Geochemical Assessment of River Sediments at the Outlets of Eastern Makran, Pakistan; Implications for Source Area Weathering and Provenance
Abstract
:1. Introduction
2. Geographical and Geological Framework
2.1. Geographical Aspects
2.1.1. Climate
2.1.2. Rainfall
2.1.3. Rivers and Streams
2.2. Geological Background
3. Sampling and Analytical Techniques
3.1. Data Acquisition and Laboratory Techniques
3.2. Data Processing
4. Results
4.1. Correlation Matrices of the Major Elements
4.2. Major Elements
4.3. Trace Elements
4.4. Rare Earth Elements
5. Discussion
5.1. Sorting and Maturity of Sediments
5.2. Tectonic and Climatic Conditions
5.3. Source Area Weathering
5.4. Provenance
6. Conclusions
- The ICV values for all studied sediments indicated immature, low recycled, and low source area weathering of the parent rock.
- The DK along with RK and SK indicated more mature, sorted sediments, and variation in tectonic and climatic environments than HK due to their heterogeneous provenances. The higher zircon content in the HK river only represented by the increasing heavy minerals trend is due to granitic detritus, whereas other river sediments show variations due to their source rocks.
- The tectonic environments of all river sediments signify a continental arc rather than an active continental margin and humid climatic conditions.
- The sediments of HK have a provenance of intermediate character due to a mixture of felsic and mafic with or without sedimentary/meta-sedimentary rocks and ultramafic rocks. The heterogeneous sources of the sediments include Himalayan-derived recycled sediments found in the Khojak-Makran flysch basin and the Kirthar-Sulaiman belt. Bela Ophiolitic complexes also supply detrital metamorphic and volcanic lithic to HK.
- The detrital sediments carried by the SK watershed represent the complex tectonic condition of a continental arc with a humid climatic setting. They also show low source area weathering conditions. The provenance indicators of SK signify an intermediate igneous character as their main source of sediments is central Makran.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, M.; Zheng, H.; Huang, X.; Jia, J.; Li, L. Yangtze River sediments from source to sink traced with clay mineralogy. J. Asian Earth Sci. 2012, 69, 60–69. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Rahman, M.J.J.; Dampare, S.B.; Suzuki, S. Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: Inference from geochemistry. J. Geochem. Explor. 2011, 111, 113–137. [Google Scholar] [CrossRef]
- Condie, K.C.; Noll, P.D.; Conway, C.M. Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sediment. Geol. 1992, 77, 51–76. [Google Scholar] [CrossRef]
- Shao, J.; Yang, S.; Li, C. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sediment. Geol. 2012, 265–266, 110–120. [Google Scholar] [CrossRef]
- Singh, P. Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chem. Geol. 2009, 266, 242–255. [Google Scholar] [CrossRef]
- Singh, P. Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem. Geol. 2010, 269, 220–236. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Wu, W.; Xu, S.; Lu, H.; Yang, J.; Yin, H.; Liu, W. Mineralogy, major and trace element geochemistry of riverbed sediments in the headwaters of the Yangtze, Tongtian River and Jinsha River. J. Asian Earth Sci. 2011, 40, 611–621. [Google Scholar] [CrossRef]
