Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization
Abstract
:1. Introduction
2. Geological Background and Sample Description
2.1. Geological Background
2.2. Sample Description
3. Methodology
3.1. Petrographic Identification
3.2. Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry (LA–ICP–MS) Cassiterite U-Pb Dating
3.3. Whole Rock Geochemical Analysis
4. Analytical Results
4.1. Petrographic Characteristics
4.2. Cassiterite U–Pb Dating
4.3. Geochemical Analysis
5. Discussion
5.1. Diagenetic and Metallogenic Age
5.2. Genesis and Evolution Processes
5.3. Tectonic Setting
5.4. Constraints on Rare Metal Mineralization
6. Conclusions
- (1)
- Cassiterite U–Pb dating results show that the diagenetic age of the Dongcao muscovite granite is 139.7 ± 6.7 Ma (MSWD = 0.67), which is Early Cretaceous.
- (2)
- The Dongcao muscovite granite is characterized by high Si, is rich in alumina and alkali, is low in Ca and Fe, and is poor in Mg and Ti. The Na2O/K2O ratios range from 0.95 to 1.24, with an average of 1.08, and the A/CNK values vary from 1.34 to 1.44, with an average of 1.39, indicating a strong peraluminous environment that is enriched with sodium. The trace elements of Dongcao muscovite granite are enriched with Rb, U, Ta, Pb, P, and Hf and depleted of Ba, Sr, Ti, REEs, etc. The total rare earth element (ΣREE) content is relatively low, and the negative Eu anomaly and tetrad effect are apparent.
- (3)
- Evidence from petrographic, cassiterite U–Pb dating and petro–geochemical data indicate that the Dongcao muscovite granite is a highly differentiated granite, which was formed in the tectonic environment of the intracontinental collision to post–collisional transition under the subduction of the Paleo–Pacific plate. In the formation process, it experienced a high degree of crystallization differentiation evolution in the early stage and melt–fluid interaction in the late stage of evolution.
- (4)
- The highly differentiated evolution of magma and the melt–fluid interaction in the late stage of magmatic evolution are significant constraints for forming granite–type Li–Nb–Ta–Sn rare metal deposits in the Ganfang area. The former causes the initial enrichment of ore–forming elements, while the latter causes ore–forming elements to be highly concentrated and finally mineralized.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, J.W.; Yuan, S.D.; Xie, G.Q.; Song, S.W.; Zhou, Q.; Gao, Y.B.; Liu, X.; Fu, X.F.; Cao, J.; Zeng, Z.L.; et al. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Miner. Depos. 2019, 38, 935–969. [Google Scholar]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; Publications Office of the European Union: Brussels, Belgium, 2020. [Google Scholar]
- Committee on Critical Mineral Impacts of the U.S. Economy; Committee on Earth Resources; National Research Council. Minerals, Critical Minerals, and the US Economy; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Mudd, G.M.; Werner, T.T.; Weng, Z.H.; Yellishetty, M.; Yuan, Y.; McAlpine, S.R.B.; Skirrow, R.; Czarnota, K. Critical Minerals in Australia: A Review of Opportunities and Research Needs; Geoscience Australia: Canberra, Australia, 2018. [Google Scholar]
- Nie, X.L.; Wang, S.L.; Liu, S.; Xu, L. Geological and geochemical characteristics of the Xikeng lithium deposit and the 40Ar/39Ar chronology of lepidolite of the deposit in Jiangxi Province, China. Acta Mineral. Sin. 2022, 42, 285–294. [Google Scholar]
