Abstract). [Google Scholar]
- Dai, J.Z.; Wang, K.Y.; Cheng, X.M. Geochemical features of ore-forming fluids in the Jiapigou gold belt, Jilin Province. Acta Petrol. Sin. 2007, 23, 2198–2206, (In Chinese with English Abstract). [Google Scholar]
- Huang, Z.X.; Yuan, W.M.; Wang, C.M.; Liu, X.W.; Xu, X.T.; Yang, L.Y. Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China. Constrains from rare earth element, fluid inclusion geochemistry and geochronology. J. Earth Syst. Sci. 2012, 121, 1401–1420. [Google Scholar] [CrossRef]
- Feng, Y.Y. A Study on the Genesis of Bajiazi Gold Ore in Jiapigou, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2017. (In Chinese). [Google Scholar]
- Sun, Z.S.; Feng, B.Z.; Qing, X. The stable isotopic geology and exploration direction of the Jiaopigou gold ore deposit, Jilin Province. J. Chang. Univ. Sci. Technol. 1998, 28, 142–147. (In Chinese) [Google Scholar]
- Zeng, Q.D.; Wang, Z.C.; He, H.Y.; Wang, Y.B.; Liu, J.M. Multiple isotope composition (S, Pb, H, O, He, and Ar) and genetic implications for gold deposits in the Jiapigou gold belt, Northeast China. Miner. Depos. 2014, 49, 145–164. [Google Scholar] [CrossRef]
- Shen, B.F.; Peng, X.L.; Luo, H.; Mao, D.B. Archean greenstone belts in China. Acta Geol. Sin. 1993, 67, 208–220, (In Chinese with English Abstract). [Google Scholar]
- Xu, X.T. On the Magmatic Rocks and Ore-Forming Fluid in the Jiapigou Gold Belt, Jilin Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2010. (In Chinese). [Google Scholar]
- Huang, Z.X. Tectonics–Fluids–Mineralization System of Jiapigou Gold Belt in Jilin Province, China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2012. (In Chinese). [Google Scholar]
- Miao, L.C.; Qiu, Y.M.; Fan, W.M.; Zhang, F.Q.; Zhai, M.G. Geology, geochronology, and tectonic setting of the Jiapigou gold deposits, southern Jilin Province, China. Ore Geol. Rev. 2005, 26, 137–165. [Google Scholar] [CrossRef]
- Yu, H.J. On the Geology Geochemistry and Genetic Model Study of the Jiapigou Ore Deposit of Jilin Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2009. (In Chinese). [Google Scholar]
- Zeng, Q.D.; Wang, Z.C.; Zhang, S.; Wang, Y.B.; Yang, Y.H.; Liu, J.M. The ore-forming epoch of the Jiapigou gold belt, NE China: Evidences from the zircon LA–ICP–MS U–Pb dating of the intrusive rocks. Acta Geol. Sin. 2014, 88, 1029–1030. [Google Scholar] [CrossRef]
- Li, B.L.; Chen, G.J.; Song, Z.W. Discussion on minerogenetic epoch of the gold deposit in Jiapigou of Jilin Province. Glob. Geol. 2004, 23, 354–359, (In Chinese with English Abstract). [Google Scholar]
- Li, B. Study on Geological Characteristics and Genesis of Songjianghe Gold Deposit, Dunhua City, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2015. (In Chinese). [Google Scholar]
- Yang, Y. Geological Characteristics and Prospecting Direction of Songjianghe Gold Deposit in Dunhua City, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2019. (In Chinese). [Google Scholar]
- Jin, H.Y.; Yu, Z.T.; Wu, J.X. Characteristics of fluid inclusions and genesis of Songjianghe gold deposit in Jilin Province. Glob. Geol. 2014, 33, 76–85, (In Chinese with English Abstract). [Google Scholar]