- Yang, S.; Jung, H.-S.; Li, C. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments. Sediment. Geol. 2004, 164, 19–34. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Miner. Pet. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Government of Pakistan. Provincial Census Report Balochistan; Ministry of Planning, Development and Special Initiatives, Pakistan Bureau of Statistics: Islamabad, Pakistan, 2017. [Google Scholar]
- Kehl, M. Quaternary climate change in Iran—The state of knowledge. Erdkunde 2009, 63, 1–17. [Google Scholar] [CrossRef]
- Clemens, S.C.; Prell, W.L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 2003, 201, 35–51. [Google Scholar] [CrossRef]
- Haghipour, N.; Burg, J.-P. Geomorphological analysis of the drainage system on the growing Makran accretionary wedge. Geomorphology 2014, 209, 111–132. [Google Scholar] [CrossRef]
- Rahim, A.; Gabol, K.; Ahmed, W.; Manzoor, B.; Batool, A. Population assessment, threats and conservation measures of marsh crocodile at Dasht River, Gwadar. Pak. J. Mar. Sci. 2018, 27, 45–53. [Google Scholar]
- Delisle, G.; von Rad, U.; Andruleit, H.; von Daniels, C.; Tabrez, A.; Inam, A. Active mud volcanoes on- and offshore eastern Makran, Pakistan. Int. J. Earth Sci. 2001, 91, 93–110. [Google Scholar] [CrossRef]
- Khan, M.A.; Lang, M.; Shaukat, S.; Alamgir, A.; Baloch, T. Water Quality Assessment of Hingol River, Balochistan, Pakistan. Middle East J. Sci. Res. 2014, 19, 306–3013. [Google Scholar]
- Harms, J.C.; Cappel, H.; Francis, D.C. The Makran coast of Pakistan: Its stratigraphy and hydrocarbon po-tential. In Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan; Van Nostrand Reinhold: New York, NY, USA, 1984; pp. 3–26. [Google Scholar]
- Fruehn, J.; White, R.S.; Minshull, T.A. Internal deformation and compaction of the Makran accretionary wedge. Terra Nova 1997, 9, 101–104. [Google Scholar] [CrossRef]
- Kassi, A.M.; Khan, A.S.; Kelling, G.; Kasi, A.K. Facies and cyclicity within the Oligocene-Early Miocene Panjgur Formation, Khojak–Panjgur Submarine Fan Complex, south-west Makran, Pakistan. J. Asian Earth Sci. 2011, 41, 537–550. [Google Scholar] [CrossRef]
- Kassi, A.M.; Kasi, A.; McManus, J.; Khan, A.S. Lithostratigraphy, petrology and sedimentary facies of the Late Cretaceous-Palaeocene Ispikan Group, southwestern Makran, Pakistan. J. Himal. Earth Sci. 2013, 46, 49–63. [Google Scholar]
- Kassi, A.M.; Grigsby, J.D.; Khan, A.S.; Kasi, A.K. Sandstone petrology and geochemistry of the Oligocene–Early Miocene Panjgur Formation, Makran accretionary wedge, southwest Pakistan: Implications for provenance, weathering and tectonic setting. J. Asian Earth Sci. 2015, 105, 192–207. [Google Scholar] [CrossRef]
- Hunting Survey Corporation. Reconnaissance Geology of Part of West Pakistan: A Colombo Plan Cooperative Project, Government of Canada for the Government of Pakistan; Hunting Survey Corporation: Toronto, CA, USA, 1960. [Google Scholar]
- Bakr, M.A.; Jackson, R.O. Geological Map of Pakistan, 1:2,000,000; Geological Survery of Pakistan: Quetta, Pakistan, 1964. [Google Scholar]
- Kazmi, A.H.; Rana, R.A. Tectonic Map of Pakistan, 1:2,000,000 Scale; Geological Survery of Pakistan: Quetta, Pakistan, 1982. [Google Scholar]