- Jiang, B.L.; Zhao, J.; Lin, M.H.; Zhang, L. Zircon U–Pb age of ore–forming magmatic rocks in Baishuidong Li–Nb–Ta deposit, Yifeng County, Jiangxi Province and its significance. World Nonferrous Met. 2022, 19, 73–75. [Google Scholar]
- Xie, L.; Liu, Y.; Wang, R.C.; Hu, H.; Che, X.D.; Xiang, L. Li–Nb–Ta mineralization in the Jurassic Yifeng granite–aplite intrusion within the Neoproterozoic Jiuling batholith, south China: A fluid–rich and quenching ore–forming process. J. Asian Earth Sci. 2019, 185, 104047. [Google Scholar] [CrossRef]
- Li, R.Z.; Zhou, Z.B.; Peng, B.; Chen, J.; Wu, J.B.; Yu, H.Q.; Wan, J.J.; Yang, S. A discussion on geological characteristics and genetic mechanism of Dagang superlarge lithium–bearing porcelain stone deposit in Yifeng County, Jiangxi Province. Miner. Depos. 2020, 39, 1015–1029. [Google Scholar]
- Wang, C.H.; Wang, D.H.; Chen, C.; Liu, S.B.; Chen, Z.Y.; Sun, Y.; Zhao, C.H.; Cao, S.H.; Fan, X.J. Progress of research on the Shilizing rare meatals mineralization from Jiuling–type rock and its significance for prospecting. Acta Geol. Sin. 2019, 93, 1359–1373. [Google Scholar]
- Liu, S.; Wang, S.L.; Xing, X.L.; Wang, L.F.; Zhang, Y. Distribution, types and prospecting potential of Lithium deposits in Jiangxi Province. Resour. Environ. Eng. 2019, 33, 195–207. [Google Scholar]
- Qin, C. Preliminary Study of Mineralization Potentiality of Shiziling Muscovite Granite, Jiangxi Province; China University of Geosciences: Beijing, China, 2018. [Google Scholar]
- Zhou, J.T.; Wang, G.B.; He, S.F.; Fan, A.C. Diagenesis and mineralization of Ganfang rock in Yifeng, Jiangxi province. J. East China Univ. Technol. (Nat. Sci.) 2011, 34, 345–358. [Google Scholar]
- Lin, Z.L.; Zhang, L.X.; Wu, Z.H.; Ding, L.; Long, X.Y. Study on the characteristics and metallogenic regularity of Lithium deposits in Yifeng–Fengxin area, Jiangxi Province. China Met. Bull. 2020, 1012, 34–36. [Google Scholar]
- Wu, X.M.; Zhou, M.J.; Luo, X.C.; Zhou, J.T. The metallogenic conditions and prospecting potential of lithium andrare metals in northwestern Jiangxi. East China Geol. 2016, 37, 275–283. [Google Scholar]
- Zeng, X.J.; Liu, J.W.; Zeng, Q.Y.; Pan, S.Y.; Zhang, L.X.; Peng, S.T.; Lu, S.Y. Geochemical characteristics and genesis of the proclain stone (lithium–bearing) in Yifeng area, Jiangxi province. Nonferrous Met. (Min. Sect.) 2022, 74, 128–136. [Google Scholar]
- Ren, J.; Hao, J.; Xiao, L. Tectonic research of China: Review and prospect. Geol. Rev. 2002, 48, 113–124. [Google Scholar]
- Yang, H.Z. The evolution chracteristics and the basic laws of geotechonics in Jiangxi province. J. East China Coll. Geol. 1987, 10, 25–40. [Google Scholar]
- Yuan, S.D.; Peng, J.T.; Hao, S.; Li, H.M.; Geng, J.Z.; Zhang, D.L. In situ LA–MC–ICP–MS and ID–TIMS U–Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin–polymetallic mineralization. Ore Geol. Rev. 2011, 43, 235–242. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 70. [Google Scholar]