- Qin, Z.; Sun, D.Y.; Zhang, J.L.; Li, L.W.; Wang, Z.Y.; Li, X.J. Characteristics of fluid inclusions and metallogenic physicochemical conditions of Songjianghe Gold Deposit in Dunhua, Jilin Province. Gold 2019, 40, 14–18+22, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.M.; Sun, J.G.; Li, X.M.; Song, Q.H.; Wang, Q.H.; Zhang, X.T. Geology, fluid inclusion and genesis of Songjianghe gold deposit in Dunhua City, Jilin Province. Glob. Geol. 2021, 40, 273–287, (In Chinese with English Abstract). [Google Scholar]
- Lu, Q.; Sun, J.G.; An, J.H.; Han, J.L.; Chu, X.L. Petrogenesis and Forming Environment of Mesozoic Porphyritic Granite in Songjianghe Region of Dunhua, Jilin Province: Evidences from Element Geochemistry, Hf Isotope and U-Pb. J. Jilin Univ. 2019, 49, 673–689, (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.T.; Sun, J.G.; Yu, Z.T.; Song, Q.H. LA-ICP-MS zircon U–Pb and sericite 40Ar/39Ar ages of the Songjianghe gold deposit in southeastern Jilin Province, Northeast China, and their geological significance. Can. J. Earth Sci. 2019, 56, 607–628. [Google Scholar] [CrossRef]
- Hou, S.H.; Sang, H.Q. 40Ar/39Ar fast neutron activation dating method for sericite from Liupiye gold deposit, Jilin Province. Miner. Depos. 2004, 23, 502–508, (In Chinese with English Abstract). [Google Scholar]
- Zeng, Q.D.; He, H.Y.; Zhu, R.X.; Zhang, S.; Wang, Y.B.; Su, F. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes. J. Asian Earth Sci. 2017, 144, 384–397. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Massive granitoid generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic model for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.M.; Gao, X.F.; Li, C.W.; Miao, L.C.; Zhao, L.; Li, H.X. Sr–Nd–Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth. Lithos 2010, 120, 563–578. [Google Scholar] [CrossRef]
- Kravchinsky, V.A.; Cogn, J.P.; Harbert, W.P.; Kuzmin, M.I. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys. J. R. Astron. Soc. 2010, 148, 34–57. [Google Scholar] [CrossRef]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Wang, Z.W.; Wang, F.; Wang, Z.J. Zircon U–Pb geochronology and petrogenesis of the Late Paleozoic–Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos 2013, 170–171, 191–207. [Google Scholar] [CrossRef]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Tang, J. Late Permian tectonic evolution at the southeastern margin of the Songnen–Zhangguangcai range massif, NE China: Constraints from geochronology and geochemistry of granitoids. Gondwana Res. 2013, 24, 635–647. [Google Scholar] [CrossRef]
- Wilde, S.A. Final amalgamation of the Central Asian orogenic belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—A review of the evidence. Tectonophysics 2015, 662, 345–362. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A.; Zhao, G.C.; Han, J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 76–93. [Google Scholar] [CrossRef]
- Wu, F.Y.; Zhao, G.C.; Sun, D.Y.; Wilde, S.A.; Zhang, G.L. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J. Asian Earth Sci. 2007, 30, 542–556. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.C.; Santosh, M.; Zhang, D.Y.; Wang, T. Petrogenesis of the Early Permian volcanic rocks in the Chinese South Tianshan: Implications for crustal growth in the Central Asian Orogenic Belt. Lithos 2015, 228–229, 23–42. [Google Scholar] [CrossRef]