- Khan, W.; Mirwani, M. Probing the Nature and Characteristics of Active Mud Volcanic Clusters in Makran Coastal Zone, Pakistan. Int. J. Res. Granthaalayah 2020, 8, 214–222. [Google Scholar] [CrossRef]
- Farhoudi, G.; Karig, D.E. Makran of Iran and Pakistan as an active arc system. Geology 1977, 5, 664. [Google Scholar] [CrossRef]
- Harms, J.; Cappel, H.; Francis, D. SPE Offshore South East Asia Show. In Proceedings of the Geology and Petroleum Potential of the Makran Coast, Pakistan, Signapore, 9–12 February 1982. [Google Scholar] [CrossRef]
- Robertson, S. Direct Estimation of Organic Matter by Loss on Ignition: Methods; Simon Fraser University, Soil Science Lab: Denver, CO, USA, 2011; pp. 1–11. [Google Scholar]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems 2001, 2, 2000GC000109. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Alfaro, M.R.; Nascimento, C.W.A.D.; Biondi, C.M.; da Silva, Y.J.A.B.; Accioly, A.M.D.A.; Montero, A.; Ugarte, O.M.; Estevez, J. Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. Catena 2018, 162, 317–324. [Google Scholar] [CrossRef]
- Sadeghi, M.; Morris, G.A.; Carranza, E.J.M.; Ladenberger, A.; Andersson, M. Rare earth element distribution and mineralization in Sweden: An application of principal component analysis to FOREGS soil geochemistry. J. Geochem. Explor. 2012, 133, 160–175. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Compton, J.S.; White, R.A.; Smith, M. Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chem. Geol. 2003, 201, 239–255. [Google Scholar] [CrossRef]
- Rao, D.S.; Vijayakumar, T.V.; Prabhakar, S.; Raju, G.B. Geochemical assessment of a siliceous limestone sample for cement making. Chin. J. Geochem. 2011, 30, 33–39. [Google Scholar] [CrossRef]
- Hossain, H.; Roser, B.; Kimura, J.-I. Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: Provenance and source area weathering. Sediment. Geol. 2010, 228, 171–183. [Google Scholar] [CrossRef]
- Rahman, M.J.J.; Suzuki, S. Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implications for Provenance, tectonic setting and wealthering. Geochem. J. 2007, 41, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Floyd, P.A.; Shail, R.; Leveridge, B.E.; Franke, W. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: Implications for tectonic environment discrimination. Geol. Soc. Lond. Spéc. Publ. 1991, 57, 173–188. [Google Scholar] [CrossRef]
- Armstrong-Altrin, J.S.; Lee, Y.I.; Verma, S.P.; Ramasamy, S. Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting. J. Sediment. Res. 2004, 74, 285–297. [Google Scholar] [CrossRef]
- Roser, B.P.; Cooper, R.A.; Nathan, S.; Tulloch, A.J. Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. N. Z. J. Geol. Geophys. 1996, 39, 1–16. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet. Sci. Lett. 2008, 273, 138–151. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Wang, Z.-B. Rare Earth Element Compositions of the Sediments from the Major Tributaries and the Main Stream of the Changjiang River. Bulletin of Mineralogy. Petrol. Geochem. 2012, 30, 31–39. [Google Scholar]
- Garzanti, E.; Andó, S.; France-Lanord, C.; Censi, P.; Vignola, P.; Galy, V.; Lupker, M. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth Planet. Sci. Lett. 2010, 302, 107–120. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Maynard, J.B.; Valloni, R.; Yu, H.-S. Composition of modern deep-sea sands from arc-related basins. Geol. Soc. Lond. Spéc. Publ. 1982, 10, 551–561. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- Hallberg, R.O. A Geochemical Method for Investigation of Palaeoredox Conditions in Sediments. Ambio Spec. Rep. 1976, 4, 139–147. [Google Scholar]