- Li, C.Y.; Zhang, R.Q.; Ding, X.; Ling, M.X.; Fan, W.M.; Sun, W.D. Dating cassiterite using laser ablation ICP–MS. Ore Geol. Rev. 2016, 72, 313–322. [Google Scholar] [CrossRef]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U–Pb LA–ICPMS dating using accessory minerals with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth–Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc–alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef] [Green Version]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, W.D.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, X.H.; Lan, Z.W.; Guo, C.L.; Yang, Y.N.; Liu, Y.; Tang, G.Q. Monazite and xenotime U–Th–Pb geochronology by ion microprobe: Dating highly fractionated granites at Xihuashan tungsten mine, SE China. Contrib. Mineral. Petrol. 2013, 166, 65–80. [Google Scholar] [CrossRef]
- Mahdy, N.M.; Ntaflos, T.; Pease, V.; Sami, M.; Slobodník, M.; Steet, A.A.A.; Abdelfadil, K.M.; Fathy, D. Combined zircon U–Pb dating and chemical Th–U–total Pb chronology of monazite and thorite, Abu Diab A–type granite, Central Eastern Desert of Egypt: Constraints on the timing and magmatic–hydrothermal evolution of rare metal granitic magmatism in the Arabian Nubian Shield. Geochemistry 2020, 80, 125669. [Google Scholar]
- Li, Q.L.; Li, X.H.; Liu, Y.; Tang, G.Q.; Yang, J.H.; Zhu, W.G. Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J. Anal. At. Spectrom. 2010, 25, 1107–1113. [Google Scholar] [CrossRef]
- White, L.T.; Ireland, T.R. High–uranium matrix effect in zircon and its implications for SHRIMP U–Pb age determinations. Chem. Geol. 2012, 306–307, 78–91. [Google Scholar] [CrossRef]
- Lehmann, B.; Zoheir, B.A.; Neymark, L.A.; Zeh, A.; Moscati, R.J. Monazite and cassiterite Usingle bond Pb dating of the Abu Dabbab rare–metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian–Nubian Shield. Gondwana Res. 2020, 84, 71–80. [Google Scholar] [CrossRef]
- Su, Y.P.; Tang, H.F. Trace element geochemistry of A–type granite. Bull. Mineral. Petrol. Geochem. 2005, 24, 245–251. [Google Scholar]
- Wu, S.P.; Wang, Y.M.; Qi, K.J. Present situation of researches on A–type granites: A review. Acta Petrol. Et Mineral. 2007, 26, 57–66. [Google Scholar]
- Jia, X.H.; Wang, Q.; Tang, J.G. A–type granites: Research progress and implications. Geotecton. Metallog. 2009, 33, 465–480. [Google Scholar]
- Li, X.W.; Mo, X.X.; Zhao, Z.D.; Zhu, D.C. A discussion on how to discriminate A–type granite. Geol. Bull. China 2010, 29, 278–285. [Google Scholar]
- Sami, M.; Monsef, M.A.E.; Abart, R.; Toksoy–Köksal, F.; Abdelfadil, K.M. Unraveling the genesis of highly fractionated rare–metal granites in the Nubian Shield via the rare–earth elements tetrad effect, Sr–Nd isotope systematics, and mineral chemistry. ACS Earth Space Chem. 2022, 6, 2368–2384. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Li, W.X.; Liu, Y.; Yuan, C.; Wei, G.J.; Qi, C.S. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I– and A–type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat–slab? Lithos 2007, 96, 186–204. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Yang, J.Y.; Zheng, Y.F. Discussions on the petrogenesis of granites. Acta Geol. Sin. 2007, 23, 1217–1238. [Google Scholar]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
- Thornton, C.P.; Tuttle, O.F. Chemistry of igneous rocks--[Part] 1, differentiation index. Am. J. Sci. 1960, 258, 664–684. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.L. Mechanism of Ta–Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrol. Sin. 2013, 29, 4311–4322. [Google Scholar]
- Dostal, J.; Kontak, D.J.; Gerel, O.; Shellnutt, J.G.; Fayek, M. Cretaceous ongonites (topaz–bearing albite–rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: Rock interaction. Lithos 2015, 236–237, 173–189. [Google Scholar] [CrossRef]