- Bo, H.; Zhang, Z.; Santosh, M.; Cheng, Z.; Xie, Q.; Kong, W.; Liu, B.; Qin, J.; Li, B. Petrogenesis of an Early Permian bimodal intermediate-felsic suite in the East Junggar in Central Asian Orogenic Belt and tectonic implications. Geol. J. 2020, 56, 547–571. [Google Scholar] [CrossRef]
- Wilde, S.A.; Zhang, X.Z.; Wu, F.Y. Extension of a newly-identified 500 Ma metamorphic terrain in northeast China: Further U–Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics 2000, 328, 115–130. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res. 2013, 23, 1365–1377. [Google Scholar] [CrossRef]
- Han, J.L. Metallogenesis and Geodynamic Setting of the Typical Gold Deposits in the Liuhe Area of the Huadian City, Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2019. (In Chinese). [Google Scholar]
- Zhou, J.B.; Wang, B.; Wilde, S.A.; Zhao, G.C.; Cao, J.L.; Zheng, C.Q.; Zeng, W.S. Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing’an Range, Northeast China, and Tectonic Implications. J. Asian Earth Sci. 2015, 97, 197–210. [Google Scholar] [CrossRef]
- Zhou, X.D.; Zhu, D.Y.; Sun, Y.J. The Precambrian strata of Jilin Province. Jilin Geol. 2006, 25, 1–10. (In Chinese) [Google Scholar]
- Guo, B.R.; Liu, S.W.; Zhang, J.; Wang, W.; Fu, J.H.; Wang, M.J. Neoarchean Andean-type active continental margin in the northeastern North China Craton: Geochemical and geochronological evidence from metavolcanic rocks in the Jiapigou granite-greenstone belt, Southern Jilin Province. Precambr. Res. 2016, 285, 147–169. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, D.D.; Liang, Y.H.; Zou, C.M.; Bai, L.A. Geochronology of Ji’an group in Tonghua area, Southern Jilin province. Earth Sci. -J. China Univ. Geosci. 2014, 39, 1587–1599, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.H.; Liu, Y.Q.; Feng, B.Z. The establishment and tectonic evolution of Proterozoic Orogenic Belt in the north margin of North China Plate. J. Chang. Univ. Sci. Technol. 2000, 30, 110–114, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Peng, Y.J.; Lu, X.P.; Liu, Y.W. Proterozoic tectonic slices along the northern margin of North China plate. J. Jilin Univ. 2002, 32, 134–139, (In Chinese with English Abstract). [Google Scholar]
- Li, C.D.; Zhang, F.Q.; Miao, L.C.; Jie, H.Q.; Hua, Y.Q.; Xu, W.Y. Reconsideration of the Seluohe Group in Seluohe area, Jilin Province. J. Jilin Univ. 2007, 37, 841–847. (In Chinese) [Google Scholar]
- Li, C.D.; Zhang, F.Q.; Miao, L.C.; Du, Y.L.; Hua, Y.Q.; Xu, W.Y.; Kang, S.M. Zircon SHRIMP U–Pb geochronology of the Zhangsangou Formation complex in the northeastern margin of North China Block, and its geological significance. Acta Geol. Sin. 2009, 83, 642–650. (In Chinese) [Google Scholar]
- Zhang, Y.B.; Wu, F.Y.; Wilde, S.A.; Zhai, M.G.; Lu, X.P.; Zhang, H.F. Geochronology and Tectonic Implications of the “Proterozoic” Seluohe Group at the Northern Margin of the North China Craton. Int. Geol. Rev. 2008, 50, 135–153. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wang, C.; Song, J.; Gao, X.; Sun, L.N. 40Ar-39Ar dating and its tectonic significance of the Hulan Group at the northern margin of the North China Plate. Acta Petrol. Sin. 2016, 32, 2757–2764. (In Chinese) [Google Scholar]