- Nath, B.N.; Bau, M.; Rao, B.R.; Rao, C. Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim. Cosmochim. Acta 1997, 61, 2375–2388. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- John, T.; Schenk, V.; Haase, K.; Scherer, E.; Tembo, F. Evidence for a Neoproterozoic ocean in south-central Africa from mid-oceanic-ridge–type geochemical signatures and pressure-temperature estimates of Zambian eclogites. Geology 2003, 31, 243–246. [Google Scholar] [CrossRef]
- Akinyemi, S.A.; Adebayo, O.; Ojo, O.; Fadipe, O.; Gitari, W.M. Mineralogy and geochemical appraisal of paleo-redox indicators in Maastrichtian Outcrop shales of Mamu Formation, Anambra Basin, Nigeria. J. Nat. Sci. Res. 2013, 3, 48–64. [Google Scholar]
- Adebayo, O.F.; Akinyemi, S.; Madukwe, H.; Aturamu, A.; Ojo, A.O. Paleoenvironmental studies of Ahoko shale, south eastern Bida basin, Nigeria: Insight from palynomorph assemblage and trace metal proxies. Int. J. Sci. Res. Publ. 2015, 5, 1–16. [Google Scholar]
- Hossain, H.Z. Major, trace, and REE geochemistry of the Meghna River sediments, Bangladesh: Constraints on weathering and provenance. Geol. J. 2019, 55, 3321–3343. [Google Scholar] [CrossRef]
- Hossain, H.Z.; Kawahata, H.; Roser, B.P.; Sampei, Y.; Manaka, T.; Otani, S. Geochemical characteristics of modern river sediments in Myanmar and Thailand: Implications for provenance and weathering. Geochemistry 2017, 77, 443–458. [Google Scholar] [CrossRef]
- Suttner, L.J.; Dutta, P.K. Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. J. Sediment. Res. 1986, 56, 329–345. [Google Scholar] [CrossRef]
- Garzanti, E.; Resentini, A. Provenance control on chemical indices of weathering (Taiwan river sands). Sediment. Geol. 2016, 336, 81–95. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical Approaches to Sedimentation, Provenance, and Tectonics; Geological Society of America Geological Society of America: Boulder, CO, USA, 1993; pp. 21–40. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M.; McLennan, S.M.; Keays, R.R. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. J. Geol. 1996, 104, 525–542. [Google Scholar] [CrossRef]
- Cullers, R.L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos 2000, 51, 181–203. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation, 1st ed.; Pearson Prentice Hall: Harlow, UK, 1993. [Google Scholar]
- Hayashi, K.-I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef] [PubMed]
- Roser, B.; Korsch, R. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Condie, K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 1993, 104, 1–37. [Google Scholar] [CrossRef]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Garver, J.I.; Royce, P.R.; Smick, T.A. Chromium and Nickel in Shale of the Taconic Foreland: A Case Study for the Provenance of Fine-Grained Sediments with an Ultramafic Source. J. Sediment. Res. 1996, 66, 100–106. [Google Scholar] [CrossRef]
- Caracciolo, L.; Critelli, S.; Innocenti, F.; Kolios, N.; Manetti, P. Unravelling provenance from Eocene-Oligocene sandstones of the Thrace Basin, North-east Greece. Sedimentology 2011, 58, 1988–2011. [Google Scholar] [CrossRef]