- Ballouard, C.; Branquet, Y.; Tartese, R.; Poujol, M.; Boulvais, P.; Vigneresse, J.L. Nb–Ta fractionation in peraluminous granites: A marker of the magmatic hydrothermal transition: REPLY. Geology 2016, 44, e395. [Google Scholar] [CrossRef] [Green Version]
- Chappell, B.W. Aluminium saturation in I– and S–type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Li, G.L. The Evolution of Yanshanian Granite and Tungsten Mineralization in Southern Jiangxi Province and Adjacent Region; Nanjing University: Nanjing, China, 2011. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A–type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A–type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- London, D. Phosphorus in S–type magmas: The P2O5 content of feldspars from peraluminous granites, pegmatites, and rhyolites. Am. Mineral. 1992, 77, 126–145. [Google Scholar]
- Li, X.H.; Li, W.X.; Li, Z.X. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chin. Sci. Bull. 2007, 52, 1873–1885. [Google Scholar] [CrossRef] [Green Version]
- Stepanov, A.; Mavrogenes, J.A.; Meffre, S.; Davidson, P. The key role of mica during igneous concentration of tantalum. Contrib. Mineral. Petrol. 2014, 167, 1009. [Google Scholar] [CrossRef]
- Taylor, R.P. Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite–topaz granite, southern New Brunswick, and comparisons with other topaz–bearing felsic rocks. Can. Mineral. 1992, 30, 895–921. [Google Scholar]
- Huang, X.L.; Wang, R.C.; Chen, X.M.; Chen, P.R.; Liu, C.S. Contrast between the high–P subtype and low–P subtype of F–rich granites in South China. Geol. Rev. 1998, 44, 607–617. [Google Scholar]
- Li, F.C.; Zhu, J.C.; Jin, Z.D. Genetic interpretation of Li–F–rich rare metal–bearing granites in South China. Miner. Depos. 2000, 19, 376–385. [Google Scholar]
- Huang, X.L.; Wang, R.C.; Chen, X.M.; Liu, C.S. Phosphate minerals from the Yashan F– and P– rich granite in Yichun, Jiangxi Province: Genetic implications. Geol. Rev. 2001, 47, 542–550. [Google Scholar]
- Li, J. Mineralogical Constraints on Magmatic and Hydrothermal Evolutions of the Mesozoic Rare–Metal Granites in South China; The University of Chinese Academy of Sciences: Guangzhou, China, 2015. [Google Scholar]
- Wang, R.C.; Wu, B.; Xie, L.; Che, X.D.; Xiang, L.; Liu, C. Global tempo–spatial distribution of rare–metal mineralization and continential evolution. Acta Geol. Sin. 2021, 95, 182–193. [Google Scholar]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Masuda, A.; Shabani, M.B. Tetrad effects of rare–earth elements in rare metal granites. Geochemica 1992, 3, 221–233. [Google Scholar]
- Zhao, Z.H.; Xiong, X.L.; Han, X.D. Discussion on the formation mechanism of tetrad effect of rare earth elements in granites: Taking Qianlishan and Baerzhe granites as examples. Sci. China (Ser. D) 1999, 29, 331–338. [Google Scholar]
- Jiangxi Bureau of Geology and Mineral Exploration. Regional Geological Records of China: Jiangxi Records; Geological Publishing House: Beijing, China, 2017. [Google Scholar]
- Shu, L.S. An analysis of principal features of tectonic evolution in South China Block. Geol. Bull. China 2012, 31, 1035–1053. [Google Scholar]