- Guo, B.R.; Liu, S.W.; Santosh, M.; Wang, W. Neoarchean arc magmatism and crustal growth in the north-eastern North China Craton: Evidence from granitoid gneisses in the Southern Jilin Province. Precambrian Res. 2017, 303, 30–53. [Google Scholar] [CrossRef]
- Guo, B.R.; Liu, S.W.; Chen, X.; Wang, W.; Guo, R.R.; Yan, M. K–rich granitoid magmatism at the Archean–Proterozoic transition in southern Jilin: Insights into the Neoarchean crustal evolution of the northeastern part of the North China Craton. Gondwana Res. 2018, 58, 87–104. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wu, F.Y.; Li, H.M.; Lu, X.P.; Sun, D.Y.; Zhou, H.Y. Single grain zircon U-Pb ages of the Huangniling granite in Jilin Province. Acta Petrol. Sin. 2002, 18, 475–481. (In Chinese) [Google Scholar]
- Liu, S.; Hu, R.Z.; Feng, C.X.; Feng, G.Y.; Yu, X.F.; Li, C.; Jia, D.C.; Qi, Y.Q.; Wang, T. Zircon U–Pb age, Hf isotopic compositions of Dapuchaihe adakites in eastern Jilin Province and their significance. Acta Petrol. Sin. 2009, 25, 3153–3464. (In Chinese) [Google Scholar]
- Xu, J.W.; Ma, G.F. Review of ten years (1981–1991) of research on the Tancheng–Lujiang fault zone. Geol. Rev. 1992, 38, 316–323, (In Chinese with English Abstract). [Google Scholar]
- Wang, F.; Xu, W.; Ge, W.; Yang, H.; Pei, F.; Wu, W. The offset distance of the Dunhua-Mishan Fault; Constraints from Paleozoic-Mesozoic magmatism within the Songnen-Zhangguangcai Range, Jiamusi, and Khanka massifs. Acta Petrol. Sin. 2016, 32, 1129–1140, (In Chinese with English Abstract). [Google Scholar]
- Xie, H.Y.; Shen, Y.C.; Jiao, X.D.; Meng, Q.Y. Discussion some important geological problems of Jiapigou gold belt, Jilin Province. Chin. J. Geol. 2000, 35, 111–120, (In Chinese with English Abstract). [Google Scholar]
- Deng, J.; Yang, L.Q.; Gao, B.F.; Sun, Z.S.; Guo, C.Y.; Wang, Q.F.; Wang, J.P. Fluid evolution and metallogenic dynamics during tectonic regime transition: Example from the Jiapigou gold belt in northeast China. Resour. Geol. 2009, 59, 140–152. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, J.W.; Evans, K.; Koenig, A.E.; Li, Z.K.; O’Brien, H.; Lahaye, Y.; Rempel, K.; Hu, S.Y.; Zhang, Z.P.; et al. Ore-forming processes of the Daqiao epizonal orogenic gold deposit, west Qinling orogen, China: Constraints from textures, trace elements, and sulfur isotopes of pyrite and marcasite, and raman spectroscopy of carbonaceous material. Econ. Geol. 2018, 113, 1093–1132. [Google Scholar] [CrossRef]
- Qiu, C. Metallogenic Epoch and Geodynamic Background of the Haigou Gold Deposit, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2017. (In Chinese). [Google Scholar]
- Zhang, Y.B.; Wu, F.Y.; Wilde, S.A.; Zhai, M.G.; Lu, X.P.; Sun, D.Y. Zircon U–Pb ages and tectonic implications of ‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, northeast China. Isl. Arc 2004, 13, 484–505. [Google Scholar] [CrossRef]
- Wang, G.Z.; Li, B.L.; Peng, B.; Ning, C.Q.; Yang, W.L. Songjianghe biotite monzonitic granite zircon U–Pb geochronology and geochemical significance. Glob. Geol. 2016, 19, 133–143. [Google Scholar]
- Roedder, E. Fluid Inclusions: An Introduction to Studies of All Types of Fluid Inclusions, Gas, Liquid, or Melt, Trapped in Materials from Earth and Space, and Their Application to the Understanding of Geologic Processes; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 12, pp. 11–304. [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Robinson, B.W.; Kusakabe, M. Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal. Chem. 1975, 47, 1179–1181. [Google Scholar] [CrossRef]