- Caracciolo, L.; Critelli, S.; Cavazza, W.; Meinhold, G.; von Eynatten, H.; Manetti, P. The Rhodope Zone as a primary sediment source of the southern Thrace basin (NE Greece and NW Turkey): Evidence from detrital heavy minerals and implications for central-eastern Mediterranean palaeogeography. Int. J. Earth Sci. 2014, 104, 815–832. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | TiO2 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | S/A | K/Rb | A/T | CIA | ICV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RK1 | 32.3 | 4.70 | 0.23 | 2.95 | 0.23 | 1.48 | 30.3 | 0.79 | 0.63 | 0.07 | 25.9 | 6.87 | 0.02 | 20.43 | 58.8 | 7.79 |
RK2 | 32.5 | 4.73 | 0.22 | 2.96 | 0.21 | 1.35 | 30.5 | 0.80 | 0.64 | 0.05 | 25.6 | 6.86 | 0.02 | 21.50 | 58.7 | 7.75 |
RK3 | 32.1 | 4.71 | 0.22 | 2.90 | 0.22 | 1.49 | 30.2 | 0.79 | 0.64 | 0.07 | 26.0 | 6.80 | 0.02 | 21.41 | 58.9 | 7.73 |
RK4 | 32.4 | 4.79 | 0.22 | 2.94 | 0.21 | 1.33 | 30.4 | 0.80 | 0.64 | 0.05 | 25.6 | 6.77 | 0.02 | 21.77 | 59.0 | 7.63 |
Mean | 32.3 | 4.73 | 0.22 | 2.94 | 0.22 | 1.41 | 30.3 | 0.80 | 0.64 | 0.06 | 25.8 | 6.83 | 0.02 | 21.28 | 58.9 | 7.73 |
DK1 | 61.8 | 8.08 | 0.50 | 3.41 | 0.11 | 2.02 | 10.4 | 1.62 | 1.24 | 0.10 | 10.5 | 7.65 | 0.02 | 16.16 | 54.8 | 2.39 |
DK2 | 62.5 | 7.93 | 0.42 | 3.34 | 0.10 | 1.82 | 10.6 | 1.64 | 1.20 | 0.08 | 10.4 | 7.88 | 0.02 | 18.88 | 54.2 | 2.40 |
DK3 | 61.6 | 8.27 | 0.50 | 3.45 | 0.11 | 2.04 | 10.5 | 1.63 | 1.27 | 0.10 | 10.5 | 7.45 | 0.02 | 16.54 | 55.1 | 2.35 |
DK4 | 62.6 | 7.91 | 0.43 | 3.37 | 0.11 | 1.83 | 10.4 | 1.73 | 1.20 | 0.08 | 10.2 | 7.91 | 0.02 | 18.40 | 53.1 | 2.41 |
Mean | 62.1 | 8.05 | 0.46 | 3.39 | 0.11 | 1.93 | 10.5 | 1.66 | 1.23 | 0.09 | 10.4 | 7.72 | 0.02 | 17.49 | 54.3 | 2.39 |
SK1 | 37.6 | 4.61 | 0.27 | 2.95 | 0.29 | 1.31 | 26.9 | 0.98 | 0.64 | 0.07 | 23.8 | 8.17 | 0.02 | 17.07 | 58.1 | 6.61 |
SK2 | 43.2 | 5.10 | 0.27 | 3.36 | 0.25 | 1.19 | 23.7 | 1.06 | 0.71 | 0.06 | 20.4 | 8.47 | 0.02 | 18.89 | 57.9 | 8.72 |
SK3 | 39.2 | 4.84 | 0.28 | 3.21 | 0.29 | 1.38 | 25.7 | 0.99 | 0.65 | 0.07 | 23.0 | 8.09 | 0.02 | 17.29 | 55.0 | 6.71 |
SK4 | 40.8 | 5.21 | 0.28 | 3.75 | 0.25 | 1.28 | 24.7 | 0.97 | 0.73 | 0.06 | 21.3 | 7.83 | 0.02 | 18.61 | 56.7 | 6.13 |
Mean | 40.2 | 4.94 | 0.28 | 3.32 | 0.27 | 1.29 | 25.2 | 1.00 | 0.68 | 0.07 | 22.1 | 8.14 | 0.02 | 17.96 | 56.9 | 7.04 |
HK1 | 49.7 | 4.13 | 0.30 | 3.31 | 0.17 | 1.40 | 20.4 | 0.70 | 0.72 | 0.08 | 18.2 | 12.0 | 0.02 | 13.77 | 57.2 | 6.53 |
HK2 | 48.8 | 3.71 | 0.24 | 3.61 | 0.17 | 0.96 | 21.9 | 0.63 | 0.57 | 0.06 | 18.6 | 13.2 | 0.02 | 15.46 | 58.0 | 7.57 |
HK3 | 50.8 | 4.04 | 0.29 | 3.30 | 0.15 | 1.20 | 20.4 | 0.64 | 0.77 | 0.07 | 17.8 | 12.6 | 0.02 | 13.93 | 58.1 | 6.61 |
HK4 | 46.8 | 3.37 | 0.26 | 3.89 | 0.16 | 0.93 | 23.0 | 0.54 | 0.62 | 0.06 | 19.6 | 13.9 | 0.03 | 12.96 | 57.9 | 8.72 |
Mean | 49.0 | 3.81 | 0.27 | 3.53 | 0.16 | 1.12 | 21.4 | 0.63 | 0.67 | 0.07 | 18.6 | 12.9 | 0.02 | 14.03 | 57.8 | 7.36 |
UCC | 66.0 | 15.20 | 0.68 | 5.03 | 0.08 | 2.20 | 4.20 | 3.90 | 3.40 | 0.15 | 4.34 | 0.03 | 22.35 |
RK1 | RK2 | RK3 | RK4 | Mean | DK1 | DK2 | DK3 | DK4 | Mean | SK1 | SK2 | SK3 | SK4 | Mean | HK1 | HK2 | HK3 | HK4 | Mean | UCC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li | 22.5 | 20.4 | 22.4 | 20.5 | 21.5 | 27.2 | 24.0 | 28.0 | 23.8 | 25.8 | 18.6 | 16.4 | 17.4 | 20.1 | 18.1 | 16.1 | 15.9 | 15.5 | 12.1 | 14.9 | 20.0 |