- Xu, D.R.; Wang, L.; Wang, Z.L.; Wu, J.; Wu, C.J. Tectonic–sedimentary characteristics of Ping (Pingxiang)–Le(Leping) depression in Jiangxi Province and its implications on coal mineral resource prospecting. Geotecton. Et Metallog. 2011, 35, 513–524. [Google Scholar]
- Yang, Z.L.; Qiu, J.S.; Xing, G.F.; Yu, M.G.; Zhao, J.L. Petrogenesis and magmatic evolution of the Yashan granite pluton in Yichun, Jiangxi Province, and their constraints on mineralization. Acta Geol. Sin. 2014, 88, 850–868. [Google Scholar]
- Zeng, C.Y.; Zhou, Y.Z.; Zheng, Y.; Yu, P.P.; Niu, J.; Liang, J. Plate tectonism of Qinzhou Bay–Hangzhou Bay juncture orogenic belt (South China) before Mesozoic tectonic transition event. Earth Sci. Front. 2015, 22, 54–63. [Google Scholar]
- Jiang, S.Y.; Peng, N.J.; Huang, L.C.; Xu, Y.M.; Zhan, G.L.; Dan, X.H. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore–concentrated district in northern Jiangxi Province. Acta Petrol. Sin. 2015, 31, 639–655. [Google Scholar]
- He, X.L.; Zhang, D.; Wu, G.G.; Di, Y.J.; Zhang, Z.H.; Li, F.; Hu, B.J.; Huo, H.L.; Li, N.; Zhang, X.M.; et al. Control of interaction between stress and fluid in tectonic transition background on metallogenesis of giant Zhuxi W–Cu deposit, South China. Miner. Depos. 2021, 40, 1135–1159. [Google Scholar]
- Chen, W.; Chen, B.; Sun, K.K. Petrogenesis of the Maogongdong highly differentiated granite in the Dahutang tungsten ore field, Jiangxi Province. Acta Petrol. Sin. 2018, 34, 1704–1724. [Google Scholar]
- Qiu, J.S.; Xiao, E.; Hu, J.; Xu, X.S.; Jiang, S.Y.; Li, Z. Petrogenesis of highly fractionated I–type granites in the coastal area of northeastern Fujian Province: Constrains from zircon U–Pb geochronology, geochemistry and Nd–Hf isotopes. Acta Petrol. Sin. 2008, 24, 2468–2484. [Google Scholar]
- Tao, J.H.; Li, W.X.; Li, X.H.; Cen, T. Petrogenesis of early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: Evidence from zircon U–Pb dating, Hf–O isotope and whole–rock geochemistry. Sci. China Earth Sci. 2013, 43, 922–939. [Google Scholar] [CrossRef]
- Zhou, H.Z.; Wei, J.H.; Shi, W.J.; Zhang, S.T.; Chen, J.J.; Zhang, X.M.; Shen, Z.Y.; Wang, Y.L.; Zeng, R.L. Late Triassic post–collision extension at Elashan magmatic belt, East Kunlun orogenic belt: Insights from Suolagou highly fractionated I–type granite. Bull. Geol. Sci. Technol. 2020, 39, 150–164. [Google Scholar]
- Zhu, D.C.; Mo, X.X.; Wang, L.Q.; Zhao, Z.D.; Niu, Y.N.; Zhou, C.Y.; Yang, Y.H. Petrogenesis of highly fractionated I–type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopes. Sci. China Earth Sci. 2009, 39, 833–848. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Brown, G.C.; Thorpe, R.S.; Webb, P.C. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J. Geol. Soc. 1984, 141, 413–426. [Google Scholar] [CrossRef]
- Li, S.H. Ore–Forming Mechanisms and Prospecting Models of Typical Granite Type Rare Metal Deposits in South China; China University of Geosciences: Beijing, China, 2015. [Google Scholar]
- Xia, W.H.; Zhang, J.T. Some problems on the genesis of rare elements mineralized granite in the South of China. J. Earth Sci. 1982, 2, 119–128. [Google Scholar]
- Yang, W.B.; Shan, Q.; Zhao, Z.H.; Luo, Y.; Yu, X.Y.; Li, N.B.; Niu, H.C. Petrogenic and metallogenic action of the alkaline granitoids in Baerzhe Area: A comparison between mineralized and barren plutons. J. Jilin Univ. (Earth Sci. Ed.) 2011, 41, 1689–1704. [Google Scholar]