- Wu, S.S.; Zhang, X.B.; Zhang, Y.; Huang, G.H.; Zhang, T.Z.; Lai, C.K. In-situ trace element and S isotope compositions of sulfides from the Tonggou Cu deposit, Eastern Tianshan Orogen: Implication for ore-forming process. Ore Geol. Rev. 2022, 149, 105085. [Google Scholar] [CrossRef]
- Chen, L.; Chen, K.; Bao, Z.; Liang, P.; Sun, T.; Yuan, H. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. J. Anal. At. Spectrom. 2017, 32, 107–116. [Google Scholar] [CrossRef]
- Fan, H.R.; Li, X.H.; Zuo, Y.B.; Chen, L.; Liu, S.; Hu, F.F.; Feng, K. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrol. Sin. 2018, 34, 3479–3496. (In Chinese) [Google Scholar]
- Sun, Q.F.; Wang, K.Y.; Wang, Y.C.; Cai, W.Y.; Ma, X.L. Superimposing mineralization in the Zhengguang Au-Zn deposit, NE China: Evidence from pyrite Re-Os geochronology, fluid inclusion, and H-O-S-Pb isotopes. Ore Geol. Rev. 2021, 137, 104307. [Google Scholar] [CrossRef]
- Lu, H.Z.; Fan, H.R.; Ni, P.; Ou, G.X.; Shen, K.; Zhang, W.H. Fluid Inclusion; Science Press: Beijing, China, 2004; pp. 193–200. (In Chinese) [Google Scholar]
- Hall, D.L.; Sterner, S.M.; Bodnar, R.J. Freezing point depression of NaCl–KCl–H2O solution. Econ. Geol. 1988, 83, 197–202. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Craig, H.; Lupton, J.E. Lupton primordial neon, helium and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 1976, 31, 369–385. [Google Scholar] [CrossRef]
- Zhang, L.G. Geological Appliance for the Stable Isotope; Shanxi Science and Technology Publishing House: Xi’an, China, 1985; pp. 54–61. (In Chinese) [Google Scholar]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Wutiepu, W. Multi-Information Metallogenic Prediction of Gold Deposits in Jiapigou Metallogenic Belt, Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2019. (In Chinese). [Google Scholar]
- Li, S.R.; Santosh, M. Metallogeny and craton destruction: Records from the North China Craton. Ore Geol. Rev. 2014, 56, 376–414. [Google Scholar] [CrossRef]
- Gao, S. Properties and Mineralizing Significance of CO2-Rich Fluid in Haigou Gold Deposit, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2016. (In Chinese). [Google Scholar]
- Chen, Y.L.; Li, H.; Zheng, C.Y.; Maoayipu, N.; Khan, R. Genesis and ore prospecting model of Haigou gold deposit in Jilin Province: Evidence from LA-ICP-MS trace element and sulfur isotopic analysis of pyrite. J. Cent. South Univ. 2021, 52, 2990–3002. (In Chinese) [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Liu, Y.Q. Isotope geochemistry and metallogenic regularity of the Haigou gold deposit in Jilin Province. Miner. Depos. 1991, 10, 131–142. (In Chinese) [Google Scholar]
- Yang, L.Y. The Geochemistry and Genesis of Jiapigou Gold Deposit in Jilin Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2011. (In Chinese). [Google Scholar]
- Roedder, E.; Bodnar, R.J. Geologic pressure determinations from fluid inclusion studies. Annu. Rev. Earth Planet. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Brown, P.E.; Hagemann, S.G. MacFlincor and its application to fluid in Archean lode-gold deposits. Geochim. Cosmochim. Acta 1995, 59, 3943–3952. [Google Scholar] [CrossRef]