Sc | 8.76 | 7.90 | 9.03 | 8.00 | 8.42 | 9.77 | 7.80 | 9.72 | 7.60 | 8.72 | 8.15 | 7.30 | 7.40 | 7.89 | 7.69 | 7.54 | 5.10 | 7.95 | 5.30 | 6.47 | 13.6 |
V | 39.5 | 37.0 | 40.6 | 37.0 | 38.5 | 57.9 | 50.0 | 58.1 | 53.0 | 54.8 | 35.6 | 34.0 | 36.0 | 37.4 | 35.8 | 34.6 | 31.0 | 36.2 | 29.0 | 32.7 | 107 |
Cr | 71.7 | 51.0 | 76.8 | 52.0 | 62.9 | 280 | 114 | 255 | 125 | 194 | 114 | 82 | 103 | 103 | 101 | 360 | 169 | 401 | 193 | 281 | 83 |
Co | 8.89 | 8.60 | 9.11 | 8.70 | 8.83 | 10.2 | 9.10 | 10.3 | 9.00 | 9.65 | 11.3 | 11.9 | 13.1 | 12.2 | 12.1 | 10.4 | 10.3 | 10.8 | 10.1 | 10.4 | 17.0 |
Ni | 44.3 | 42.5 | 45.3 | 42.4 | 43.6 | 53.8 | 49.7 | 54.6 | 49.1 | 51.8 | 40.1 | 39.4 | 43.0 | 43.0 | 41.4 | 41.1 | 41.9 | 41.6 | 37.1 | 40.4 | 44.0 |
Cu | 17.2 | 17.2 | 17.4 | 17.5 | 17.3 | 15.6 | 15.3 | 16.0 | 15.0 | 15.5 | 14.1 | 17.1 | 18.5 | 14.0 | 15.9 | 12.4 | 11.8 | 13.0 | 11.7 | 12.2 | 25.0 |
Zn | 34.6 | 35.0 | 35.5 | 35.0 | 35.0 | 45.0 | 41.0 | 45.3 | 43.0 | 43.6 | 31.0 | 32.0 | 36.0 | 31.6 | 32.7 | 36.0 | 30.0 | 39.6 | 26.0 | 32.9 | 71.0 |
Ga | 6.49 | 5.58 | 6.59 | 5.67 | 6.08 | 10.2 | 8.67 | 10.3 | 8.46 | 9.41 | 6.36 | 5.64 | 5.81 | 6.46 | 6.07 | 5.79 | 4.35 | 5.93 | 3.80 | 4.97 | 17.0 |
Ge | 1.31 | 0.07 | 1.36 | 0.07 | 0.70 | 1.52 | 0.08 | 1.50 | 0.08 | 0.80 | 1.24 | 0.08 | 0.07 | 1.23 | 0.66 | 1.32 | 0.05 | 1.38 | 0.08 | 0.71 | 1.60 |
As | - | 21.3 | - | 21.5 | 21.4 | - | 13.6 | - | 13.4 | 13.5 | - | 73.4 | 75.0 | - | 74.2 | - | 58.2 | - | 84.7 | 71.5 | 1.50 |
Rb | 28.2 | 28.8 | 29.2 | 28.8 | 28.8 | 52.4 | 50.3 | 53.2 | 49.2 | 51.3 | 29.5 | 31.6 | 32.1 | 29.8 | 30.8 | 28.7 | 24.5 | 31.3 | 24.0 | 27.1 | 112 |
Sr | 646 | 680 | 664 | 682 | 668 | 247 | 251 | 253 | 260 | 253 | 512 | 456 | 473 | 492 | 483 | 316 | 335 | 311 | 324 | 322 | 350 |
Y | 29.1 | 27.5 | 29.9 | 28.3 | 28.7 | 23.6 | 16.0 | 25.6 | 15.7 | 20.2 | 27.7 | 23.2 | 23.0 | 26.1 | 25.0 | 24.7 | 16.9 | 28.9 | 19.3 | 22.5 | 22.0 |
Zr | 73.3 | 27.7 | 69.4 | 27.2 | 49.4 | 359 | 35 | 336 | 35 | 191 | 134 | 24.0 | 25.3 | 122.0 | 76.3 | 359 | 24.9 | 379.0 | 27.6 | 198 | 190 |
Nb | 3.75 | 3.50 | 3.84 | 3.50 | 3.65 | 8.71 | 6.60 | 8.76 | 6.60 | 7.67 | 5.06 | 4.40 | 4.70 | 5.11 | 4.82 | 5.54 | 3.90 | 6.07 | 3.80 | 4.83 | 12.0 |
Mo | 0.57 | 0.59 | 0.58 | 0.58 | 0.58 | 0.37 | 0.37 | 0.37 | 0.38 | 0.37 | 0.74 | 1.17 | 2.42 | 1.01 | 1.34 | 1.28 | 1.30 | 1.44 | 1.44 | 1.37 | 1.50 |
Ag | - | 0.04 | - | 0.05 | 0.05 | - | 0.05 | - | 0.05 | 0.05 | - | 0.06 | 0.05 | - | 0.06 | - | 0.06 | - | 0.06 | 0.06 | 50.0 |
Cd | 0.31 | 0.24 | 0.30 | 0.25 | 0.28 | 0.46 | 0.11 | 0.46 | 0.10 | 0.28 | 0.27 | 0.16 | 0.17 | 0.27 | 0.22 | 0.51 | 0.14 | 0.50 | 0.13 | 0.32 | 98.0 |
In | - | 0.03 | - | 0.03 | 0.03 | - | 0.04 | - | 0.03 | 0.04 | - | 0.03 | 0.03 | - | 0.03 | - | 0.02 | - | 0.02 | 0.02 | 50.0 |
Sn | 1.20 | 1.10 | 1.16 | 1.00 | 1.12 | 1.61 | 1.30 | 1.66 | 1.30 | 1.47 | 0.95 | 1.00 | 1.00 | 0.97 | 0.98 | 0.97 | 0.80 | 1.03 | 0.70 | 0.88 | 5.50 |
Sb | 0.92 | 1.11 | 0.90 | 1.04 | 0.99 | 0.55 | 0.63 | 0.54 | 0.57 | 0.57 | 0.80 | 1.65 | 2.89 | 1.17 | 1.63 | 1.06 | 1.49 | 1.38 | 2.44 | 1.59 | 0.20 |
Cs | 1.89 | 1.95 | 1.93 | 1.99 | 1.94 | 3.22 | 3.05 | 3.29 | 2.97 | 3.13 | 1.88 | 2.05 | 2.17 | 1.94 | 2.01 | 1.68 | 1.55 | 1.78 | 1.45 | 1.62 | 4.60 |