- Zhu, J.C.; Rao, B.; Xiong, X.L.; Li, F.C.; Zhang, P.H. Comparison and genetic interpretation of Li–F rich, rare–metal bearing granitic rocks. Geochemica 2002, 31, 141–152. [Google Scholar]
- Xu, Z.; Wang, D.W.; Wu, Z.C.; Fu, H.M.; Liu, Q.H.; Liu, Y.; Huang, X.S. Geological characteristics and genesis of the Yashan Niobium–Tantalum deposit at Yichun, Jiangxi Province. J. East China Univ. Technol. 2018, 41, 364–378. [Google Scholar]
Measuring Point No. | Isotope Ratio | |||||
---|---|---|---|---|---|---|
207Pb/206Pb | 2σ | 207Pb/235U | 2σ | 238U/206Pb | 2σ | |
DC–4–1 | 0.0780 | 0.0323 | 0.2291 | 0.1516 | 46.95 | 7.43 |
DC–4–2 | 0.0671 | 0.0302 | 0.2248 | 0.1609 | 41.15 | 7.49 |
DC–4–3 | 0.0317 | 0.0245 | 0.1055 | 0.1248 | 41.39 | 6.44 |
DC–4–4 | 0.0737 | 0.0313 | 0.2197 | 0.1445 | 46.25 | 7.39 |
DC–4–5 | 0.0520 | 0.0261 | 0.1612 | 0.1222 | 44.47 | 6.21 |
DC–4–6 | 0.1002 | 0.0245 | 0.2945 | 0.1123 | 46.89 | 6.36 |
DC–4–7 | 0.3095 | 0.0690 | 1.4321 | 0.5138 | 29.79 | 4.60 |
DC–4–8 | 0.5157 | 0.1589 | 3.2386 | 1.7738 | 21.95 | 6.92 |
DC–4–9 | 0.0640 | 0.0372 | 0.2027 | 0.1754 | 43.54 | 8.44 |
DC–4–10 | 0.0845 | 0.0394 | 0.2535 | 0.1764 | 45.98 | 8.75 |
DC–4–11 | 0.0809 | 0.0714 | 0.2511 | 0.3205 | 44.45 | 7.57 |
DC–4–12 | 0.0345 | 0.0178 | 0.1085 | 0.0808 | 43.87 | 6.36 |
DC–4–13 | 0.2844 | 0.0804 | 1.0605 | 0.4541 | 36.97 | 6.11 |
DC–4–14 | 0.1476 | 0.0621 | 0.4829 | 0.2919 | 42.16 | 6.16 |
DC–4–15 | 0.2279 | 0.0845 | 0.8772 | 0.4758 | 35.83 | 6.03 |
DC–4–16 | 0.1117 | 0.0451 | 0.3357 | 0.1975 | 45.86 | 8.35 |
DC–4–17 | 0.3279 | 0.0867 | 1.3209 | 0.5452 | 34.22 | 6.59 |
DC–4–18 | 0.3911 | 0.0601 | 2.1080 | 0.4937 | 25.58 | 2.82 |
Sample No. | DC1 | DC2 | DC3 | DC4 | DC5 |
---|---|---|---|---|---|
SiO2 | 72.63 | 72.57 | 73.14 | 73.41 | 73.93 |
TiO2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Al2O3 | 15.42 | 15.64 | 15.08 | 15.34 | 15.32 |
TFe2O3 | 0.93 | 0.98 | 0.90 | 1.00 | 0.92 |
MnO | 0.17 | 0.17 | 0.15 | 0.15 | 0.13 |
MgO | 0.02 | 0.03 | 0.03 | 0.03 | 0.01 |
CaO | 0.75 | 0.79 | 0.80 | 0.59 | 0.36 |
Na2O | 3.95 | 3.43 | 3.62 | 3.48 | 4.15 |
K2O | 3.40 | 3.61 | 3.39 | 3.53 | 3.35 |
P2O5 | 0.67 | 0.69 | 0.66 | 0.50 | 0.36 |
LOI | 1.44 | 1.64 | 1.40 | 1.33 | 1.25 |
Total | 99.39 | 99.56 | 99.18 | 99.37 | 99.79 |
Na2O + K2O | 7.35 | 7.04 | 7.01 | 7.01 | 7.5 |
Na2O/K2O | 1.16 | 0.95 | 1.07 | 0.99 | 1.24 |
A/CNK | 1.34 | 1.42 | 1.36 | 1.44 | 1.38 |
A/NK | 1.51 | 1.64 | 1.57 | 1.61 | 1.47 |
σ | 1.82 | 1.68 | 1.63 | 1.62 | 1.82 |
DI | 90.99 | 89.97 | 90.76 | 90.69 | 92.34 |
Li | 1730 | 1900 | 1770 | 1940 | 1650 |
Sn | 378 | 724 | 341 | 291 | 313 |
W | 14 | 17 | 14 | 15 | 13 |
F | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 |
Cl | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Ga | 32.7 | 33.5 | 33.8 | 34.8 | 33.6 |
Rb | 1610 | 1695 | 1585 | 1630 | 1490 |
Cs | 233 | 247 | 222 | 235 | 210 |
Ba | <0.5 | 4.2 | <0.5 | <0.5 | <0.5 |
Th | 0.82 | 0.78 | 0.78 | 0.69 | 0.83 |
U | 2.15 | 2.44 | 2.19 | 1.69 | 2.27 |
Nb | 46.5 | 63.4 | 41.6 | 36.6 | 41.9 |
Ta | 35.2 | 65.3 | 32.1 | 23.6 | 34.3 |
Pb | 3.7 | 7.0 | 3.7 | 5.4 | 2.4 |
Sr | 86.0 | 81.9 | 62.9 | 33.7 | 17.4 |
Y | 1.6 | 1.9 | 1.2 | 1.2 | 1.2 |
Zr | 16 | 17 | 18 | 15 | 20 |
Hf | 1.4 | 1.5 | 1.4 | 1.4 | 1.7 |
La | 1.8 | 0.6 | 0.3 | 0.4 | 0.2 |
Ce | 2.0 | 1.3 | 0.3 | 0.7 | 0.2 |
Pr | 0.14 | 0.11 | 0.06 | 0.05 | 0.05 |
Nd | 0.5 | 0.3 | 0.2 | 0.1 | 0.1 |
Sm | 0.34 | 0.27 | 0.19 | 0.16 | 0.15 |