- Bouzari, F.; Clark, A.H. Prograde evolution and geothermal affinities of a major porphyry copper deposit: The Cerro Colorado hypogene protore, I region, northern Chile. Econ. Geol. 2006, 101, 95–134. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 16, 491–559. [Google Scholar]
- Heinrich, C.A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner. Depos. 2005, 39, 864–889. [Google Scholar] [CrossRef]
- Mao, J.W.; Wang, Y.T.; Li, H.M.; Pirajno, F.; Zhang, C.Q.; Wang, R.T. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics. Ore Geol. Rev. 2008, 33, 361–381. [Google Scholar] [CrossRef]
- Lowenstern, J.B. Carbon dioxide in magmas and implications for hydrothermal systems. Miner. Depos. 2001, 36, 490–502. [Google Scholar] [CrossRef]
- Sibson, R.H.; Robert, F.; Poulsen, H. High angle reverse faults fluid pressure cycling and mesothermal gold quartz deposits. Geology 1988, 16, 551–555. [Google Scholar] [CrossRef]
- Gammons, C.H.; Williams-Jones, A.E.; Yu, Y. New data on the stability of gold (I) chloride complexes at 300 °C. Mineral. Mag. 1994, 58, 309–310. [Google Scholar] [CrossRef]
- Benning, L.G.; Seward, T.M. Hydrosulfide complexing of Au (I) in hydrothermal solutions from 150 to 400 °C and 500–1500 bar. Geochim. Cosmochim. Acta 1996, 60, 1849–1871. [Google Scholar] [CrossRef]
- Phillips, G.N.; Evans, K.A. Role of CO2 in the formation of gold deposits. Nature 2004, 429, 860–863. [Google Scholar] [CrossRef]
- Guha, J.; Lu, H.Z.; Dube, B.; Robert, F.; Gagnon, M. Fluid characteristics of vein and altered wall rock in Archean mesothermal gold deposits. Econ. Geol. 1991, 86, 667–684. [Google Scholar] [CrossRef]
- Reed, M.H.; Spycher, N.F. Boiling, cooling, and oxidation in epithermal system: A numerical modeling approach. Rev. Econ. Geol. 1985, 1, 249–272. [Google Scholar]
- Robert, F.; Kelly, W.C. Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol. 1987, 82, 1464–1482. [Google Scholar] [CrossRef]
- Tbrahim, M.S.; Kyser, T.K. Fluid inclusion and isotope systematics of the high-T Proterozoic Star Lake Lode gold deposit, Northern Soskatchewan, Canada. Econ. Geol. 1991, 86, 1468–1490. [Google Scholar] [CrossRef]
- Macnamara, J.; Thode, H.G. Comparison of the isotopic constitution of terrestrial and meteoritic sulfur. Phys. Rev. 1950, 78, 307–308. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J.P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Kelley, W.C.; Rye, R.O. Geologic, fluid inclusion, and stable isotope studies of the Tin-Tungsten deposits of Panasqueira, Portugal. Econ. Geol. 1979, 74, 1721–1819. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Wang, Z.C.; Liu, J.M.; Liu, H.T.; Zeng, Q.D.; Zhang, S.; Wang, Y.B. Complexity and uncertainty of tracing fluid sources by means of H-O, C, S, N isotope systems: A case study of orogenic lode gold deposits. Acta Petrol. Mineral. 2010, 29, 577–590. (In Chinese) [Google Scholar]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Wang, T.J.; Yan, F. Ore fluid evolution and ore prediction of magmatic hydrothermal gold deposits in Jiaodong area. J. Geol. Explor. 2002, 17, 169–174. (In Chinese) [Google Scholar]
- Wang, Y.W.; Zhu, F.S.; Gong, R.T. Tectonic isotope geochemistry: Further study on sulphur isotope of Jiaodong gold concentration area. Gold 2002, 23, 1–16. (In Chinese) [Google Scholar]