Ba | - | 100 | 142 | 100 | 114 | 267 | 200 | 266 | 210 | 236 | 374 | 360 | 500 | 385 | 405 | 427 | 320 | 422 | 410 | 395 | 550 |
Hf | 1.86 | 0.80 | 1.76 | 0.80 | 1.31 | 8.60 | 1.00 | 8.31 | 1.10 | 4.75 | 3.33 | 0.60 | 0.70 | 3.12 | 1.94 | 8.60 | 0.60 | 8.78 | 0.80 | 4.70 | 5.80 |
Ta | 0.25 | 0.25 | 0.24 | 0.25 | 0.25 | 0.61 | 0.50 | 0.61 | 0.51 | 0.56 | 0.33 | 0.33 | 0.34 | 0.33 | 0.33 | 0.38 | 0.29 | 0.46 | 0.28 | 0.35 | 1.00 |
W | - | 0.60 | - | 0.70 | 0.65 | - | 1.00 | - | 1.00 | 1.00 | - | 0.70 | 0.70 | - | 0.70 | - | 0.60 | - | 0.60 | 0.60 | 2.00 |
Tl | - | 0.14 | - | 0.14 | 0.14 | - | 0.24 | - | 0.24 | 0.24 | - | 0.17 | 0.16 | - | 0.17 | - | 0.13 | - | 0.13 | 0.13 | 750 |
Pb | 17.7 | 16.9 | 17.5 | 16.9 | 17.3 | 12.9 | 11.4 | 13.0 | 11.0 | 12.1 | 17.2 | 21.6 | 25.0 | 18.0 | 20.5 | 17.1 | 18.5 | 20.1 | 18.5 | 18.6 | 17.0 |
Bi | - | 0.22 | - | 0.24 | 0.23 | - | 0.16 | - | 0.16 | 0.16 | - | 0.18 | 0.17 | - | 0.18 | - | 0.10 | - | 0.11 | 0.11 | 127 |
Th | 3.65 | 3.53 | 3.68 | 3.52 | 3.60 | 8.34 | 6.79 | 8.40 | 6.48 | 7.50 | 4.51 | 4.40 | 4.44 | 4.40 | 4.44 | 5.75 | 4.36 | 5.96 | 5.90 | 5.49 | 10.0 |
U | 0.84 | 0.70 | 0.81 | 0.70 | 0.76 | 1.91 | 1.10 | 1.97 | 1.10 | 1.52 | 0.99 | 0.80 | 0.70 | 1.01 | 0.88 | 1.58 | 0.80 | 1.59 | 1.10 | 1.27 | 2.80 |
Rb/Sr | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.21 | 0.20 | 0.21 | 0.19 | 0.20 | 0.06 | 0.07 | 0.07 | 0.06 | 0.07 | 0.09 | 0.07 | 0.10 | 0.07 | 0.08 | 0.32 |
Zr/Sc | 8.37 | 3.51 | 7.69 | 3.40 | 5.74 | 36.8 | 4.54 | 34.6 | 4.66 | 20.1 | 16.4 | 3.29 | 3.42 | 15.5 | 9.65 | 47.6 | 4.88 | 47.7 | 5.21 | 26.3 | 14.0 |
Th/Sc | 0.42 | 0.45 | 0.41 | 0.44 | 0.43 | 0.85 | 0.87 | 0.86 | 0.85 | 0.86 | 0.55 | 0.60 | 0.60 | 0.56 | 0.58 | 0.76 | 0.85 | 0.75 | 1.11 | 0.87 | 0.79 |
Cr/Ni | 1.62 | 1.20 | 1.70 | 1.23 | 1.44 | 5.20 | 2.29 | 4.67 | 2.55 | 3.68 | 2.84 | 2.08 | 2.40 | 2.40 | 2.43 | 8.76 | 4.03 | 9.64 | 5.20 | 6.91 | 1.89 |
Y/Ni | 0.66 | 0.65 | 0.66 | 0.67 | 0.66 | 0.44 | 0.32 | 0.47 | 0.32 | 0.39 | 0.69 | 0.59 | 0.53 | 0.61 | 0.61 | 0.60 | 0.40 | 0.69 | 0.52 | 0.55 | 0.50 |
Cr/V | 1.82 | 1.38 | 1.89 | 1.41 | 1.63 | 4.84 | 2.28 | 4.39 | 2.36 | 3.47 | 3.20 | 2.41 | 2.86 | 2.75 | 2.81 | 10.40 | 5.45 | 11.08 | 6.66 | 8.40 | 0.78 |
RK1 | RK2 | RK3 | RK4 | Mean | DK1 | DK2 | DK3 | DK4 | Mean | SK1 | SK2 | SK3 | SK4 | Mean | HK1 | HK2 | HK3 | HK4 | Mean | UCC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 12.3 | 12.9 | 12.4 | 13.4 | 12.8 | 21.1 | 21.6 | 21.8 | 20.3 | 21.2 | 13.1 | 14.6 | 15.2 | 12.3 | 13.8 | 16.1 | 13.9 | 16.2 | 18.2 | 16.1 | 31.0 |
Ce | 24.6 | 28.8 | 24.8 | 29.5 | 26.9 | 42.7 | 44.9 | 44.8 | 42.2 | 43.7 | 28.0 | 32.4 | 34.0 | 26.4 | 30.2 | 32.7 | 29.5 | 33.5 | 38.3 | 33.5 | 63.0 |
Pr | 3.75 | 4.02 | 3.79 | 4.15 | 3.93 | 5.21 | 5.39 | 5.47 | 5.04 | 5.28 | 3.73 | 4.11 | 4.39 | 3.49 | 3.93 | 4.21 | 3.73 | 4.45 | 4.79 | 4.30 | 7.10 |
Nd | 17.5 | 18.8 | 17.6 | 19.3 | 18.3 | 20.6 | 21.6 | 21.5 | 20.4 | 21.0 | 16.4 | 18.0 | 18.6 | 15.3 | 17.1 | 17.4 | 15.6 | 18.7 | 19.1 | 17.7 | 27.0 |
Sm | 5.35 | 5.60 | 5.37 | 5.81 | 5.53 | 4.55 | 4.53 | 4.72 | 4.39 | 4.55 | 4.65 | 4.73 | 4.90 | 4.32 | 4.65 | 4.29 | 3.78 | 4.88 | 4.72 | 4.42 | 4.70 |
Eu | 1.69 | 1.62 | 1.70 | 1.63 | 1.66 | 1.03 | 0.94 | 1.04 | 0.88 | 0.97 | 1.33 | 1.21 | 1.19 | 1.23 | 1.24 | 1.05 | 0.87 | 1.16 | 0.95 | 1.01 | 1.00 |