Eu | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
Gd | 0.21 | 0.27 | 0.14 | 0.16 | 0.13 |
Tb | 0.05 | 0.07 | 0.04 | 0.04 | 0.04 |
Dy | 0.30 | 0.38 | 0.23 | 0.25 | 0.20 |
Ho | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 |
Er | 0.08 | 0.09 | 0.07 | 0.06 | 0.05 |
Tm | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
Yb | 0.14 | 0.13 | 0.12 | 0.10 | 0.11 |
Lu | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
ΣREE | 5.64 | 3.60 | 1.71 | 2.08 | 1.28 |
LREE/HREE | 5.64 | 2.56 | 1.63 | 2.15 | 1.25 |
(La/Yb)N | 9.22 | 3.31 | 1.79 | 2.87 | 1.30 |
(La/Sm)N | 3.42 | 1.43 | 1.02 | 1.61 | 0.86 |
(Gd/Yb)N | 1.24 | 1.72 | 0.97 | 1.32 | 0.98 |
Types of Granite | Biotite Granite | Protolothionite Muscovite Granite | Muscovite Granite | Lepidolite Granite | Aplite |
---|---|---|---|---|---|
Rb (mg/kg) | 174~207, average 189 | 414~442, average 427 | 1490~1695, average 1602 | 1892~2660, average 2244 | 3204~3850, average 3600 |
Sr (mg/kg) | 100.5~131.5, average 111.7 | 56.1~58.4, average 57.5 | 17.4~86.0, average 56.4 | 3.7~50.0, average 20.7 | 8.9~44.8, average 30.6 |
Zr (mg/kg) | 178~209, average 190 | 103~110, average 106 | 15~20, average 17 | 6~35, average 21 | 20~32, average 25 |
Hf (mg/kg) | 5.2~6.1, average 5.5 | 3.0~3.1, average 3.03 | 1.4~1.7, average 1.5 | 1.6~2.2, average 1.8 | 3.2~4.7, average 3.9 |
Li (mg/kg) | 127.5~154.0, average 134.6 | 308~346, average 327 | 1650~1940, average 1798 | 2507~4864, average 3648 | 5837~6870, average 6554 |
Nb (mg/kg) | 9.9~11.0, average 10.2 | 12.0~12.3, average 12.2 | 36.6~63.4, average 46.0 | 52.0~82.2, average 70.6 | 86.0~113.5, average 104.5 |
Ta (mg/kg) | 0.9~1.0, average 1.0 | 2.24~2.30, average 2.27 | 23.6~65.3, average 38.1 | 19.0~55.0, average 39.6 | 15.0~171.0, average 119.7 |
Sn (mg/kg) | 4.0~5.0, average 4.8 | 22.5~27, average 24.8 | 291~724, average 409 | 60~406, average 234 | 196~699, average 535 |
W (mg/kg) | 1.0~2.0, average 1.6 | 6.5~19.8, average 13.2 | 13.0~17.0, average 14.6 | 11.0~37.2, average 20.3 | 11~44, average 36 |
Rb/Sr | 1.44~1.86, average 1.71 | 7.09~7.88, average 7.43 | 18.72~85.63, average 39.72 | 46.80~560.27, average 200.96 | 81.03~412.13, average 150.93 |
Nb/Ta | 9.90~11.33, average 10.47 | 5.22~7.45, average 6.05 | 0.97~1.55, average 1.27 | 0.95~3.55, average 2.14 | 0.63~7.20, average 1.97 |
Zr/Hf | 34.00~34.63 average 34.33 | 34.19~36.67, average 35.06 | 10.71~12.86, average 11.62 | 8.13~17.50, average 11.40 | 5.74~7.80, average 6.46 |
Fraction degree | Gradually increase | ||||
Evolution processes | The high degree of crystallization differentiation | The high degree of crystallization differentiation and melt–fluid interaction in the late stage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Zeng, R.; Meng, D.; Li, T.; Wei, J. Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization. Minerals 2023, 13, 503. https://doi.org/10.3390/min13040503
Ouyang Y, Zeng R, Meng D, Li T, Wei J. Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization. Minerals. 2023; 13(4):503. https://doi.org/10.3390/min13040503
Chicago/Turabian StyleOuyang, Yongpeng, Runling Zeng, Delei Meng, Tongfei Li, and Jin Wei. 2023. "Geochronology and Geochemistry Characteristics of Dongcao Muscovite Granite in the Yifeng Area, Jiangxi Province, China: Implications for Petrogenesis and Mineralization" Minerals 13, no. 4: 503. https://doi.org/10.3390/min13040503