- Wu, K.X.; Hu, R.Z.; Bi, X.W.; Peng, J.T.; Tang, Q.L. Ore lead isotopes as a tracer for ore-forming material sources: A review. Geol. Geochem. 2002, 30, 73–81. (In Chinese) [Google Scholar]
- Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.C.; Johnson, C.; McClelland, W. The Late Cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation. Econ. Geol. 2004, 99, 643–671. [Google Scholar] [CrossRef]
- Mortensen, J.K.; Hall, B.V.; Bissig, T.; Friedman, R.M.; Danielson, T.; Oliver, J.; Rhys, D.A.; Ross, K.V.; Gabites, J.E. Age and paleotectonic setting of volcanogenic massive sulfide deposits in the Guerrero Terrane of Central Mexico: Constraints from U–Pb age and Pb isotope studies. Econ. Geol. 2008, 103, 117–140. [Google Scholar] [CrossRef]
- Wen, B.J.; Fan, H.R.; Hu, F.F.; Liu, X.; Yang, K.F.; Sun, Z.F.; Sun, Z.F. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H-O-S-He-Ar isotopic compositions. J. Geochem. Explor. 2016, 171, 96–112. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, E.; Tang, J.; Xu, M.J.; Wang, W. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353. (In Chinese) [Google Scholar]
- Tang, J.; Xu, W.L.; Wang, F.; Ge, W.C. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Sci. China Earth Sci. 2018, 61, 527–559. [Google Scholar] [CrossRef]
- Wang, F.; Xu, Y.G.; Xu, W.L.; Yang, L.; Wu, W.; Sun, C.Y. Early Jurassic calc-alkaline magmatism in northeast China: Magmatic response to subduction of the Paleo-Pacific Plate beneath the Eurasian continent. J. Asian Earth Sci. 2017, 143, 249–268. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y. The Mesozoic magmatism and lithospheric thinning in eastern China. J. Chang. Univ. Sci. Technol. 1999, 29, 313–318. (In Chinese) [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Zhang, G.L.; Ren, X.W. Deep geodynamics of Yanshan movement. Geol. J. China Univ. 2000, 6, 379–388. (In Chinese) [Google Scholar]
- Wu, F.Y.; Ge, W.C.; Sun, D.Y.; Guo, C.L. Discussions on the lithospheric thinning in eastern China. Earth Sci. Front. 2003, 10, 51–60. (In Chinese) [Google Scholar]
Mineralization Stages | Host Minerals | Types (Number) | Size (μm) | Tm-CO2 (°C) | Tm-Cla (°C) | Th-CO2 (°C) | Tm-Ice (°C) | Th-Total (°C) | Salinity (wt.% NaCl eqv) |
---|---|---|---|---|---|---|---|---|---|
Stage I | quartz | C1-type (10) | 8–12 | −60.8 to −60.0 | 17.6 to 30.0 | ||||
C2-type (22) | 6–15 | −61.0 to −56.9 | 6.5 to 8.6 | 17.5 to 30.2 | 305.0 to 386.4 | 2.8 to 6.6 | |||
C3-type (27) | 6–20 | −62.2 to −59.5 | 6.9 to 8.5 | 16.2 to 30.9 | 327.6 to 405.6 | 3.0 to 5.9 | |||
VL-type (31) | 5–20 | −6.1 to −3.9 | 292.8 to 368.4 | 6.3 to 9.3 | |||||
Stage II | quartz | C2-type (10) | 8–12 | −60.1 to −57.5 | 7.6 to 8.3 | 25.4 to 30.5 | 301.5 to 337.6 | 3.4 to 4.7 | |
C3-type (21) | 5–15 | −60.0 to −56.9 | 7.4 to 8.6 | 21.8 to 30.7 | 301.9 to 338.6 | 2.8 to 5.1 | |||
VL-type (23) | 6–22 | −5.2 to −3.6 | 278.5 to 338.9 | 5.8 to 8.1 | |||||
Stage III | quartz | C3-type (20) | 5–15 | −57.7 to −56.7 | 7.9 to 8.8 | 11.8 to 28.0 | 225.4 to 307.3 | 2.4 to 4.1 | |
VL-type (24) | 5–15 | −4.5 to −2.8 | 215.9 to 297.3 | 4.6 to 7.2 | |||||
Stage IV | quartz | VL-type (19) | 5–15 | −3.5 to −2.2 | 189.5 to 240.4 | 3.7 to 5.7 |