Gd | 5.30 | 4.98 | 5.27 | 4.96 | 5.13 | 4.46 | 3.47 | 4.66 | 3.23 | 3.96 | 4.73 | 4.20 | 4.14 | 4.36 | 4.36 | 4.36 | 3.24 | 4.90 | 3.73 | 4.06 | 4.00 |
Tb | 0.87 | 0.76 | 0.88 | 0.75 | 0.82 | 0.69 | 0.49 | 0.73 | 0.48 | 0.60 | 0.78 | 0.66 | 0.63 | 0.72 | 0.70 | 0.70 | 0.48 | 0.80 | 0.56 | 0.64 | 0.70 |
Dy | 4.78 | 4.19 | 4.81 | 4.21 | 4.50 | 3.92 | 2.69 | 4.20 | 2.73 | 3.39 | 4.35 | 3.55 | 3.51 | 4.09 | 3.88 | 3.96 | 2.68 | 4.55 | 3.10 | 3.57 | 3.90 |
Ho | 0.87 | 0.76 | 0.88 | 0.76 | 0.82 | 0.79 | 0.53 | 0.86 | 0.51 | 0.67 | 0.82 | 0.67 | 0.65 | 0.78 | 0.73 | 0.77 | 0.52 | 0.90 | 0.57 | 0.69 | 0.83 |
Er | 2.15 | 1.89 | 2.17 | 1.93 | 2.04 | 2.21 | 1.37 | 2.42 | 1.34 | 1.84 | 2.11 | 1.68 | 1.67 | 2.02 | 1.87 | 2.09 | 1.31 | 2.42 | 1.44 | 1.82 | 2.30 |
Tm | 0.30 | 0.25 | 0.30 | 0.25 | 0.28 | 0.34 | 0.19 | 0.37 | 0.19 | 0.27 | 0.29 | 0.22 | 0.22 | 0.28 | 0.25 | 0.31 | 0.17 | 0.36 | 0.19 | 0.26 | 0.30 |
Yb | 1.72 | 1.48 | 1.72 | 1.49 | 1.60 | 2.16 | 1.18 | 2.31 | 1.16 | 1.70 | 1.72 | 1.24 | 1.31 | 1.68 | 1.49 | 1.95 | 1.00 | 2.22 | 1.17 | 1.59 | 2.00 |
Lu | 0.26 | 0.21 | 0.26 | 0.21 | 0.24 | 0.35 | 0.18 | 0.36 | 0.17 | 0.27 | 0.26 | 0.18 | 0.18 | 0.26 | 0.22 | 0.30 | 0.14 | 0.35 | 0.17 | 0.24 | 0.31 |
ΣREE | 81.4 | 86.3 | 81.9 | 88.4 | 84.5 | 110 | 109 | 115 | 103 | 109 | 82.3 | 87.5 | 90.6 | 77.2 | 84.4 | 90.2 | 76.9 | 95.4 | 97.0 | 89.9 | 148 |
Eu/Eu* | 0.97 | 0.94 | 0.98 | 0.93 | 0.96 | 0.70 | 0.72 | 0.68 | 0.71 | 0.70 | 0.87 | 0.83 | 0.81 | 0.87 | 0.85 | 0.74 | 0.76 | 0.73 | 0.69 | 0.73 | 0.71 |
Ce/Ce* | 0.89 | 0.98 | 0.89 | 0.97 | 0.93 | 1.00 | 1.02 | 1.01 | 1.02 | 1.01 | 0.98 | 1.03 | 1.02 | 0.99 | 1.01 | 0.97 | 1.00 | 0.97 | 1.01 | 0.99 | 0.99 |
(La/Sm)N | 1.48 | 1.49 | 1.49 | 1.49 | 1.49 | 2.99 | 3.08 | 2.98 | 2.99 | 3.01 | 1.82 | 1.99 | 2.00 | 1.84 | 1.91 | 2.42 | 2.37 | 2.14 | 2.49 | 2.36 | 4.26 |
(Gd/Yb)N | 2.55 | 2.78 | 2.53 | 2.75 | 2.65 | 1.71 | 2.43 | 1.67 | 2.30 | 2.03 | 2.27 | 2.80 | 2.61 | 2.15 | 2.46 | 1.85 | 2.68 | 1.83 | 2.64 | 2.25 | 1.65 |
(La/Yb)N | 5.13 | 6.25 | 5.17 | 6.45 | 5.75 | 7.01 | 13.13 | 6.77 | 12.55 | 9.87 | 5.46 | 8.45 | 8.32 | 5.25 | 6.87 | 5.92 | 9.97 | 5.23 | 11.2 | 8.07 | 11.1 |
(La/Lu)N | 5.17 | 6.58 | 5.11 | 6.84 | 5.93 | 6.52 | 12.86 | 6.45 | 12.80 | 9.66 | 5.40 | 8.69 | 9.05 | 5.13 | 7.07 | 5.73 | 10.6 | 4.97 | 11.5 | 8.20 | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.; Zhang, K.; Liang, H.; Yu, P. Geochemical Assessment of River Sediments at the Outlets of Eastern Makran, Pakistan; Implications for Source Area Weathering and Provenance. Minerals 2023, 13, 348. https://doi.org/10.3390/min13030348
Khan W, Zhang K, Liang H, Yu P. Geochemical Assessment of River Sediments at the Outlets of Eastern Makran, Pakistan; Implications for Source Area Weathering and Provenance. Minerals. 2023; 13(3):348. https://doi.org/10.3390/min13030348
Chicago/Turabian StyleKhan, Waseem, Ke Zhang, Hao Liang, and Pengpeng Yu. 2023. "Geochemical Assessment of River Sediments at the Outlets of Eastern Makran, Pakistan; Implications for Source Area Weathering and Provenance" Minerals 13, no. 3: 348. https://doi.org/10.3390/min13030348
APA StyleKhan, W., Zhang, K., Liang, H., & Yu, P. (2023). Geochemical Assessment of River Sediments at the Outlets of Eastern Makran, Pakistan; Implications for Source Area Weathering and Provenance. Minerals, 13(3), 348. https://doi.org/10.3390/min13030348