Sample No. | Mineralization Stages | Mineral | δDV-SMOW (‰) | δ18Oquartz (‰) | T (°C) | δ18Ofluid (‰) |
---|---|---|---|---|---|---|
SJH-HO-1 | Stage I | quartz | −95.7 | 11.1 | 341 | 5.6 |
SJH-HO-2 | quartz | −96.2 | 11.3 | 341 | 5.8 | |
SJH-HO-3 | Stage II | quartz | −98.7 | 10.6 | 312 | 4.2 |
SJH-HO-4 | quartz | −95.5 | 10.5 | 312 | 4.1 | |
SJH-HO-5 | quartz | −93.9 | 10.1 | 312 | 3.7 | |
SJH-HO-6 | quartz | −89.8 | 10.6 | 312 | 4.2 | |
SJH-HO-7 | Stage III | quartz | −101.2 | 9.9 | 258 | 1.4 |
SJH-HO-8 | quartz | −103.5 | 9.8 | 258 | 1.2 | |
SJH-HO-9 | quartz | −102.1 | 9.9 | 258 | 1.4 |
Sample No. | Mineralization Stages | Mineral | δ34SV-CDT (‰) |
---|---|---|---|
SJH-S-1 | Stage I | pyrite | −2.91 |
SJH-S-2 | Stage I | −1.87 | |
SJH-S-3 | Stage I | −1.33 | |
SJH-S-4 | Stage I | −1.65 | |
SJH-S-5 | Stage I | 0.42 | |
SJH-S-6 | Stage I | −0.15 | |
SJH-S-7 | Stage I | 0.22 | |
SJH-S-8 | Stage II | 1.39 | |
SJH-S-9 | Stage II | −0.84 | |
SJH-S-10 | Stage II | 0.76 | |
SJH-S-11 | Stage II | −0.96 | |
SJH-S-12 | Stage II | 3.40 | |
SJH-S-13 | Stage II | −0.33 | |
SJH-S-14 | Stage II | 3.08 | |
SJH-S-15 | Stage II | 1.55 | |
SJH-S-16 | Stage II | 0.92 | |
SJH-S-17 | Stage II | 2.42 | |
SJH-S-18 | Stage II | 2.38 | |
SJH-S-19 | Stage II | 2.76 | |
SJH-S-20 | Stage II | 1.04 | |
SJH-S-21 | Stage II | −0.60 | |
SJH-S-22 | Stage II | 0.90 |
Sample No. | Sample Description | Test Object | 208Pb/204Pb | 207Pb/204Pb | 206Pb/204Pb |
---|---|---|---|---|---|
SJH-Pb-1 | monzogranite | whole rock | 37.2820 | 15.3930 | 17.1720 |
SJH-Pb-2 | monzogranite | whole rock | 37.2280 | 15.3720 | 17.1760 |
SJH-Pb-3 | monzogranite | whole rock | 37.3910 | 15.4060 | 17.3080 |
SJH-Pb-4 | K-feldspar granite | whole rock | 37.5280 | 15.4080 | 17.4630 |
SJH-Pb-5 | K-feldspar granite | whole rock | 37.5980 | 15.4250 | 17.4970 |
SJH-Pb-6 | K-feldspar granite | whole rock | 37.6810 | 15.4440 | 17.5480 |
SJH-Pb-7 | biotite-plagioclase schist | whole rock | 36.9210 | 15.2920 | 16.8380 |
SJH-Pb-8 | biotite-plagioclase schist | whole rock | 36.5910 | 15.2140 | 16.4550 |
SJH-Pb-9 | biotite-plagioclase schist | whole rock | 36.6000 | 15.2050 | 16.4980 |
SJH-Pb-10 | Stage II | pyrite | 36.6265 | 15.2258 | 16.4874 |
SJH-Pb-11 | Stage II | pyrite | 36.6088 | 15.2655 | 16.4205 |
SJH-Pb-12 | Stage II | pyrite | 36.6153 | 15.2250 | 16.3270 |
SJH-Pb-13 | Stage II | pyrite | 36.6878 | 15.3489 | 16.4388 |
SJH-Pb-14 | Stage II | pyrite | 36.7174 | 15.3300 | 16.4230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Wang, K.; Zhang, X.; Sun, Q.; Bai, W.; Ma, C.; Xiao, Y. Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics. Minerals 2023, 13, 652. https://doi.org/10.3390/min13050652
Yu Q, Wang K, Zhang X, Sun Q, Bai W, Ma C, Xiao Y. Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics. Minerals. 2023; 13(5):652. https://doi.org/10.3390/min13050652
Chicago/Turabian StyleYu, Qi, Keyong Wang, Xuebing Zhang, Qingfei Sun, Wenqiang Bai, Chao Ma, and Yongchun Xiao. 2023. "Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics" Minerals 13, no. 5: 652. https://doi.org/10.3390/min13050652
APA StyleYu, Q., Wang, K., Zhang, X., Sun, Q., Bai, W., Ma, C., & Xiao, Y. (2023). Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics. Minerals, 13(5), 652. https://doi.org/10.3390/min13050652